This study determined the effects of the paternal dietary ratio of n-6: n-3 polyunsaturated fatty acids (PUFAs) on leptin expression in the offspring and associated gene imprinting in a mouse model.
Three- to four-week-old male C57BL/6J mice (F0) were fed an n-3 PUFA-deficient (n-3 D) diet, a diet with normal n-3 PUFA content (n-3 N; n-6: n-3 = 4.3:1), or a diet with a high n-3 PUFA content (n-3 H; n-6: n-3 = 1.5:1) for 8 weeks. Two subsequent generations were generated by mating F0 and F1 male mice with 10-week-old virgin female C57 BL/6J mice, to produce F1 and F2 offspring.
Compared to the paternal n-3 D diet, paternal n-3 N and n-3 H diets reduced adipose mRNA expression of leptin (Lep) and its plasma concentrations in juvenile F1 male and female offspring, and adult F1 male and F2 female offspring, with upregulated Lep receptor mRNA expression in the hypothalamus. Meanwhile, paternal n-3 N and n-3 H diets altered the expression of the imprinted genes
These data imply that paternal