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Introduction: Sustained hyperglycemia causes glucotoxicity, which has been

regarded as a contributor to hepatocyte damage in type 2 diabetes (T2D) and its

metabolic comorbidities. Honokiol is a natural biphenolic component derived

from the dietary supplement Magnolia o�cinalis extract. This study aimed

to investigate the e�ects of honokiol on glucose metabolism disorders and

oxidative stress in hepatocytes and the underlying mechanisms.

Methods: HepG2 cells were treated with glucosamines (18mM) to induce

glucotoxicity as a diabetic complication model in vitro.

Results and discussion: Honokiol significantly increased glucose

consumption, elevated 2-NBDG uptake, and promoted GLUT2 translocation

to the plasma membrane in glucosamine-treated HepG2 cells, indicating

that honokiol ameliorates glucose metabolism disorders. Furthermore,

glucosamine-induced ROS accumulation and loss of mitochondrial

membrane potential were markedly reduced by honokiol, suggesting

that honokiol alleviated glucotoxicity-induced oxidative stress. These e�ects

were largely abolished by compound C, an AMPK inhibitor, suggesting an

AMPK activation-dependent manner of honokiol function in promoting

glucose metabolism and mitigating oxidative stress. Molecular docking results

revealed that honokiol could interact with the amino acid residues (His151,

Arg152, Lys243, Arg70, Lys170, and His298) in the active site of AMPK. These

findings provide new insights into the antidiabetic e�ect of honokiol, which

may be a promising agent for the prevention and treatment of T2D and

associated metabolic comorbidities.
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Introduction

The incidence and prevalence of type 2 diabetes (T2D) are
on the rise worldwide and have reached alarming levels. It is
estimated to increase from 536.6 million in 2021 to 783.2 million
by 2045 (1). Microvascular (retinopathy, nephropathy, and
neuropathy) and macrovascular (atherosclerosis) complications
associated with diabetes are the major causes of disability
and mortality among patients with T2D (2, 3). Sustained
hyperglycemia in T2D impairs insulin-stimulated glucose
uptake and utilization by peripheral tissues, including the
liver, which gives rise to insulin resistance (IR) (4, 5). In
the liver, IR impedes the normal glucose metabolism process,
which elevates hepatic endogenous glucose production through
increased gluconeogenesis and decreased glycogen synthesis
(6). Accumulation of excess glucose in hepatocytes induces
glucotoxicity (7). In a diabetic liver, glucotoxicity exacerbates
oxidative stress, eliciting glucose metabolism disorders (8, 9).

The nutrient-sensing hexosamine biosynthetic pathway
(HBP), a glucose metabolic pathway branching off from main
glycolysis, mediates glucotoxicity and is strongly associated
with diabetic complications (10–12). As a metabolite of HBP,
glucosamine increases HBP flux and promotes IR by inhibiting
insulin-stimulated glycogen synthesis and glucose uptake in
hepatocytes (13, 14). It also impairs glucose transporter 2
(GLUT-2) translocation from an intracellular pool to the
plasma membrane, reducing glucose uptake in hepatocytes
(15). In addition, glucosamine-induced glucotoxicity impairs
the mitochondrial function in hepatocytes, increases ROS
production, and causes oxidative stress (16). Hence, it is of
great significance to develop natural plant extracts that improve
glucose metabolism disorders and alleviate oxidative stress in
hepatocytes to prevent the occurrence and development of
diabetes and its complications.

AMP-activated protein kinase (AMPK) is a serine/threonine
protein kinase that regulates cellular energy homeostasis and
plays an essential role in hepatic metabolism (17, 18). Liver
AMPK controls glucose homeostasis mainly by suppressing
hepatic glucose production and decreasing the expression
of genes involved in hepatic gluconeogenetic genes, which
protects against hepatic IR (19, 20). Under fasting conditions,

Abbreviations: T2D, type 2 diabetes; IR, insulin resistance; AMPK, AMP-

activated protein kinase; p-AMPK, phosphorylated AMPK; 2-NBDG, 2-(N-

(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose; GLUT2,

glucose transporter 2; GLUTs, glucose transporters; ROS, reactive oxygen

species; GLU, glucosamine; HON, honokiol; DMEM, Dulbecco’s Modified

Eagle’sMedium;DMSO, dimethyl sulfoxide; FBS, fetal bovine serum;CCK-

8, cell counting kit-8; IC50, the half-maximal inhibitory concentration;

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HBP, hexosamine

biosynthetic pathway.

AMPK activation enhances energy metabolism by upregulating
mitochondrial function in the liver to respond to energy
deficiency (21). Conversely, excess nutrients suppress AMPK
phosphorylation in the liver and hepatocytes, which triggers
increased HBP flux (22). In addition, activation of AMPK
alleviates oxidative stress by reducing fatty acid synthesis,
promoting NADPH synthesis, and limiting its consumption for
maintaining cellular redox and metabolic homeostasis (23, 24).
Collectively, AMPK is regarded as a potential therapeutic target
against hepatic glucose metabolism disorders and oxidative
stress in T2D.

Natural products from plants are excellent sources of
therapeutic agents (25). Magnolia officinalis, a Chinese
medicinal herb, includes two major species, namely, M.

officinalis Rehder & E.H. Wilson and M. officinalis var.
biloba Rehder & E.H. Wilson (26). Recently, M. officinalis

extract has been used for dietary supplements and medicinal
purposes worldwide (27–29). It contains various nutrients and
phytochemical components, such as lignans, phenylethanoid
glycosides, phenolic glycosides, alkaloids, steroids, and
essential oils, which enable it to display anti-oxidative, anti-
inflammatory, and anxiolytic effects (30). Phenylethanoid
glycosides isolated from M. officinalis var. biloba fruits display
free radical scavenging activities (28). Magnolol and its
isomer honokiol, two lignan compounds, are major bioactive
ingredients of M. officinalis (31). Magnolol exhibits multiple
beneficial effects on T2D and its complications via improving
glucose homeostasis, promoting lipid metabolism, and reducing
oxidative stress and inflammation (32). Honokiol, an isolated
dietary biphenolic natural product from the bark, leaves, and
root of M. officinalis, demonstrated pleiotropic bioactivities
such as anti-oxidation, anti-inflammation, hepatoprotection,
anti-obesity, and antidiabetes (33–35). However, no previous
studies have reported the glucotoxicity-protecting effect of
honokiol in hepatocytes. Notably, some studies have reported
that honokiol can activate AMPK phosphorylation, improving
hepatocyte lipid metabolism. However, whether honokiol can
directly bind to AMPK does not have computational molecular
docking analyses. It is still unclear if honokiol ameliorates
glucotoxicity-induced glucose metabolism disorders and
oxidative stress is AMPK-dependent (36, 37).

In this study, molecular docking was performed to
investigate whether honokiol could directly bind to AMPK
active sites. Glucosamine was used as an in vitro model of
diabetic complications to assess the antidiabetic activity of
honokiol. We examined changes in glucose consumption, 2-
NBDG uptake, GLUT2 translocation, production of ROS, and
mitochondrial membrane potential in HepG2 cells treated
with glucosamine with or without honokiol. Application of
compound C, a selective AMPK inhibitor, estimated whether
these beneficial effects of honokiol were AMPK-dependent. This
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study will provide new insights into the antidiabetic potential
of honokiol.

Materials and methods

Materials and reagents

Honokiol was purchased from Shanghai Yuanye Bio-
Technology Co., Ltd. (Shanghai, China). Compound C was
purchased from Selleck (Shanghai, China). Dulbecco’s Modified
Eagle’s Medium (DMEM), Dulbecco’s Phosphate Buffered
Saline 1X (DPBS, #14190250), trypsin/EDTA, penicillin, and
streptomycin were purchased from Gibco (Grand Island, NY).
Fetal bovine serum (FBS) was purchased from Biological
Industries (Beit-Haemek, Israel). Dimethyl sulfoxide (DMSO)
and rosiglitazone were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Glucosamine, Insulin, Cell Counting
Kit-8 (CCK-8) Kits, RIPA Lysis Buffer, Membrane and
Cytosol Protein Extraction Kit, Bicinchoninic Acid (BCA)
Protein Assay Kit, Hoechst 33342 Staining Solution for
Live Cells, and Mitochondrial Membrane Potential Assay
Kit with JC-1 were purchased from Beyotime Biotechnology
(Shanghai, China). Glucose Assay Kit was purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).
2-NBDG (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-
deoxyglucose) was obtained from Invitrogen (Carlsbad, CA,
USA). The primary antibodies against total AMPK, phospho-
AMPK (Thr172) and GAPDH were purchased from Cell
Signaling Technology (Beverly, USA). Primary antibody against
glucose transporter type 2 (GLUT2) was purchased from
Proteintech Group, Inc. (Wuhan, China). Anti-Na+/K+-
ATPase α-1 was purchased from Jingjie PTM BioLab Co. Ltd.
(Hangzhou, China). The human hepatic HepG2 cell lines were
originally obtained from the Cell Bank of the Shanghai Institute
of Biochemistry and Cell Biology, Chinese Academy of Sciences
(Shanghai, China).

HepG2 cell culture and viability assay

Human hepatic HepG2 cells were cultured in DMEM/high
glucose supplement with 10% FBS, penicillin G (100 U/ml),
and streptomycin (100µg/ml) at 37◦C in a humidified
atmosphere with 5% CO2. The CCK-8 assay was used
to evaluate the viability of HepG2 cells according to the
manufacturer’s instructions. Briefly, HepG2 cells were
seeded in 96-well plates. After overnight incubation, the
cells were treated with honokiol (3.125–800µM) for 18 h
or 24 h. Then, 10 µl of CCK-8 was added to each well,
and the cells were incubated under conditions of 37◦C
and 5% CO2 for 2 h. The absorbance was measured at
450 nm using the Tecan Spark multimode microplate reader

(Tecan, Männedorf, Switzerland). The following formula
was used to calculate the cell viability: cell viability (%) =

[A (treatment group) – A (blank)]/[A (control) – A (blank)]
× 100%.

Diabetic complication model in vitro and
drug treatment

The diabetic complication model was induced by
glucosamine, as previously described (13). Briefly, HepG2
cells were cultured in high-glucose DMEM supplemented
with 10% FBS. The medium was changed after reaching
75% confluence. HepG2 cells were treated with 18mM
glucosamine for 18 h in the serum-free DMEM medium with
low glucose to induce glucotoxicity. Before drug treatment,
the cells were starved for 4 h in a serum-free DMEM medium
with low-glucose levels. HepG2 cells were then cultured
with 18mM glucosamine and co-treated with honokiol or
rosiglitazone (positive drug control) for 18 h. The control
group was administered the same amount of DPBS. To
determine whether honokiol regulates phosphorylation of
AMPK, HepG2 cells were pretreated with the AMPK inhibitor
compound C (5µM) for 30min, followed by treatment
with 18mM glucosamine and co-treated with honokiol
for 18 h.

Glucose consumption assay

HepG2 cells were treated with or without 18mM
glucosamine and co-treated with or without honokiol in
96-well plates for 18 h. The glucose content in the supernatant
of each well was detected at 505 nm using a glucose assay kit
(glucose oxidase method) according to the manufacturer’s
instructions. The glucose consumption in cell supernatant was
calculated by subtracting the measured glucose concentration
in the medium from the glucose concentration of the original
DMEM media. Then, glucose consumption was normalized to
the cell number using the CCK-8 assay in each well.

Glucose uptake assay

Glucose uptake wasmeasured using the fluorescently labeled
deoxyglucose analog, 2-NBDG, as described previously (38).
Briefly, HepG2 cells were seeded into a 12-well plate and were
maintained in a serum-free medium for 4 h. The test compound
was added to each cell sample. Following treatments for 18 h,
insulin (100 nM) was administered for 30min. Next, HepG2
cells were treated with 200µM 2-NBDG for 30min incubation
at 37◦C and then washed 3 times with PBS. 2-NBDG-treated
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HepG2 cells were transferred into a black 96-well plate. The
fluorescence was measured using the Tecan Spark multimode
microplate reader (Tecan, Männedorf, Switzerland), set at an
excitation wavelength of 488 nm and an emission wavelength of
542 nm. For 2-NBDG visualization analyses, HepG2 cells were
cultured in a chamber slide. The cell nuclei were stained with
Hoechst 33342 staining solution for live cells for 10min. The
image was taken using a fluorescent microscope (Leica DM4000,
Germany). The mean fluorescence intensity was quantified
using the StrataQuest software module (TissueGnostic, Vienna,
Austria). The fluorescence intensity was normalized to the cell
number with Hoechst 33342. The 2-NBDG-uptake of cells was
expressed as a percentage of control cells.

Reactive oxygen species (ROS) assays

Intracellular ROS levels were generally measured using
a ROS assay kit following the manufacturer’s instructions.
HepG2 cells were seeded in a 12-well plate and were serum-
starved for 4 h. After appropriate treatment, HepG2 cells were
washed 3 times with PBS and incubated with 10µM DCFH-
DA for 30min at 37◦C. DCFH-DA can freely diffuse through
the cell membrane and be hydrolyzed into DCFH by ester
enzymes after entering cells. Intracellular ROS can convert
DCFH to fluorescent DCF. The detection of DCF fluorescence
represents the intracellular level of active oxygen. HepG2 cells
were washed with PBS twice (pH 7.4), and the cell nuclei
were stained with Hoechst 33342 staining solution for live
cells for 10min. DCF fluorescence images were acquired using
a fluorescence microscope (Leica DM 4000, Germany). ROS
levels were quantified using the StrataQuest software module
(TissueGnostic, Vienna, Austria). The ROS levels in cells are
expressed as a percentage of control cells.

Mitochondrial membrane potential
measurement

The mitochondrial membrane potential of HepG2 cells
was determined with a Mitochondrial Membrane Potential
Assay Kit with JC-1. HepG2 cells were cultured with 18mM
glucosamine and co-treated with honokiol for 18 h. HepG2
cells were incubated with JC-1 at 37◦C for 30min in the dark
and then washed two times with PBS. The image was taken
using a fluorescent microscope (Leica DM4000, Germany).
The JC-1 red/green fluorescence intensity ratio of each sample
was calculated.

Immunofluorescence assays

Membrane translocation of GLUT2 from intracellular
vesicles to the plasmamembrane inHepG2 cells was observed by

immunofluorescence staining. Briefly, HepG2 cells were seeded
on sterile glass coverslips and were gently washed 3 times with
PBS. Cells were fixed in freshly prepared 4% paraformaldehyde
at room temperature for 25min. Coverslip was rinsed with PBS
3 times for 3min each. For 30min, 10% goat serum was used
to block at room temperature, and then the goat serum was
discarded. Anti-GLUT2 antibody was added, and the cells were
incubated at 37◦C for 1 h protected from light. After washing,
cells were incubated with the Alexa Fluor 488-conjugated
Donkey anti-Goat IgG (H+L) at 37◦C for 1 h protected from
light. The coverslips were mounted on microscope slides and
sealed with an antifade solution, and nuclei were stained with
DAPI. Images were captured using a fluorescence microscope
(Leica DM 4000, Germany).

Western blot analysis

The treated HepG2 cells were washed two times with
PBS (pH 7.4) and lysed in RIPA lysis buffer to detect total
AMPK and phosphorylated AMPK. The membrane proteins
were extracted using a Membrane and Cytosol Protein
Extraction Kit, following the manufacturer’s instructions.
Protein concentration was measured with the BCA Kit. A 5 ×

SDS loading buffer was added. Protein samples were separated
by SDS-PAGE and transferred to a PVDF membrane. Then the
membranes were incubated with specific primary antibodies,
followed by incubation with the appropriate secondary
horseradish peroxidase-conjugated antibodies. Immunoblots
were captured using the iBright 1500 imaging system (Thermo
Fisher). The levels of protein were normalized to GAPDH
expression. Quantification of immunoblotting band intensity
was performed using Image J.

Molecular docking

Molecular docking was performed using Discovery Studio
2021 (Dassault Systèmes BIOVIA, San Diego, CA), following
the standard procedures (39). The co-crystal structure of AMPK
with an AMPK agonist was obtained from the RSCB Protein
Data Bank (PDB ID: 4ZHX). 4ZHX is a structure of AMPK
complexed with its agonist (Pubchem ID: 49870838), which
facilitates the precise location of AMPK protein activity sites.
Honokiol was docked into the active sites on the docking
pocket, which was created according to the position of the
agonist of AMPK. The x, y, and z coordinates of the active
pocket box center of AMPK were set to 77.525835, 13.612198,
and 33.299745, respectively. The radius of the active pocket
was set to 17 Å. The docking study employed CDOCKER,
an effective method for docking, to conduct a semiflexible
docking algorithm based on molecular dynamics simulations.
CDOCKER is an accurate docking technology in Discovery
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FIGURE 1

The e�ect of honokiol on cell viability and glucose consumption in glucosamine-induced insulin resistance in HepG2 cells. (A) Cell viability of

HepG2 cells cultured in the presence of various concentrations of honokiol (3.12–800µM) for 18h or 24h, as analyzed by CCK-8 assay; results

were expressed as mean ± SEM (n = 6). (B) Relative cell viability treated with 6.25 and 12.5µM honokiol and co-treated with/without 18mM

glucosamine. (C) Glucose consumption in groups treated with honokiol (6.25, 12.5µM) and co-treated with/without glucosamine (18mM).

Rosiglitazone (10µM) as a positive drug control. Glucose consumption was normalized by cell viability in each well. (D) The 2-NBDG uptake

assay performed in cultured HepG2 cells. Cells in 12-well culture plates were stimulated with 100nM insulin. After the stimulation, 2-NBDG

uptake in cells was measured. Data are presented as the means ± SEM (n = 6). ### p < 0.001 compared with the control cells; *p < 0.05, **p <

0.01, *** p < 0.001 compared with the glucosamine-induced cells, ns indicates no significant di�erence compared with the

glucosamine-induced cells.

Studio. The binding modes were analyzed by Discovery
Studio 2021.

Statistical analysis

All of the experiments were performed using at least
three independent experiments per sample, and the data were
presented as the means ± SEM. Differences among multiple
groups were analyzed using one-way ANOVA, and two groups
were compared by a two-tailed Student t-test by GraphPad
Prism 8. The p-values of less than 0.001 were considered highly

statistically significant, while p-values of less than 0.01 or 0.05
were considered statistically significant.

Results

Honokiol increased
glucosamine-induced glucose
consumption and promoted 2-NBDG
uptake in HepG2 cells

Various concentrations of honokiol were tested to
identify a favorable safe dosage for investigating the
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FIGURE 2

The predicted binding mode of honokiol with AMPK. (A) The chemical structure of honokiol; (B) The 3D binding models of honokiol (green); and

a reported AMPK agonist (yellow) with AMPK. (C) The 2D binding interaction of honokiol and AMPK. (D) The 2D binding interaction of an AMPK

agonist 5-(5-hydroxyl-isoxazol-3-yl)-furan-2-phosphonic acid, and AMPK.

protective effects of honokiol on glucosamine-induced
HepG2 cells. The results showed that honokiol could inhibit
the proliferation of HepG2 cells in a dose-dependent

manner, with 50% inhibition concentration (IC50) at
18 h of 25.86µM and 24 h of 25.20µM. Compared with
untreated cells, cell viability was not obviously affected
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FIGURE 3

Honokiol improved insulin resistance by directly activating AMPK in glucosamine-induced HepG2 cells. HepG2 cells were pretreated

with/without AMPK inhibitor compound C (5µM) for 30min and then glucosamine (18mM) induced HepG2 cells co-treated with honokiol

(6.25µM) for 18h and incubated with insulin (100nM) for another 30min. (A,B) The protein expression and relative quantitative data of p-AMPK

(Thr 172) and AMPK in HepG2 cells; n = 3 for each group. (C,D) Relative cell viability and glucose consumption in groups treated with PBS,

18mM glucosamine, 18mM glucosamine + 6.25µM honokiol, and 18mM glucosamine + 6.25µM honokiol +5µM compound C. (E) The

glucose uptake was then detected by 2-NDBG fluorescence probe, and the nuclei were stained with Hoechst 33342. Scale bar, 50µm. (F) The

mean fluorescence intensities of 2-NBDG (green) were analyzed using StrataQuest software; n = 3 for each group. Data are presented as the

(Continued)
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FIGURE 3 (Continued)

means ± SEM. ### p < 0.001 compared with the control cells; *p < 0.05, **p < 0.01, *** p < 0.001 compared with the glucosamine-induced

cells, ns indicates no significant di�erence compared with glucosamine-induced cells. Abbreviation: CON, control; GLU, glucosamine;

GLU+HON, glucosamine + honokiol; GLU+HON+C, glucosamine + honokiol+ compound C.

FIGURE 4

Honokiol restored glucosamine-induced impairment of GLUT2 translocation via activation of AMPK in HepG2 cells. HepG2 cells were pretreated

with/without AMPK inhibitor compound C (5µM) for 30min and then were incubated with 18mM glucosamine in the absence or presence of

honokiol (6.25µM) for 18h and incubated with insulin (100nM) for another 30min. (A) Translocation of GLUT2 (green) from the cytoplasm to

the cell membrane was assayed using immunofluorescence staining. The nuclei were stained by DAPI (blue). Scale bar, 10µm. (B) Expression of

membrane GLUT2 was detected by Western blot. Na+/K+-ATPase α1 was used as a loading control. (C) Quantification of membrane GLUT2.

Data are presented as the means ± SEM. ### p < 0.001 compared with the control cells; *p < 0.05, **p < 0.01, *** p < 0.001 compared with

the glucosamine-induced cells. Abbreviation: CON, control; GLU, glucosamine; GLU+HON, glucosamine + honokiol; GLU+HON+C,

glucosamine + honokiol+ compound C.

by honokiol at concentrations of 6.25µM and 12.5µM
(Figure 1A).

The diabetic complication model in vitro was induced
by high concentrations of glucosamine in HepG2 cells and

confirmed by glucose consumption and the 2-NBDG uptake
assay. HepG2 cells were treated with 18mM glucosamine for
18 h, reducing the viability to 85.08% compared with the control
group. However, the combined treatment of honokiol and
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FIGURE 5

Honokiol-inhibited glucosamine-induced ROS overproduction was AMPK-dependent in HepG2 cells. (A) Representative images of ROS

level-derived DCF green fluorescence of HepG2 cells treated with PBS, 18mM glucosamine, 18mM glucosamine + 6.25µM honokiol,

(Continued)
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FIGURE 5 (Continued)

18mM glucosamine + 6.25µM honokiol +5µM compound C. The nuclei were stained with Hoechst 33342. Scale bar, 50µm. (B) Relative mean

fluorescence intensities of ROS were quantified using StrataQuest software. Data are presented as the means ± SEM (n = 3). ### p < 0.001

compared with the control cells; *p < 0.05, **p < 0.01, ***p < 0.001 compared with the glucosamine-induced cells. Abbreviation: CON,

control; GLU, glucosamine; GLU+HON, glucosamine + honokiol; GLU+HON+C, glucosamine + honokiol+ compound C.

glucosamine did not affect the cell viability compared with
glucosamine-treated cells (Figure 1B). Glucose consumption
was significantly reduced after glucosamine treatment in
HepG2 cells. Honokiol and rosiglitazone (positive drug control)
markedly increased glucose consumption in glucosamine-
induced HepG2 cells (Figure 1C). In addition, the effect of
honokiol on insulin-stimulated glucose uptake was determined
by 2-NBDG. The results demonstrated that honokiol remarkably
increased the glucose uptake in the glucosamine-induced
HepG2 cells (Figure 1D). These results suggested that honokiol
promoted glucose metabolism to alleviate glucosamine-induced
glucotoxicity in HepG2 cells.

Honokiol was predicted to bind to AMPK

Docking analysis revealed that honokiol could bind to the
same active site of AMPK agonist (40). The estimated binding
free energy is −14.2637 kcal/mol. Furthermore, honokiol
formed interactions with residuals of His151, Arg152, and
Lys243, which was in accordance with a reported AMPK
agonist (Pubchem ID: 49870938). Honokiol also formed other
interactions, including hydrogen bonds with Arg70 and Pi-
alkyl interaction with Lys170 and His298 (Figure 2). These data
suggested that honokiol is a potent activator of AMPK.

Honokiol ameliorates glucose
metabolism disorder by directly
activating AMPK in glucosamine-induced
HepG2 cells

It was known that liver AMPK activation improved
hepatic IR in hepatocytes (41, 42). Therefore, to further
explore whether honokiol improved glucosamine-induced IR
by activating AMPK, the HepG2 cells were pretreated with
or without compound C (5µM), a specific AMPK inhibitor,
for 30min. Then, HepG2 cells were treated with 18mM
glucosamine to induce IR and co-treated with 6.25µMhonokiol
for 18 h. After treatment with compound C and glucosamine
alone, the phosphorylated AMPK levels in HepG2 cells
were significantly reduced. However, treatment with honokiol
upregulated phosphorylation of AMPK, and compound C
significantly decreased honokiol-induced AMPK activation in
glucosamine-induced HepG2 cells (Figures 3A,B). Accordingly,
compound C essentially abolished the beneficial effects of

honokiol on glucose consumption and uptake in glucosamine-
induced HepG2 cells, indicating that honokiol ameliorates
glucotoxicity-induced IR by activating AMPK (Figures 3C–F).

Honokiol promoted GLUT2 translocation
from cytoplasm to the plasma membrane
in an AMPK-dependent manner in
glucosamine-induced HepG2 cells

To further investigate whether honokiol elevated glucose
uptake by promoting the translocation of GLUT2 and
whether the beneficial effect was related to AMPK activation,
the translocation of GLUT2 from the cytoplasm to the
membrane was examined by immunofluorescence assays.
As shown in Figure 4, glucosamine treatment caused an
apparent blockage of GLUT2 translocation in HepG2 cells
compared with the control group, and honokiol significantly
promoted the glucosamine-induced GLUT2 translocation, thus
restoring glucose uptake in glucosamine-induced HepG2 cells.
Furthermore, the honokiol-mediated GLUT2 translocation
effect was largely blocked by compound C in glucosamine-
induced HepG2 cells, indicating that honokiol enhanced
glucosamine-induced GLUT2 translocation from the cytoplasm
to the membrane by activating AMPK.

Honokiol inhibited ROS overproduction
via directly activating AMPK in
glucosamine-induced HepG2 cells

Oxidative stress was strongly associated with hepatic
IR. The increased level of ROS, which led to oxidative
stress, was one of the primary causes of IR (43, 44). To
determine whether honokiol could eliminate excessive
ROS induced by glucosamine in HepG2 cells, ROS
production was determined using DCF-DA labeling, and
the mean DCF fluorescence intensity was determined by
image analysis. Glucosamine treatment led to increased
production of ROS compared with the control group,
and honokiol markedly reduced the glucosamine-induced
intracellular ROS level. Treatment with compound C largely
eliminated the decrease in honokiol-mediated ROS production
(Figure 5).
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FIGURE 6

Honokiol activating AMPK to prevent glucosamine-induced loss of mitochondrial membrane potential (MMP) in HepG2 cells. The red color

indicates healthy cells with high MMP, and the green color indicates low MMP. (A) Representative images of JC-1 derived red and green

(Continued)
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FIGURE 6 (Continued)

fluorescence of HepG2 cells treated with PBS, 18mM glucosamine, 18mM glucosamine + 6.25µM honokiol, and 18mM glucosamine +

6.25µM honokiol +5µM compound C. Scale bar, 50µm. (B) Mitochondrial membrane potential calculated as the ratio of red to green JC-1

fluorescence and expressed as a percentage of control. Data are presented as the means ± SEM (n = 3). ### p < 0.001 compared with the

control cells; *p < 0.05, **p < 0.01, *** p < 0.001 compared with the glucosamine-induced cells. Abbreviation: CON, control; GLU,

glucosamine; GLU+HON, glucosamine + honokiol; GLU+HON+C, glucosamine + honokiol+ compound C.

Honokiol prevented
glucosamine-induced loss of
mitochondrial membrane potential in
HepG2 cells via directly activating AMPK

Cellular ROS levels are closely related to mitochondrial
function. Overproduction of ROS leads to the loss of
mitochondrial membrane potential (45, 46). To further
investigate whether honokiol could protect mitochondrial
function under glucosamine-induced stress, the mitochondrial
membrane potential was determined by JC-1 staining.
Glucosamine alone treatment resulted in the loss of
mitochondrial membrane potential compared with the
control group. Honokiol co-treatment significantly reversed
the loss of glucosamine-elicited mitochondrial membrane
potential, indicating that honokiol had a protective effect on the
disruption of mitochondrial function caused by glucosamine.
The beneficial effect of honokiol on mitochondrial function
was largely abrogated by inhibiting AMPK activity with AMPK
inhibitor compound C, indicating that honokiol inhibited
glucosamine-induced loss of mitochondrial membrane
potential by activating AMPK in HepG2 cells (Figure 6). Taken
together, honokiol had a positive effect on reducing oxidative
stress by directly activating AMPK in glucosamine-induced
HepG2 cells.

Discussion

Fasting hyperglycemia is attributed to the increase in hepatic
endogenous glucose production and gluconeogenesis caused
by hepatic IR at an early stage in the natural history of
T2D (47). During diabetes progression, sustained hyperglycemia
induces glucotoxicity, which leads to diabetic complications
(48). A limitation of diabetic complication studies is the absence
of suitable in vitro models for rapidly screening potential
antidiabetic agents. Glucosamine, an endogenous metabolite
of HBP, is thought to be a promising inducer for in vitro

models of diabetic complications studies. Persistent fasting and
postprandial hyperglycemia in diabetic complications increase
flux through the HBP and associated protein O-GlcNAcylation,
which results in increased endogenous glucosamine that
impairs insulin action and triggers oxidative stress (11, 49,
50). Exogenous glucosamine is transported into hepatocytes
by GLUT-2 and further metabolized to N-acetylglucosamine

(GlcNAc), the end product of HBP, which is used as a
donor for protein O-GlcNAcylation (51, 52). Using in vitro

models of glucosamine-induced hepatic IR and oxidative
stress can effectively characterize in vivo metabolic burdens
in patients with diabetic complications, which would provide
some insights into the role of antidiabetic agents. In our
study, exposure of HepG2 cells to a high concentration of
glucosamine alone (18mM) inhibited glucose uptake and
translocation of GLUT2 from the cytoplasm to the cell
membrane, which agreed with the previous study (15, 53).
Meanwhile, glucosamine induces the accumulation of ROS
and loss of mitochondrial membrane potential. These findings
mimicked glucotoxicity-induced hepatic IR and oxidative
stress in diabetic complications. Based on this model, we
explored the antidiabetic effect and the mechanisms of
honokiol, an active component of the dietary supplement M.

officinalis extract.
Traditionally, M. officinalis, a Chinese medicinal herb, has

been used for thousands of years to treat gastrointestinal
disorders (abdominal distention, vomiting, diarrhea,
constipation, etc.) and asthma (26, 30, 54). Recently, M.

officinalis extract has been used as a new food ingredient
and is classified as “generally regarded as safe” (GRAS) by
the United States Food and Drug Administration (FDA)
following independent recommendation (55, 56). For
example, dietary supplements with M. officinalis extract
possessed mild anxiolytic and anti-stress effects by reducing
cortisol exposure and perceived daily stress in moderately
stressed subjects (27, 57). In fact, the addition of 4%
M. officinalis extract to chewing gum inhibited plaque
formation (58).

Honokiol, as one of the primary active ingredients in
M. officinalis, has been shown to exert antidiabetic abilities
in multiple animal diabetic models. Hyperglycemia-induced
oxidative stress contributes significantly to the development
of diabetes and diabetic complications (15). Oxidative stress
impairs mitochondrial function and is strongly associated
with increased ROS and loss of mitochondrial membrane
potential (59–61). There is considerable evidence supporting
the antioxidant functionality of honokiol in various diseases,
such as cancer, cardiovascular diseases, and neurodegenerative
diseases, which has been attributed to the presence of phenolic
functions in its structure (62–64). Honokiol prevented the
development of diabetes and its multiple complications. As
a ROS scavenger, it improved pancreatic β-cell function
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FIGURE 7

Schematic representation of AMPK-dependent antidiabetic activity of honokiol in glucosamine-induced HepG2 cells. Honokiol, an active

component of the dietary supplement Magnolia o�cinalis extract, directly activates AMPK, which improves glucose metabolism disorders by

increasing glucose consumption, 2-NBDG uptake, and GLUT2 translocation and alleviates oxidative stress by reducing ROS accumulation and

loss of mitochondrial membrane potential in glucosamine-induced HepG2 cells. These e�ects of honokiol on glucotoxicity-induced glucose

metabolism disorder and oxidative stress were largely abolished by AMPK inhibitor compound C.

by attenuating oxidative stress through Nrf2/ARE pathway
in diabetic rats (37) and ameliorated diabetic myocardial
ischemia/reperfusion (MI/R) injury by reducing oxidative
stress by activating the SIRT1-Nrf2 signaling pathway (65).
Furthermore, it rescued myocardial energetic dysfunction

in diabetes by activating SIRT3-mediated deacetylation of
mitochondrial proteins (66) and alleviated lipid-induced hepatic
IR by activating SIRT3-mediated lipophagy (37, 67). Collectedly,
the antidiabetic effects of honokiol may be attributed to
its anti-oxidative property and activation of the deacetylase
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SIRT3. In this study, we showed that honokiol ameliorated
glucosamine-induced glucose metabolism disorder by reversing
the reduction of glucose consumption, glucose uptake, and
translocation of GLUT2 in human hepatocytes in vitro.
A high concentration of glucosamine triggers glucotoxicity,
leading to oxidative stress. Honokiol mitigated oxidative
stress by reducing ROS accumulation and mitochondrial
membrane potential loss in glucosamine-induced HepG2 cells.
Overall, these results confirmed the protective effects of
honokiol against glucotoxicity-induced glucose metabolism
disorder and oxidative stress using an in vitro diabetic
complications model.

AMPK is a vital nutrient-sensing enzyme that mediates
cellular energy homeostasis, insulin sensitivity, and oxidative
metabolism (68, 69). Dysregulation of AMPK activity
leads to impaired glucose uptake and mitochondrial
metabolism in studies of animals and humans with T2D
(70, 71). High glucose inhibited AMPK phosphorylation
in the liver and HepG2 hepatocytes (72, 73). Notably,
an increase in protein O-GlcNAcylation is considered
glucotoxicity and diabetic complications because GlcNAc
is produced by HBP, a nutrient-sensing pathway (74).
Increased HBP flux reduces AMPK activity, and the
inhibition of O-GlcNAcylation has an antidiabetic
effect through AMPK activation (75). As expected, our
results in this study indicate that glucosamine treatment
significantly downregulated AMPK phosphorylation in
HepG2 cells.

Therapeutic interventions targeting AMPK represent
one of the most effective strategies for treating T2D (41, 76).
AMPK activation can improve insulin sensitivity and metabolic
health (68). Metformin, a prescribed insulin-sensitizing
clinic drug for T2D treatment, improves hepatic glucose
metabolism for alleviating IR by activating AMPK (77, 78).
However, metformin is often accompanied by side effects
such as diarrhea, abdominal or stomach discomfort, and
congenital disabilities in offspring (79, 80). M. officinalis, a
Chinese medicinal herb, is widely used to treat gastrointestinal
disorders, including diarrhea. As a digest-beneficial dietary
supplement, its extract, combined with metformin, might
represent a new and promising treatment regimen for T2D.
Here, we sought to investigate the role of AMPK in the effects
of honokiol on glucose metabolism disorders and oxidative
stress in glucosamine-induced HepG2 cells. In our study,
honokiol effectively activated AMPK in glucosamine-induced
HepG2 cells. The molecular docking result showed that
honokiol binds to the same active site of AMPK agonist
(Pubchem ID: 49870938), suggesting that honokiol, as
a potential AMPK agonist, can directly bind to AMPK.
Therefore, we postulated that activation of AMPK might
be involved in the protective effects of honokiol on hepatic
IR and oxidative stress. To test this possibility, HepG2 cells
were pretreated with an AMPK inhibitor, compound C. As

expected, compound C significantly inhibited the effects of
honokiol on glucose consumption, GLUT2 translocation,
ROS accumulation, and damage of mitochondrial membrane
potential in glucosamine-induced HepG2 cells. Our results
suggest that AMPK is required for honokiol to ameliorate
glucosamine-induced glucose metabolism disorders and
oxidative stress in HepG2 cells.

Conclusion

This study provides the first experimental evidence
for the glucotoxicity-protecting effect of honokiol in
glucosamine-induced hepatocytes, an in vitro diabetic
complication model. Honokiol ameliorated glucose metabolism
disorder by increasing glucose consumption, insulin-stimulated
2-NBDG uptake, and translocation of GLUT2 and alleviated
oxidative stress by reducing ROS accumulation and loss of
mitochondrial membrane potential in glucosamine-induced
HepG2 cells. Molecular docking analysis suggested that
honokiol could bind to AMPK directly. Honokiol activated
AMPK activity in glucosamine-induced HepG2 cells. These
effects of honokiol on promoting glucose metabolism and
alleviating oxidative stress were largely eliminated by AMPK
inhibitor compound C (Figure 7). These findings provide new
insights into the antidiabetic effect of honokiol, which may
be a promising agent for preventing and treating T2D and
its complications.
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