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Visible-near infrared (Vis-NIR) spectra analysis method is widely used in

the quality grading of bulk fruits with its rapid, non-destructive, diverse

detection modes and flexible modular integration scheme. However, during

the online grading of fruits, the random mechanized way of dropping

fruit onto the conveyor belt method and the open detection environment

led to more spectral abnormal samples, which a�ect the accuracy of the

detection. In this paper, the soluble solids content (SSC) of snow peach is

quantitatively analyzed by static and online detectionmethods. Several spectral

preprocessing methods including Norris-Williams Smoothing (NWS), Savitzky-

Golay Smoothing (SGS), Continuous Wavelet Derivative (CWD), Multivariate

Scattering Correction (MSC), and Variable Sorting for Normalization (VSN) are

adopted to eliminate spectral rotation and translation errors and improve the

signal-to-noise ratio. MonteCarlo Uninformative Variable Elimination (MCUVE)

method is used for the selection of optimal characteristic modeling variables.

Partial Least Squares Regression (PLSR) is used to model and analyze the

preprocessed spectra and the spectral variables optimized by MCUVE, and

the e�ectiveness of the method is evaluated. Sparse Partial Least Squares

Regression (SPLSR) and Sparse Partial Robust M Regression (SPRMR) are

used for the construction of robust models. The results showed that the

SGS preprocessing method can e�ectively improve the analysis accuracy of

static and online models. The MCUVE method can realize the extraction of

stable characteristic variables. The SPRMR model based on SGS preprocessing

method and the e�ective variables has the optimal analysis results. The analysis

accuracy of snow peach static model is slightly better than that of online

analytical model. Through the test results of the PLSR, SPLSR and SPRMR

models by the artificially adding noise test method, it can be seen that the

SPRMR method eliminates the influence of abnormal samples on the model

during the modeling process, which can e�ectively improve the anti-noise

ability and detection reliability.

KEYWORDS

robust model, Sparse Partial Robust M Regression, visible-near infrared reflectance

spectroscopy, soluble solids content, Lijiang snow peach
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Introduction

Lijiang snow peach is an excellent variety of winter peaches

cultivated by Lijiang’s unique natural environment, with an

average single fruit of about 500 g. With a regular shape, large

fruit and bright color, each peach is rich in nutrients (1). Proper

consumption of snow peach can play a role in tonifying qi

and moistening lungs, and can prevent cardiovascular diseases

as well. As a relatively high-end new fruit in China, snow

peach is deeply loved by consumers. In recent years, with

the gradual enhancement of health awareness, consumers have

higher requirements for the taste and internal quality of

snow peach. As a result, fruit producers and retailers must

strictly control the quality of fruit. The internal SSC of snow

peach characterizes its sweetness. The higher the sweetness,

the better the taste. However, there is no correlation between

sweetness and appearance quality. Although the fruit industry

is the third largest planting industry in China, its share of

international trade has been low. The main reason is that the

post-harvest processing ability of the fruit is low. Therefore,

it is important to explore a non-destructive, green and rapid

detection method. The agricultural standard NYT 2026–2011

(Evaluation Standard for Excellent Crop Germplasm Resources

Peach) stipulates that Soluble Solids Content (SSC) is one of

the important indicators to identify whether the peach is an

excellent germplasm resource (2). The commercial processing

of peach after picking mainly includes the external quality

detection of fruit shape index and surface defects based on

machine vision and the internal quality grading based on

SSC. Due to the regular shapes of snow peach, the detection

of SSC has become an important basis for fruit suppliers

to judge their quality grades. However, the conventional

measurement method of fruit SSC requires the process of

sampling, crushing, juicing and filtering, and then the filtrate

is detected by digital refractometer. This destructive sampling

detection method is not suitable for the commercialization of

large-scale fruits.

Visible-near infrared (Vis-NIR) spectroscopy is widely used

in the detection of fruit components and defects with its

rapid, nondestructive, and flexible integrated detection device.

Jiang et al. (3) studied the online detection of SSC in navel

orange by using Vis-NIR technology. The results showed that

the variable selection method combined with Partial Least

Squares Regression (PLSR) can obtain a better analytical

model, with Correlation Coefficient of Prediction (RP) and

Root Mean Squared Error of Prediction (RMSEP) of 0.824

and 0.670, respectively. Liu et al. (4) used dynamic online

detection equipment to collect spectral information to compare

the changes of peach SSC under two storage conditions, and

obtained RP of 0.819 and 0.828 for the peach SSC models under

room temperature and refrigerated conditions, respectively.

Yang et al. (5) combined the Vis-NIR spectroscopy to establish

an analytical model for predicting tomato SSC. The results

showed that the PLSR model with 22 key wavelengths selected

by Competitive Adaptive Weighted Sampling (CARS) had

better model performance than the full-wavelength model.

Kim et al. (6) discussed the prediction of melon SSC based

on different analytical models. The results showed that the

prediction accuracy of different modeling methods was quite

different, and the best method was PLSR combined with

Artificial Neural Networks (ANN). Hao et al. (7) explored the

influence of three kinds of navel orange placement postures

on the modeling results. The results showed that the spectral

information of measured samples under different postures was

different, and the placement position affected the prediction

accuracy of the model. Because the randomness of sample

placement affects the repeatability of spectrum, more spectral

abnormal samples are generated, resulting in large prediction

error of online model.

In recent years, the construction of the robust regression

model has been widely used in many fields. Lu et al. (8) applied

Robust Partial Least Squares Regression (RPLSR) and Partial

Robust M Regression (PRMR) to determine the content of

each component in rapeseed. The results showed that compared

with traditional quantitative methods, robust regression could

reduce the influence of outliers on the model accuracy and

obtain reliable prediction results. Yao et al. (9) utilized Vis-

NIR combined with Sparse Partial Least Squares Regression

(SPLSR) to construct an industrial analytical model of sawdust

biomass. The results showed that SPLSR could ignore the

interference of singular values and improve the interpretability

of the model. Robust Regression (Rob-Reg) method proposed

by Hao et al. (10) could effectively overcome the over-fitting

problem, establish a reliable and stable analytical model, and

obtain stable prediction results. The above research results

show that the robust regression method has the advantages of

preventing over-fitting and reducing the influence of outliers

or strong influence values on the stability of the model,

which can improve the prediction accuracy of the model to a

certain extent.

When static and online detection of Lijiang snow peach SSC

is carried out by Vis-NIR, the static collection mode of manually

placed samples can ensure the repeatability of spectral collection

areas and spectra; While during the online detection, the

random loading method with a mechanized conveyor belt leads

to inconsistent spectral acquisition area and more abnormal

spectral samples, thus affecting the accuracy of detection.

In this paper, different spectral preprocessing and MCUVE

methods are used to enhance and optimize the characteristic

variable information of fruit SSC. The robust grading model

of snow peach quality is constructed by combining SPLSR

and Sparse Partial Robust M Regression (SPRMR), so as

to improve the anti-interference and analysis accuracy of

the model.
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Materials and methods

Sample preparation

The samples in this experiment were called Yunnan

Lijiang snow peach, which was collected from an orchard

and transported to the laboratory under refrigeration. The

samples were stored at a constant temperature of 20◦C, and the

experiments were carried out after standing for 24 h. In order

to prevent the stains attached to the surface of the snow peach

after harvesting from affecting the accuracy of the spectrum

acquisition, it is necessary to clean the snow peach before the

experiment. In the experiment, the reflection spectra of 400

samples were collected for static and online detection modes

respectively. The Atago digital refractometer (SSC detection,

Saitama, Japan) was used to conduct five SSC tests on the filtrate

after filtering the whole fruit juice after denucleating, and the

average value was used as the final SSC of the samples. The

sample set was divided by means of the average distribution of

SSC contents combined with the spectral-spatial distribution.

Select representative samples for modeling from the aspects of

SSC content and spectral distribution, so as to ensure that the

modeling samples cover the test samples. The calibration set

and the prediction set are divided according to the ratio of

2:1. Finally, 267 calibration samples were used for modeling,

and 133 prediction samples for model evaluation. The statistical

information of the experimental samples is shown in Table 1.

Acquisition of Vis-NIR spectra

Vis-NIR spectra of snow peach were acquired by Ocean

Optic Marine Optical QE65000 spectrometer (Optical

inspection, Florida, USA), with a wavelength range of

346–1,130 nm and a resolution of ca. 1 nm. Therefore, each

spectrum contains 1,044 wavelength variables. The light source

adopted two 100-watt halogen tungsten lamps (OSRAM),

which were arranged at an angle of 45 degrees along the

transmission direction of the conveyor belt. The schematic

diagram of spectral acquisition device is shown in Figure 1,

which consists of a spectrometer, a light source, a conveyor belt,

an optical fiber and a computer. Both static and online detection

experiments were completed on this device, and the conveyor

belt stopped during the static collection, and the fruit cup was

located directly above the center of two light sources. During

the dynamic acquisition, the speed of the conveyor belt was 6

peaches per second. The difference between static detection

and online detection is that the static method can control the

position of the fruit to obtain more stable spectral information

by manually placing the fruit. While the online detection adopts

the method of mechanized random fruit loading, and the

position of the fruit reaching the detection point is random, thus

the obtained spectral information contains more interference.

Preprocessing of Vis-NIR spectra

In order to eliminate the background and noise existing

in the original spectrum and the interference caused by the

instruments and placement methods in the acquisition process,

it is necessary to preprocess the original spectrum. Data

smoothing, derivative and scattering correction are used to

preprocess the static and dynamic online spectra (11). The

purpose of the smoothing algorithm is to improve the signal-to-

noise ratio of the research samples and eliminate spectral noise.

The derivative algorithm is mainly to eliminate the influence of

the spectral instrument on the signal. The scattering correction

is used to eliminate scattering effects caused by particles

of different sizes. Among them, Norris-Williams Smoothing

(NWS) (7) and Savitzky-Golay Smoothing (SGS) (12) are

used for smoothing; the derivative adopts Continuous Wavelet

Derivative (CWD) (13) method; Multivariate Scatter Correction

(MSC) (14) and Variable Sorting for Normalization (VSN) (15)

methods are used for scattering correction.

MCUVE variable optimization method

The purpose of variable selection is to optimize the model,

save calculation time and make the model more explanatory

(16). Each Vis-NIR spectrum of peach samples contains 1,044

wavelength points, with many uninformed variables and high-

dimensional overlap. In order to eliminate redundant and

uninformed variables, this paper adopts MCUVE variable

selection method to select effective wavelength.

The idea of MCUVEmethod is basically consistent with that

of Uninformative Variable Elimination (UVE). The difference

is that MCUVE uses Monte Carlo (MC) sampling instead

of adding random noises to UVE, which combines MC

process with UVE, makes full use of the intrinsic correlation

between samples, evaluates the contribution of wavelength

variables in high-dimensional spectral data, sorts the stability

of each wavelength according to the contribution value of each

wavelength, and finally establishes a series of the PLSR models.

At last, the upper and lower thresholds are determined by the

Root Mean Squared Error of Cross Validation (RMSECV) of

the optimal PLS model. The variables outside the threshold are

retained and those within the threshold are discarded.

Calibration model

Partial least squares regression

Partial Least Squares Regression (PLSR) (17) is a widely

used regression technique for Vis-NIR spectral data analysis.

This method combines the advantages of principal component

regression, multiple linear regression and canonical correlation

analysis, and can be applied to an effective regression method
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TABLE 1 Statistical information of the experimental samples.

Detection mode Sample set N RSSC (◦Brix) Mean Standard deviation

Static Calibration set 267 10.1–15.1 12.859 0.966

Prediction set 133 10.1–15.0 12.844 0.952

Online Calibration set 267 10.1–15.1 12.872 0.943

Prediction set 133 10.1–15.1 12.863 0.935

N represents the number of samples; RSSC indicates the range of SSC.

FIGURE 1

Schematic diagram of spectral acquisition device.

for processing high-dimensional data. Its core idea is to

project high-dimensional data into the hidden space, obtain the

RMSECV value by the leave-one-out method or the MC cross-

validation method, and obtain the best factor number combined

with F-test and establish the model.

Robust regression method

The SPLSR method is realized by NIPALS algorithm, which

is a linear combination of original variables through a set

of weighted vectors, belonging to the sparse version of PLS

(18). The algorithm generates sparse solutions by keeping the

subsequence structure of the direction vector in the restricted

X space of the selected variables (19). The SPLSR algorithm is

a method that integrates dimensionality reduction and variable

selection (18). In general, methods with inherent variable

selection properties have smaller prediction errors thanmethods

lacking the inherent variable selection properties. Compared

with the classical PLSR algorithm, the SPLSR algorithm can

reduce the interference of irrelevant information, improve the

accuracy of the quantitative analysis of the model, and enhance

the explanatory ability of the model (9).

Based on PRMR algorithm, SPRMR algorithm introduces

sparse factors. SPRMR estimator can be regarded as a sparse

version of PRMR estimator, and it can also be used as a method

of SPLSR estimator. SPRMR is the first method to combine

dimension reduction with regression, which can generate partial

least squares estimation, sparse and robust to feature vectors and

responses. The advantage of SPRMR lies in that the algorithm

can not only automatically identify vertical outliers and leverage

points (vertical outliers are outliers in the response; lever points

are outliers in the predictor), but also automatically reduce the

dimension of high-dimensional data. The specific algorithm of

PRMR is shown in Reference (19), and SPRMR is shown in

Reference (20).

Model evaluation

Correlation Coefficient of Cross Validation (RCV ) and

RMSECV are used as evaluation indexes of preprocessing

methods and variable selection, and the RCV , RP , RMSECV,

RMSEP, Residual Predictive Deviation (RPD) and The Ratio of

Error Range (RER) are used as evaluation indexes of regression

models. The closer RCV and RP are to 1 and RMSEP and

RMSECV are to 0, indicating that the better themodel is. Among

them, the smaller the error between RCV and RP, RMSECV and

RMSEP is, the better the model is, and the smaller the difference

is, the more stable the model is. The values of RPD and RER

indicate the model quality. The larger the value is, the better

the model is. Nicolaï et al. (21) defined that RPD value of 1.5–2

means the model can make rough quantitative prediction; 2–2.5

means the model has reliable prediction performance;>3means

the model has excellent prediction performance; Badaró et al.

(22) defined that RER value >10 means the model can achieve

excellent prediction accuracy.

The formulas of RCV , RP, RMSEC, RMSEP, RPD and RER

are as follows:

RCV ,RP =

√

√

√

√1−
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)2
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RER = Pr/RMSEP (4)
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FIGURE 2

Average Vis-NIR spectra of snow peach samples with static and

online detection.

wherein, yi and ypi represent SSC values of the calibration

set and the prediction set respectively; ym represents the

average value of actual measured SSC in the calibration set

and prediction set; n represents the number of samples in the

calibration set or prediction set; SD represents the standard

deviation of prediction set; Pr represents the SSC range of the

prediction set.

Results and discussion

Vis-NIR analysis of snow peach samples
with static and online detection

In order to explore the overall difference between

static and online detection spectra, the Vis-NIR average

reflectance spectra of 400 snow peacher samples were

used for illustration (Figure 2). It can be seen from the

figure that the spectral curves obtained under different

detection modes are basically similar. The difference is that

the static spectra have higher response intensity than the

online spectra, and spectra have obvious absorption peaks

around 570, 732, and 797 nm. The reason for the existence

of peaks is related to the stretching and contraction of

hydrogen-containing groups (O–H, C–H or N–H) in the

internal components of snow peach (23). The two absorption

peaks observed around 732 and 797 nm may be related

to the stretching of the third overtone of C–H functional

group and the second and the third overtones of O–H

functional group respectively (24). The absorption peak

at 570 nm is mainly related to colors and shapes of the

peach (25).

Spectral preprocessing and characteristic
analysis

Optimization of spectral preprocessing
methods

In order to further improve the quality of the modeling

spectra, five different preprocessing methods are used to

eliminate the drift, scattering and noises of original spectra.

PLSR is used to model and analyze the preprocessed spectra,

and the effectiveness of the method is evaluated. The evaluation

indicators are LVS, RCV and RMSECV. After sample spectra are

preprocessed by different preprocessing methods, the modeling

results of snow peach SSC models are shown in Table 2.

It can be seen from Table 2 that the LVS, RCV and RMSECV

of the original static spectral modeling are 18, 0.831 and 0.540,

respectively; the LVS, RCV and RMSECV of the original dynamic

spectral modeling are 19, 0.820 and 0.543, respectively. By

comparison, it can be seen that, except for the improvement of

RCV and the decrease of RMSECV after SGS preprocessing, the

data processing results of other preprocessingmethods are worse

than the results of direct modeling of the original spectrum.

In terms of the number of factors involved in modeling, the

LVS of SGS in both modes increases by one, indicating that

the modeling complexity has increased. However, the modeling

accuracy of SGS is much higher than that of the original

spectrum, so this effect is ignored. Compared with the original

spectra, the RCV of the model is increased by 0.160 and

RMSECV is reduced by 0.413◦ Brix after the SGS pretreatment

method is used for the static detection data. TheRCV is increased

by 0.171 and RMSECV is reduced by 0.418◦ Brix after the SGS

pretreatment method is used for online detection data.

Robust variable selection based on MCUVE
method

In order to further improve the model accuracy, simplify

the model and improve its interpretability, MCUVE method is

used for wavelength selection based on SGS preprocessing. After

the optimization, the wavelengths of static and online detection

are reduced from 1,044 in a full spectrum to 250 and 450

respectively. The variable distribution optimized by MCUVE

variable selection method for the two detection methods is

shown in Figure 3. It can be seen from the figure that the selected

modeling variables for static and online detection are mainly

concentrated in three regions of 347–694, 716–820 and 827–

1,129 nm. The selected variables in the spectral range of 347–

694 nm are related to the absorption of carotenoids in snow

peach (26); the selected variables in the spectral range of 716–

820 nm are mainly related to the absorption of chlorophyll in

snow peach (27); the selected variables in the spectral range of

827–1,129 nm are mainly related to the absorption of water in

snow peach (28). It can be seen from Figure 3 that the regions

of the variables selected by the MCUVE method for static
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TABLE 2 The modeling results of snow peach SSC models with di�erent spectral preprocessing methods.

Preprocessing methods Static Online

LVs RCV RMSECV LVs RCV RMSECV

Raw 18 0.831 0.540 19 0.820 0.543

NWS 18 0.824 0.550 19 0.810 0.556

SGS 19 0.991 0.127 20 0.991 0.125

CWD 18 0.820 0.555 19 0.811 0.554

MSC 18 0.827 0.545 18 0.811 0.556

VSN 15 0.822 0.554 18 0.806 0.566

NWS selects 15-point smoothing; in static mode, the polynomial order of SGS is set to 3, and the number of smoothing points is set to 17; in online mode, the polynomial order of SGS is

set to 3, and the number of smoothing points is set to 15; the decomposition scale of CWD is set to 60.

FIGURE 3

(A) Variable optimization results with MCUVE for static detection; (B) Variable optimization results with MCUVE for online detection.

and online detection are basically the same, indicating that the

variable selection is reasonable.

Construction of SSC robust model for
snow peach

Robust model construction and analysis based
on SPLSR and SPRMR methods

Combined with SGS preprocessing algorithm and MCUVE

variable selection algorithm, the robust models of SPLSR and

SPRMR for the SSC of snow peach are established respectively.

Table 3 shows the modeling results of snow peach SSC

calibration set and prediction set based on different modeling

methods. It can be seen from the table that the difference

between RCV and RP , RMSECV and RMSEP of the SPRMR

model is smaller than that of the SPLSR model, indicating

that the SPRMR model is more stable than the SPLSR model

and its prediction results are more reliable. The RPD values

of SPRMR and SPLSR in static detection are 5.926 and 5.498

respectively, which are >3, indicating that both models have

excellent prediction performance in static detection mode. The

RPD values of SPRMR and SPLSR in online detection are 3.848

and 3.744 respectively, indicating that both the SPRMR model

and the SPLSR model have excellent prediction performance

in online detection mode. In addition, the RER values of two

robust regression models under different detection modes are all

>10, and the RER value of static detection is higher than that of

online detection.

Reliability analysis of robust regression method
with di�erent background noise interference

In order to test the robustness of the model, N random data

in the calibration set samples and prediction set samples were

selected from this experiment, and white gaussian noise (WGN)
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TABLE 3 Quantitative analysis results of snow peach SSC with PLSR, SPLSR and SPRMR modeling methods.

Models Static Online

Calibration set Prediction set Calibration set Prediction set

LVs RCV RMSECV RP RMSEP RPD RER LVs RCV RMSECV RP RMSEP RPD RER

PLSR 18 0.992 0.124 0.983 0.182 5.263 26.981 19 0.991 0.128 0.966 0.247 3.800 20.245

SPLSR 18 0.991 0.131 0.984 0.174 5.498 28.191 19 0.993 0.109 0.965 0.251 3.744 19.944

SPRMR 19 0.994 0.106 0.987 0.161 5.926 30.388 19 0.993 0.111 0.967 0.244 3.848 20.500

FIGURE 4

(A) Spectra with −10 SNR; (B) Spectra with 10 SNR; (C) Spectra with 50 SNR.

was added to observe the recognition accuracy of the PLSR,

SPLSR and SPRMR models on noise and abnormal samples. In

the experiment, the intensity of the added WGN is adjusted by

changing the signal-to-noise ratio (SNR). N is set as 10, i.e., 10

samples are randomly drawn from both datasets and added with

noise. Figure 4 shows three spectra with SNR of −10, 10, 50 in

static detection mode.

Generally, the larger the SNR is, the smaller the mixed

noise is, so the model accuracy should gradually increase with

the increase of SNR. The variation trend of RP for different

models with noise intensity is shown in Figure 5. It can be seen

from Figure 5 that with the addition of different noises, the

accuracy of SPLSR and SPRMRmodels is less affected; while the

accuracy of PLSR model decreases greatly and shows instability.
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FIGURE 5

The influence trends of WGN with di�erent SNR on calibration correlation coe�cient of three models. (A) The static detection; (B) The

online detection.

TABLE 4 The RMSEP of the prediction set including 10 noise samples with SNR of 10.

Models RMSEP of static detection RMSEP of online detection

Noise Non-noise Whole Noise Non-noise Whole

PLSR 1.148 0.738 0.776 0.806 0.722 0.729

SPLSR 0.551 0.556 0.556 0.659 0.452 0.470

SPRMR 2.241 0.271 0.667 2.065 0.366 0.666

By observing the trend of the curve, it can be seen that the

predictive ability of the SPRMR model is slightly higher than

that of the SPLSR model. Even if the noise level reaches −10,

the SPRMR model still has a good prediction performance and

outperforms other models.

In order to verify the ability of the SPRMR model to

automatically identify abnormal samples, the RMSEP of the

data with noise, the data with non-noise and the whole data

were calculated in the case of adding noise, respectively. The

anti-interference ability of the SPRMR model is illustrated by

observing the errors of the prediction set composed of two parts

of data. Table 4 shows the RMSEP of the prediction set including

10 noise samples with SNR of 10. It can be seen from Table 4 that

the prediction error of the SPRMR model for normal samples

with non-noise is small, and the SSC of the samples can be more

accurately predicted. However, the RMSEP of the data with noise

exceeds 2◦ Brix, the deviation is larger. It shows that the noise

data added in the training set can be accurately identified during

the modeling of SPRMR. The model regards the samples with

noise as abnormal samples, and assigns a smaller weight during

modeling. So, for the 10 data with noise added in the prediction

set, there is a larger prediction bias.

For another robust regression model, SPLSR, it can be

observed from Table 4 that there is little difference between

the RMSEP results of the data with noise and the data

with non-noise. This is because the SPLSR model does

not have the ability to identify outliers, and the abnormal

samples are regarded as normal samples during the modeling

process and participate in the modeling. In addition, the

model has inherent variable selection property, which can

automatically discard the variables that have a greater impact

on the modeling results during modeling, and optimize

the model to a certain extent. Therefore, the RMSEP of

the data with noise and the data with non-noise are

basically similar.

In conclusion, robust regression models are less affected by

noise, and have the advantages of preventing over-fitting and

reducing the influence of outliers or strong influence values on

the stability of the model. In addition, the SPRMR model can

identify outliers and has strong anti-interference ability.
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FIGURE 6

(A) Factor graph of SPRMR model for static detection; (B) Factor graph of SPRMR model for online detection.

FIGURE 7

The correlation diagrams between the measured values of SSC and the predicted values of the models. (A) The static detection of snow peach;

(B) The online detection of snow peach.

Analysis of SSC optimal robust model for snow
peach

A suitable robust regression model is established to achieve

a better prediction of snow peach SSC in static and online

detection. Through values of RP, RMSEP, RPD and RER,

the PLSR, SPLSR and SPRMR models are comprehensively

compared. It can be seen from Table 3 that the analytical

model with the best prediction of snow peach SSC content

is SPRMR for both static and online detection. Since the

experimental samples are collected from the same orchard and

the interference and noise contained in the sample information

are small, the superior performance of the SPRMRmodel has not

been fully highlighted. However, it can be seen from the noise

experiment in the previous section that the SPRMRmodel is still

superior to the PLSR and SPLSRmodels in the presence of strong

noises, showing strong anti-interference ability. Therefore, the

optimal model for snow peach SSC prediction is the SPRMR

model combined with SGS and MCUVE.

Figure 6 shows the factor diagram of the variation of

RMSECV and RMSEP with the principal component fraction

Frontiers inNutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2022.1042868
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hao et al. 10.3389/fnut.2022.1042868

of the SPRMR model. The number of factors in both static and

online models is 19. It can be seen from the figure that the

variation trends of RMSECV and RMSEP are basically similar,

indicating that the model fitting is reasonable. Figure 7 shows

the correlation between the measured values and predicted

values of snow peach SSC. It can be seen from the figure

that for the static detection model, when the factor number

is 19, the RCV and RP of the model are 0.994 and 0.987

respectively, and RMSECV and RMSEP are 0.106 and 0.161

respectively. For the online model, when the factor number

is 19, the RCV and RP are 0.993 and 0.967 respectively,

and RMSECV and RMSEP are 0.111 and 0.244 respectively.

The analysis shows that the correlation coefficient (R) and

Root Mean Square Error (RMSE) under two detection modes

are similar, indicating that the over-fitting risk of the model

is small. In general, the SPRMR model has strong anti-

noise ability, which can realize the reliable analysis of snow

peach SSC.

Conclusion

The Vis-NIR spectroscopy combined with PLSR, SPLSR

and SPRMR methods is used for rapid analysis of SSC in

snow peach. NWS, SGS, CWD, MSC and VSN preprocessing

methods and MCUVE variable selection method are used

to enhance and optimize the information of snow peach

characteristic variables. The results show that the SGS

preprocessing method can effectively improve the analysis

accuracy of static and online models. The MCUVE method

realizes the extraction of stable characteristic variables;

the accuracy of static detection is slightly better than

that of online detection. The SPRMR method has strong

robustness and anti-interference ability. Therefore, the SPRMR

model constructed by combining Vis-NIR spectroscopy

combined with SGS preprocessing method and MCUVE

variable selection method can realize the prediction of SSC in

snow peach.

In view of the current research on single system of

static detection or online detection, this experiment makes

a comparative analysis of the two detection methods. The

application of a robust model in fruit SSC has been

discussed, which provides ideas for the future application

of robust models combined with Vis-NIR spectroscopy in

fruit quality detection. The shortcomings of this experiment

are as follows: (1) Although 400 experimental samples are

collected in batches from different planting areas of the

same orchard, the time interval is so short that sample

spectra do not contain information about different planting

environments; (2) In the Vis-NIR spectrum acquisition, the

peaches are not fully mature and their skin is hard (if

analyzed after maturity, it is easy to bump in the grading

process). In this case, the SSC detection value is small,

and the distribution of SSC value affects the subsequent

modeling accuracy.
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