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Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic

diseases worldwide. As a multifaceted disease, NAFLD’s pathogenesis is not

entirely understood, but recent evidence reveals that gut microbiota plays

a significant role in its progression. Butyrate, a gut microbiota metabolite,

has been reported to have hepato-protective effects in NAFLD animal

models. The purpose of this systematic review is to determine how butyrate

affects the risk factors for NAFLD. Searches were conducted using relevant

keywords in electronic databases up to March 2022. According to the

evidence presented in this study, butyrate contributes to a wide variety of

biological processes in the gut–liver axis. Its beneficial properties include

improving intestinal homeostasis and liver health as well as anti-inflammatory,

metabolism regulatory and anti-oxidative effects. These effects may be

attributed to butyrate’s ability to regulate gene expression as an epigenetic

modulator and trigger cellular responses as a signalling molecule. However,

the exact underlying mechanisms remain unclear. Human trials have not

been performed on the effect of butyrate on NAFLD, so there are concerns

about whether the results of animal studies can be translated to humans.

This review summarises the current knowledge about the properties of

butyrate, particularly its potential effects and mechanisms on liver health and

NAFLD management.
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Introduction

Non-alcoholic fatty liver disease (NAFLD), recently
renamed metabolic-associated fatty liver disease (MAFLD), has
become the main cause of chronic liver disease (1, 2). NAFLD
prevalence is increasing, as it affects almost one-quarter of the
general population (3), and the number of NAFLD patients
worldwide is estimated to reach 56% in the next 10 years
(4). NAFLD includes a broad spectrum of liver conditions,
from simple steatosis to non-alcoholic steatohepatitis (NASH),
cirrhosis and even hepatocellular carcinoma (5). Moreover,
as a multisystem disease, NAFLD is linked to other chronic
morbidities such as diabetes and cardiovascular and chronic
kidney diseases (5). The pathogenesis of NAFLD is based on a
“multi-hit model” with parallel or synergic roles of genetic and
epigenetic factors, including nutritional status, lifestyle, insulin
resistance (IR), inflammation, oxidative stress, and altered
gut–liver axis (GLA) (6).

Increased de novo lipogenesis and lipolysis in adipose
tissue accompanied by reduced fatty acid oxidation in the
liver results in various changes, including hepatic triglyceride
(TG) accumulation, hypertriglyceridemia, hyperglycaemia, and
eventually IR (7, 8). Increased hepatic fat deposits may activate
protein kinase C, thereby inactivating insulin receptors and
attenuating insulin sensitivity, leading to IR in the liver
(9). IR is the foremost pathophysiological step in NAFLD
progression, and it links NAFLD to metabolic dysfunction
bidirectionally (10). Excessive hepatic TG deposits may also
lead to lipotoxicity, mitochondrial dysfunction, radical oxygen
species (ROS) generation, inflammation and DNA damage,
which accelerates disease progression (8, 11, 12). Moreover,

Abbreviations: ALT, alanine aminotransferase; AMPK, adenosine
monophosphate-activated protein kinase; AST, aspartate
aminotransferase; Caco-2, carcinoma colon-2; COX, cyclooxygenase;
CD, cluster of differentiation; Cpt1α, carnitine palmitoyl transferase
1α; CXCL12, CXC chemokine; CXCR4, C-X-C chemokine receptor
type 4; DNA, deoxyribonucleic acid; FAS, fatty acid synthase; FBA, N-(1-
carbamoyl-2-phenyl-ethyl) butyramide; FBG, fasting blood glucose; FBS,
fasting blood sugar; GLA, gut–liver axis; GLP1, glucagon-like peptide-1;
GLP-1R, GLP-1 receptor; GPCR, G-protein-coupled receptor; GSH,
glutathione; GSSG/GSH, oxidised glutathione/glutathione ratio; HDAC,
histone deacetylase; HFD, high-fat diet; 4-HNE, 4-hydroxynonenal;
HOMA-IR, homeostatic model assessment of insulin resistance; IFN,
interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; INSIG,
insulin-induced gene; IR, insulin resistance; ISI, insulin sensitivity index;
LBP, lipopolysaccharide binding protein; LDL-C, low-density lipoprotein
cholesterol; LPS, lipopolysaccharide; MAFLD, metabolic-associated
fatty liver disease; MCP1, monocyte chemoattractant protein-1; MCS,
methionine–choline-sufficient diet; MIM, metabolites of intestinal
microflora; miR, microRNA; Mn-SOD, manganese superoxide dismutase;
mRNA, messenger ribonucleic acid; NaB, sodium butyrate; NAFLD,
non-alcoholic fatty liver disease; NAS, NAFLD activity score; NASH,
non-alcoholic steatohepatitis; NF-kB, nuclear factor kappa-light-chain-
enhancer of activated B cells; PPAR, peroxisome proliferator-activated
receptor; SCFAs, short-chain fatty acids; ROS, radical oxygen species;
SOD1, superoxide dismutase-1; SREBP, sterol regulatory element-
binding protein; TC, total cholesterol; TG, triglyceride; TJs, tight
junctions; TLR, toll-like receptor; TNF-α, tumour necrosis factor α; WSD,
western-style diet.

changes in pro- and anti-oxidant balance by decreasing the
activity of glutathione (GSH) peroxidase and manganese
dismutase may be observed during NAFLD pathogenesis (13).
Lipotoxicity caused by contributing GLA, adipose tissue–liver
axis and extracellular vesicles stimulates the activation of
immune-inflammatory pathways via chemokines and cytokines
(14). Evidence indicates that GLA dysfunction (ranging from
bacterial overgrowth to gut microbiota dysbiosis) plays a pivotal
role in NAFLD progression (15), and NAFLD patients exhibit
significant GLA dysfunction compared to healthy subjects
(16). Underlying mechanisms of GLA dysfunction include the
hyperactivity of liver immune cells and increased intestinal pro-
inflammatory metabolites (17, 18). These mechanisms change
the secretion of interleukins (ILs), tumour necrosis factor α

(TNF-α), and C-reactive protein (CRP), which results in a liver
inflammatory response that worsens NAFLD (19, 20).

To our knowledge, approved pharmacotherapy for NAFLD
is not yet available, and lifestyle interventions are known as
the first-line treatments (21). However, clinical trials reveal that
NAFLD is responsive to medication (6). According to previous
studies, patients with NAFLD are mainly obese or overweight;
thus, reducing weight by about 10% of the initial weight during
6–12 months along with taking specific dietary supplements
(including anti-oxidant and anti-inflammatory drugs, vitamins,
nutraceuticals, and probiotics) appears to be efficient (22).

Sodium butyrate (NaB) supplementation has recently shown
some improvements in NAFLD (23). Butyrate, a member of
short-chain fatty acids (SCFAs), is produced via the anaerobic
microbial fermentation of non-digestible carbohydrates and is
also found in some foods such as milk and butter (23–25).
Butyrate is considered a primary energy supply for colonocytes
in mammals and humans (26). Several studies have shown
the positive effects of NaB on obesity, diabetes, metabolic
syndrome and cancer (27). On the one hand, numerous
animal studies have recently demonstrated the protective effects
of NaB supplementation on NAFLD. There is also strong
evidence regarding the anti-inflammatory, anti-oxidant and
immunomodulatory effects of NaB on NAFLD. On the other
hand, NaB influences lipid metabolism, gut homeostasis and
IR (23), and it mainly acts as a histone deacetylase (HDAC)
inhibitor, binding to specific G-protein-coupled receptors
(GPCRs), thereby exerting its beneficial effects (28, 29).
Therefore, this study aims to review the therapeutic efficacy of
NaB and summarise the underlying mechanisms of the impact
of NaB supplementation on NAFLD progression.

Methods

Search strategy

Searches were conducted in electronic databases, such as
Scopus, ProQuest, Embase, PubMed, and Google Scholar, using
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the following keywords: “sodium butyrate” or “butyric acid”
or “butanoic acid” or “butyrate” or “NaB” or “SoB” and “non-
alcoholic fatty liver disease” or “fatty liver” or “NAFLD,” “non-
alcoholic steatohepatitis” or “NASH” or “dyslipidaemia” or
“high-fat diet” or “obesity” or “impaired fasting glucose” or
“insulin resistance” or “HOMA-IR” or “oxidative stress” or
“inflammation.” We included all keywords relevant to our
primary objectives about butyrate’s effect on NAFLD risk factors
to reduce the risk of missing studies. Additionally, we searched
several databases, ensuring that most of the studies published
so far were included in this review. Our search was limited to
English language studies published up to March 2022.

Eligibility criteria

This systematic review included studies that met the
following criteria: (a) English language publications; (b) clinical
trials; (c) in vivo models; (d) in vitro studies. We excluded
studies with insufficient data, observational studies or those
using butyrate-producing bacteria as well as studies on liver
diseases other than NAFLD-related conditions.

Data extraction and quality assessment
of previous studies

The scientific literature was retrieved independently by
two investigators based on the inclusion criteria. Studies that
failed to meet the predefined criteria were excluded from
further review. The quality assessment and data extraction of
eligible studies were performed using a checklist containing
the study aims, research question and inclusion and exclusion
criteria. Afterward, a third person assessed the study’s
accuracy, precision and quality. Any disagreement regarding
study eligibility and quality assessment was resolved through
discussion and consensus.

Findings

Figure 1 shows the process for selecting studies. The search
strategy identified 201 relevant articles, and after duplicates were
removed, the remaining 131 articles were screened. A further
110 articles were excluded as they failed to meet the inclusion
criteria. In total, 21 full-text articles were reviewed, and when
they were evaluated, seven studies were removed due to
the exclusion criteria. The remaining 14 studies underwent
qualitative syntheses. Table 1 shows 14 studies that evaluated the
effects of NaB on NAFLD and associated risk factors. From each
study, the following information was collected: first author’s
name, year of publication, study location, type of animal/model,
type of intervention, dose and duration of intervention, and

effects of NaB on the gut, liver, and metabolic disorders, anti-
inflammatory markers, and anti-oxidative status. Between 2013
and 2021, three studies were published in Germany (23, 30,
31), seven in China (25, 32–37), one in Netherlands (38),
one in Austria (39), one in Italy (40), and one in Japan (41).
Most studies used HFD-fed mice (32–34, 36, 37, 40), while the
remaining used WSD (30, 31), FD (39), MCD (35), and FFC-
fed (23) mice that supplemented with NaB. In included articles,
the duration of interventions ranged from 12 h to 16 weeks,
and NaB doses ranged from 20 mg/kg to 600 mg/kg. A total
of nine studies reported the effects of NaB on expression of
occludin (23, 25, 30, 31, 39), claudin-1 (35), claudin-2 (30),
claudin-3 (30), claudin-5 (30), zonula occludens-1 (ZO-1) (23,
25, 30, 31, 35, 37, 39), glucagon-like peptide-1 (GLP-1) (25,
33, 36), TGR5 (25), lipopolysaccharide binding protein (LBP)
(25, 35, 39), endotoxin (23, 37, 39), and dysbiosis (35, 37) were
categorised as gut effect, 13 studies reported hepatic steatosis
(25, 30–33, 35, 37, 38, 40), fibrosis (35, 38), hepatic TG (30,
33–35, 40), hepatic cholesterol (33, 34), fatty acid synthase
(Fas) gene expression (41), expression of Carnitine palmitoyl
transferase-1a (Cpt1a) gene (41), NAFLD activity score (NAS)
(23, 32, 35, 37), alanine aminotransferase (ALT) (23, 25, 31–
33, 35–37, 40, 41), aspartate aminotransferase (AST) (23, 25,
32, 33, 35–37, 40), and alkaline phosphatase (ALP) (25) were
categorised as liver effects, 11 studies reported weight gain
(23, 25, 30–32, 34, 36, 37, 39–41), liver/body weight ratio
(23, 31, 39), and epididymal fat weight (34, 36, 37, 39) were
categorised as obesity-induced NAFLD, four studies reported
plasma TG (25, 30, 32, 40), total cholesterol (25, 32, 40), LDL-
C (25, 32, 40), and HDL-C (32) were categorised as lipid
metabolism disorders, five studies reported fasting blood glucose
(FBG) (25, 32, 36, 37, 40), insulin (36, 37, 40), homeostatic
model assessment of insulin resistance (HOMA-IR) (32, 36, 37),
insulin sensitivity Index (ISI) (36, 37), and fasting serum insulin
(FINS) (32) were categorised as glucose metabolism disorders,
13 studies reported IL-1 (37), IL-2 (35, 37), IL-3 (35), IL-4
(35, 37), IL-6 (23, 25, 30, 32, 34, 35, 37), IL-10 (35, 37), IL-
12 (35), IL-17 (35), IL-1a (35), IL-1β (25, 30, 32, 34, 35, 40),
TNFα (23, 25, 30, 32, 34–37, 39, 40), miR-150 (32), toll like
receptor (TLR)-2 (35), TLR-4 (23, 39, 40), cpt1α (41), nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-kB)
(31, 34, 40), TLR-4/Myd88/NF-kB (25, 37), histone deacetylase
(HDAC) (34, 40), nucleotide-binding oligomerization domain-
like receptor family pyrin domain-containing 3 (NLRP3)
(34), M1 macrophage (34), peroxisome proliferator-activated
receptors (PPARα) (34, 37), cluster of differentiation (CD)14
(35), monocyte chemo- attractant protein-1 (MCP-1) (37, 40),
interferon (IFN) (37), and collagen cross-linking (CCL)-2 (39)
were categorised as inflammation-induced NAFLD, and 13
studies reported uncoupling protein (UCP)-2 (38), superoxide
Dismutase-1 (SOD1) (38), and FAS (31, 38), C-X-C chemokine
receptor type 4 (CXCR4) (32), malondialdehyde (MDA) (32),
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FIGURE 1

A flow chart showing the process of literature searching and selecting studies.

superoxide Dismutase (SOD) (32), catalase (41), glutathione, 4-
Hydroxynonenal (4-HNE) (23, 31, 39), inducible nitric oxide
synthase (iNOS) (23, 31, 39, 40), melatonin (23, 39), Aco1
(41), SOD (41), Foxo3a (41), SOD (41), GSH (41), oxidised
glutathione/glutathione ratio (GSSG/GSH) (41), cyclooxygenase
(COX) (34, 40), plasminogen activator inhibitor-1 (PAI-1) (39),
and high-mobility-group-box (HMGB-1) (40) were categorised
as oxidative-induced NAFLD.

Butyrate, a short-chain fatty acid
derived from gut microbiota

Fermentation and metabolization of
butyrate

In the lumen of the intestine, butyrate is mainly produced
by several anaerobe bacteria belonging to the Firmicutes and
Bacteroidetes families (42). The primary sources fermented to

butyrate are indigestible food components like carbohydrates
(dietary fibre and resistant starch), although proteins can also
be fermented to butyrate in smaller amounts (43). From
carbohydrates, butyrate is synthesised via glycolysis when
combining two acetyl-CoA to produce acetoacetyl-CoA, a
stepwise reduction to butyryl-CoA (43, 44). Then, butyrate is
formed from butyryl-CoA in two pathways: (1) via acetate
CoA-transferase converted to butyrate and acetyl-CoA; (2) via
phosphotransbutyrylase converted to butyryl phosphate, which
forms butyrate via butyrate kinase (43, 44). Butyrate can also
be produced via the lysine pathway from proteins (43). In
the colon, butyrate is absorbed and partially metabolised by
the colonocytes, and the remainder enters the liver via the
portal vein (40). The colonocytes uptake butyrate via different
exchange methods and transporters (40, 43). A high hepatic
clearance leads to small amounts of butyrate reaching systemic
circulation (45). However, even small amounts of butyrate exert
a plethora of effects.
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TABLE 1 Summary of the studies about the effects of NaB on NAFLD and associated risk factors.

Study Animal/Model Intervention/
Treatment

Dose and duration Gut effects Liver and metabolic
effects

Anti-inflammatory and
anti-oxidative effects

Beisner et al.
Germany (30)

Female C57BL/6 mice 1. WSD + inulin
2. WSD + NaB
3. WSD
4. C

1. 10% inulin
2. 5% NaB
12 weeks

↑ expression of occludin,
claudin-2, claudin-3,
claudin-5, and ZO-1

↓hepatic lipid accumulation,
↓hepatic TG, ↓plasma TG,

↓weight gain

↓ IL-6 and TNFα in ileum,
↑ IL-1β in colon

Prins et al.
Netherlands (38)

Precision-cut liver slices
from Male C57/BL6 mice

1. C
2. NaB

1 mM NaB or Nacl
24 and 48 h of incubation

Not reported ↓hepatic steatosis, ↓fibrosis ↓UCP-2, SOD1, and FAS gene
expression

Zhang et al.
China (32)

Male C57BL/6J mice 1. C
2. HFD
3. HFD + MIM
4. HFD + NaB

1. MIM: 200 µL/day
2. NaB: 200 mg/kg/day

8 weeks

Not reported ↓hepatic lipid accumulation,
↓NAS, ↓total cholesterol, ↓TG,
↓LDL-C, ↑HDL-C, ↓AlT, ↓AST,
↓FBG, ↓HOMA-IR,↔FINS,

↓weight gain

↓ IL-1β, IL-6, TNFα, CXCR4 and
MDA gene expression

↑miR-150 and SOD expression

Zhao et al.
China (33)

Male C57BL/6 mice 1. HFD
2. HFD + NaB

200 mg/kg
8 weeks

↑GLP-1 ↓liver steatosis, ↓hepatic TG,
↓hepatic cholesterol, ↓ALT,

↓AST

Not reported

Baumann et al.
Germany (23)

Female C57BL/6J mice 1. C + NaB
2. FFC + NaB
3. C

600 mg/kg
8 weeks

↑occludin and ZO-1
proteins
↔endotoxin

↓NAS, ↓glucose tolerance,
↔ALT,↔AST, ↓weight gain,
↓liver/body weight ratio

↓ TLR-4, IL-6, TNFα, 4-HNE
gene expression, ↓iNOS protein,

↓melatonin

Honma et al.
Japan
(41)

Sprague–Dawley male
rats

1. C
2. NaB

5% NaB
for 12 or 24 h

Not reported ↓Fas gene expression,
↑expression of Cpt1a gene,

↔weight gain

↑ Aco1, cpt1α, Mn-SOD, catalase,
glutathione synthesis related

genes, ↑SOD2 and Foxo3a gene
expression,↔ SOD,↔GSH,↔

GSSG/GSH

Yang et al.
China (25)

Male C57BLKS/J
background Lepdb/Lepdb

rats

1. C
2. C. butyricum
3. NaB

1. C. butyricum:
1.5× 107 CFU/kg
2. NaB: 500 mg/kg

6 weeks

↑GLP-1 through ↑TGR5
expression,
↓LBP

↑occludin and ZO-1
proteins

↓liver steatosis, ↓size of fat
vacuoles, ↓total cholesterol, ↓TG,
↓LDL-C, ↓FBG, ↓ALT, ↓AST,
↓ALP,↔ weight gain

↓ IL-1 β, IL-6, and TNFα gene
expression

↓ TLR-4/Myd88/NF-kB protein
levels

HepG2 cells
Caco-2 cells

NaB (2, 5, and 10 mM)
24 h

Sun et al.
China (34)

Male Sprague–Dawley
rats

1. C
2. HFD
3. HFD + NaB

300 mg/kg
9 weeks

Not reported ↓hepatic TG, ↓hepatic
cholesterol, ↓weight gain,
↓Epididymal fat weight

↓activation of HDAC, ↓NF-kB,
NLRP3, TNFα IL-1β, and IL-6

gene expression, ↓M1
macrophage F4/80, ↑M2/CD206,
↑PPARα, COX1, and COX4

protein, ↑activity of
mitochondrial complex II and V

and fatty acid β-oxidation

(Continued)
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TABLE 1 (Continued)

Study Animal/Model Intervention/
Treatment

Dose and duration Gut effects Liver and metabolic
effects

Anti-inflammatory and
anti-oxidative effects

Ye et al.
China (35)

Male C57BL/6 J mice 1. Control
2. MCD
3. C + NaB
4. MCD + NaB

600 mg/kg
6 weeks

↑claudin-1 and ZO-1
expression
↓LBP
↓dysbiosis

↓hepatic lipid accumulation,
↓NAS, ↓hepatic TG, ↓fibrosis,

↓ALT, ↓AST

↓activation of TLR2, ↓TLR4,
↓CD14, ↓IL-1a, ↓IL-1 β, ↓IL-2,
↓IL-3, ↓IL-6, ↓IL-12, ↓IL-17,

↓TNFα

↑IL-4, ↑IL-10

Zhou et al.
China (36)

Male C57BL/6 mice 1. C
2. HFD
3. HFD + NaB

200 mg/kg
16 weeks

↑GLP-1
↑GLP-1R expression

↓liver index, ↓FBG,↔insulin,
↔HOMA-IR,↔ISI, ↓ALT,
↓AST, ↓weight gain,
↔Epididymal fat weight

↔TNFα related to GLP-1

HepG2 cells NaB (1, 2, 5, 10 mM)

Zhou et al.
China (37)

Male C57BL/6 mice 1. C
2. HFD
3. HFD + NaB

200 mg/kg
8 weeks

↑ ZO-1 expression
↓endotoxin
↓dysbiosis

↓hepatic lipid accumulation,
↓NAS, ↓weight gain, ↓FBG,
↔insulin, ↓HOMA-IR, ↑ISI,
↓ALT, ↓AST, ↓weight gain,
↔Epididymal fat weight

↓MCP-1, TNFα, IL-1, IL-2, IL-6,
IFN, and TLR-4/MyD88 gene
expression, ↑ IL-4, IL-10 and

PPARs gene expression, ↓ lipid
peroxidation

Jin et al.
Austria (39)

Male C57BL/6J mice 1. C
2. FD
3. FD + NaB

600 mg/kg
6 weeks

↑occludin and ZO-1
proteins

↔endotoxin levels,
↔expression of LBP in

liver

↔weight gain,↔liver/body
weight ratio

↓TRL-4, CCL-2, TNFα, iNOS,
4-HNE gene expression, and

PAI-1 protein levels, ↑duodenal
melatonin and related enzymes

synthesis

Caco-2 cells J774A.1 cells

Jin et al.
Germany (31)

Female C57BL/6J mice 1. C
2. WSD
3. C + NAB
4. WSD + NaB

600 mg/kg
6 weeks

↑occludin and ZO-1
proteins

↓hepatic lipid accumulation,
↔FBG,↔ALT,↔weight gain,
↓liver/body weight ratio

↓NF-kB, iNOS, FAS, 4-HNE gene
expression

Mattace Raso et al.
Italy (40)

Male Sprague–Dawley
rats

1. C
2. HFD
3. HFD + NaB
4. HFD + FBA

1. NaB: 20 mg/kg
2. FBA: 42.5 mg/Kg

6 weeks

Not reported ↓liver steatosis, ↓lipid
accumulation, ↓hepatic TG
content, ↓AST, ↓ALT, ↓total
cholesterol, ↓LDL-c,↔TG,
↔insulin, ↓FBG,↔weight gain

↓activation of HDAC, TLRs,
NF-kB, TNFα, MCP1, IL-1β, IL-6,
HMGB-1, COX2, and iNOS gene
expression, ↓liver inflammatory

damage

In this table shows 14 studies that evaluated the effects of NaB on NAFLD and associated risk factors (↓decreased, ↑increased,↔ not changed). Aco1, aconitase 1; ALT, alanine aminotransferase; AST, aspartate aminotransferase; C, control; Caco-2,
carcinoma colon-2; COX, cyclooxygenase; CD, cluster of differentiation; Cpt1a, carnitine palmitoyl transferase 1a; CXCR4, C-X-C chemokine receptor type 4; Fas, fatty acid synthase; FBA, N-(1-carbamoyl-2-phenyl-ethyl) butyramide; FBG, fasting
blood glucose; FD, fructose-enriched liquid diet; FFC, fat-, fructose- and cholesterol-rich diet; FINS, fasting serum insulin; GLP1, glucagon-like peptide-1; GLP-1R, GLP-1 receptor; GSH, glutathione; GSSG/GSH, oxidised glutathione/glutathione ratio;
HDAC, histone deacetylase; HDL-c, high-density lipoprotein cholesterol; HFD, high-fat diet; HMGB, high-mobility-group-box; 4-HNE, 4-Hydroxynonenal; HOMA-IR, homeostatic model assessment of insulin resistance; IFN, interferon; IL, interleukin;
iNOS, inducible nitric oxide synthase; ISI, insulin sensitivity Index; LBP, lipopolysaccharide binding protein; LDL-c, low-density lipoprotein cholesterol; MCD, methionine–choline-deficient diet; MCP1, monocyte chemo- attractant protein-1; MCS,
methionine–choline-sufficient diet; MDA, malondialdehyde; MIM, metabolites of intestinal microflora; miR, microRNA; Mn-SOD, manganese superoxide dismutase; NaB, sodium butyrate; NAS, NAFLD activity score; NF-kB, nuclear factor kappa-light-
chain-enhancer of activated B cells; Nrf2, nuclear respiratory factor-2; PAI-1, plasminogen activator inhibitor-1; PPAR, peroxisome proliferator-activated receptors; SOD1, superoxide Dismutase-1; TG, triglyceride; TLR, toll like receptor; TNFα, tumour
necrosis factor α; UCP2, uncoupling protein-2; WSD, western-style diet; ZO-1, zonula occludens-1.
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Mechanisms of butyrate, a
pleiotropic metabolite in NAFLD
management

The main underlying mechanisms of butyrate’s beneficial
effects are (a) its epigenetic acting as an HDAC inhibitor that
affects several gene expressions in different pathways in the
body; (b) its ability to bind to numerous specific GPCRs, which
triggers and initiates intracellular responses (28, 29). As well as
the emerging impacts of butyrate on the intestinal tract, like
improving gut health and barrier function, many studies have
found extra-intestinal effects via the GLA and gut–brain axis
(43). The literature indicates that butyrate can cross the blood–
brain barrier through mono-carboxylate transporters located
on endothelial cells, and its concentrations are about an order
of magnitude higher in wet brain samples than in peripheral
blood (24, 46). Several mechanisms of butyrate’s actions in
NAFLD management are discussed in the next three sections,
including the effects of butyrate on the gut, liver and risk factors
(obesity, dyslipidaemia, glucose dysmetabolism, inflammation,
oxidative stress).

The effects of butyrate on the gut

Non-alcoholic fatty liver disease development and
progression may be influenced by overnutrition, genetic
predisposition and changes in gut microbiota and intestinal
barrier functions, which may develop into elevated endotoxin
levels and increased permeation of bacterial endotoxins (39).
Research has also demonstrated that gut microbiota and
bacteria metabolites play an essential role in regulating the
body’s metabolic processes (18). On the one hand, it has
recently been suggested that butyrate, as an active bacterial
metabolite, can help maintain gastrointestinal (GI) homeostasis
(31, 47). On the other hand, butyrate-producing bacteria in
healthy subjects is higher than in patients with NASH or
NAFLD (48). Similarly, in animal models of NAFLD, butyrate
concentrations were significantly lower in the faeces of mice
fed with a high-fat diet (HFD) than in controls (49). It was also
found that the serum and stool levels of butyrate in NAFLD
patients were much lower than those in healthy subjects
(50). Primarily, butyrate is essential for the nourishment of
epithelial cells in the intestine (47). Moreover, it is thought
that butyrate may help treat liver disease by affecting the GLA,
including improving intestinal barrier function, regulating
gut hormone secretion and inhibiting pathogenic bacteria
growth (37).

Both in vitro and in vivo studies suggest that butyrate
affects intestinal homeostasis by improving intestinal integrity
and modulating tight junction (TJ) proteins (39, 51–53).
TJs are multiprotein junctional complexes that are also

named occluding junctions or zonulae occludes (54). The
permeability of the epithelial barrier is maintained by TJs,
which play a vital role in preventing harmful substances,
such as bacteria and endotoxins, enter the bloodstream
(51). A damaged TJ can cause chronic inflammation in
various organs (25, 55), and several studies have reported
the disruption of TJ integrity in NAFLD (25, 56). Jin
et al. studied mice fed with a western-style diet (WSD)
(31) and reported that oral supplementation with NaB
(600 mg/kg) could restore the damaged intestinal mucosa
and strengthen the TJs in the gut. Butyrate has been
shown to restore TJ barrier function by activating zonula
occludens-1 and occludin proteins, which are mediated
by their ability to inhibit HDAC (31). These findings
appear to be supported by several studies (23, 25, 35,
37, 39).

Treatment with butyrate may stabilise the disrupted
TJs’ structure. Therefore, by improving gut permeability,
NaB reduces the concentration of serum endotoxins and
inflammatory cytokines, which are linked to liver diseases
(39). Endotoxins, like lipopolysaccharide (LPS), are ligands
for TLRs, so serum LBP levels are considered an indirect
indicator of endotoxemia (35). Ye et al. found that NaB
significantly reduced serum LBP levels and subsequent TLR2
and TLR4 messenger ribonucleic acid (mRNA) expressions
(35). Likewise, Yang et al. showed that butyrate treatment
in vitro and in vivo ameliorated the disruption of intestinal
TJs in 16-week-old db/db mice as well as in high glucose-
cultured carcinoma colon-2 (Caco-2) cells (25). Subsequently,
NaB decreased inflammation in the intestine and LPS-
treated Caco-2 cells and upregulated Takeda G-protein-coupled
expression in the intestinal tissues by increasing serum GLP-1
levels (25).

Studies reported that NaB could induce the release of
GLP-1 from entero-endocrine L cells (25, 33, 36). The GLP-
1 hormone is key to the management of both diabetes type
2 (T2D) and obesity (36). GLP-1 regulates calorie intake, GI
motility and glucose homeostasis (36), and research suggests
that it may be a novel treatment for NASH, as it exerts direct and
beneficial effects on hepatocytes, preventing their progression
from NAFLD to NASH (57, 58).

Ye et al. revealed that microbiota dysbiosis caused by a
methionine–choline-deficient diet was alleviated by butyrate
and improved the metabolomic profile of faeces (35). Dysbiosis
disrupts microbiota homeostasis caused by an imbalance in the
microflora, changes in functional composition and metabolic
activities or a shift in local distribution, which was revealed
to be related to NAFLD onset and development (59). These
findings show that butyrate supplementation might contribute
to the amelioration of NAFLD by modifying gut microbiota
and faecal metabolites, increasing intestinal integrity and
modulating TJ proteins.
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The effects of butyrate on the liver

NAFLD encompasses a group of histopathological
abnormalities, including benign steatosis, lobular inflammation
and hepatic ballooning degeneration that may lead to liver
fibrosis (10). Moreover, significant increases in serum ALT
and AST levels, in the case of excluding other liver disorders,
could manifest NAFLD’s incidence up to 90% (60). NaB
supplementation in several pharmacological doses (200–
600 mg/kg/day) has shown favourable hepato-protective effects.
Different pathways, such as the modifying gut microflora,
intestinal mucosal barrier and gut endotoxins-induced systemic
inflammation, are involved in this manner (23, 30, 37, 39). NaB
improves liver health by reducing hepatic lipid accumulation,
liver TG and total cholesterol (TC) content, serum liver enzymes
as well as alleviating liver fibrosis (35). Mattace-Raso et al. (40)
reported significant improvements in liver damage, steatosis
and a reduction in hepatic TG content after NaB administration,
which is in agreement with many studies (30, 33–35, 39). The
results of two studies by Jin et al. (31, 39) suggested that
supplementation with NaB may protect HFD-fed mice from
hepatic steatosis and NASH. Beisner et al. (30) demonstrated
reduced liver weight gain and hepatic TG content in WSD-fed
mice that received NaB for 12 weeks. More precisely, another
study supplemented HFD-fed mice with 200 mg/kg/day NaB for
16 weeks, and intrahepatic TG and TC were approximately 0.33
times lower in the NaB-receiving group compared with controls
(37). Despite the cumulative evidence confirming these positive
changes, some studies report that liver features do not change
significantly in NaB-fed animals (23). NaB’s producing strain,
Clostridium butyricum, may also improve hepatic steatosis and
decrease the size of fat vacuoles (25). Results have shown that
NaB administration can ameliorate liver steatosis by reducing
intrahepatic TG deposition. Its potential mechanisms highlight
the importance of NaB in cellular metabolism through the
main metabolic signalling pathways to modulate hepatocytes’
lipid metabolism. The underlying mechanisms of NaB’s action
in this context may be classified into (1) inhibiting hepatic
de novo lipogenesis through regulating involved genes; (2)
increasing fatty acid oxidation via HDAC inhibition activity;
(3) upregulating miRNAs involved in pathways related to
lipid metabolism; (4) stimulating mitochondrial β-oxidation
through hepatic peroxisome proliferator-activated receptor α

(PPARα ) activation.
Non-alcoholic fatty liver disease is characterised by parallel

changes (i.e., fat deposition), followed by bidirectional changes
in IR and hepatic de novo lipogenesis (10). Targeting IR-
dependent lipogenesis could be a goal for NAFLD (61, 62). An
insulin-induced gene (INSIG), as a potent inhibitor of sterol
regulatory element-binding protein (SREBP) transcription
factors, plays a critical role in de novo lipogenesis (63). Jin et al.
(31) and Honma et al. (41) illustrated that NaB supplementation
reduces the amount of fat infiltrated into liver cells and

decreases predominant microvascular hepatic fat deposition.
NaB significantly attenuates the induction of hepatic FAS mRNA
expression without affecting the expression of SREBP-1, thereby
reducing the liver’s TG content (31, 41). Zhao et al. (33) found
that the administration of NaB caused a reinforcement of
INSIG activity and suppressed de novo lipogenic genes, leading
to enhanced phosphorylation of adenosine monophosphate-
activated protein kinase (AMPK) in mice fed with an HFD diet.
AMPK is an intra-cell metabolism regulator that may directly
inhibit SREBP-1 activity, thereby preventing hepatic lipogenesis
(64). Indeed, NaB increases the hepatic expression of the GLP-
1 receptor by inhibiting HDAC2, which increases fatty acid
oxidation and inhibits lipid synthesis in hepatocytes, thereby
reducing hepatic steatosis (36).

Ex-4 is an analogue of GLP-1 that is widely used to
regulate blood sugar through various organs such as the brain
and pancreas (65). Ex-4 can effectively treat HFD-induced
NAFLD by reducing hepatic steatosis with the end product of
advanced glycation (65). Yang et al. (25) demonstrated that
Ex-4 can reduce lipid accumulation in high glucose and free
fatty acid co-cultured HepG2 cells, indicating the effectiveness
of the GLP-1 analogue in managing NAFLD by regulating
lipid metabolism in hepatocytes. NaB may also act through
gene modifications. In vivo studies have illustrated the genetic
mechanism of NaB action through the miR-150/chemokine
receptor 4 (CXCR4) axis (32). miRNAs, which are small, non-
coding and endogenous RNAs, are involved in regulating fatty
acid and cholesterol metabolism and are among the novel
therapeutic targets in NAFLD (66). miR-150 plays a vital role
in the expression of genes associated with fatty acid uptake and
the β-oxidation of fatty acids (32).

CXCL12 is expressed in the liver and is involved in several
pathological disorders, for example, cancer and autoimmunity
(67). Zhang et al. (32) found that 200 mg/kg/day of NaB
might alleviate NAFLD by upregulating miR-150 expression
to inhibit CXCR4 expression in HFD-fed mice, eventually
relieving liver steatosis. NAFLD is also a mitochondrial disorder
due to hepatic mitochondrial dysfunction during multi-hit
pathogenesis. Hence, NaB targets hepatic mitochondria and
reduces fat accumulation in liver disorders (68). Mattace-Raso
et al. (40) reported the effects of NaB on the activation of PPAR-
α. Hepatic PPARα activity can reverse NAFLD by stimulating
mitochondrial β-oxidation (69).

Conversely, the hepatic-specific deletion of PPARα impairs
fatty acid catabolism, resulting in hepatic lipid accumulation
and NAFLD (69). It has been reported that NaB may restore
the hepatic PPARα expression suppressed by an HFD, which
suggests that PPARα could potentially mediate the butyrate
function in alleviating NAFLD (40). Sun et al. (34) reported the
effects of NaB intervention on a significant reduction in liver
weight and lipid deposition through the significant upregulation
in hepatic PPARα. Lowered hepatic TG without changes in
hepatic TC concentrations was also reported in this study (34).
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An ex vivo study on a MAFLD model was conducted, and
precision-cut liver slices were obtained to examine the direct
effect of NaB on liver tissue (38). It was documented that NaB
could improve the fibrotic response of the liver slices (38).
Additionally, although it increased C4-related carnitines, which
indicate butyrate oxidation, the expression of genes encoding
fatty acid oxidation reduced (38). The data in this study
demonstrated that NaB supplementation may be an efficient
strategy for the prevention of MAFLD (38).

Serum liver enzymes are non-invasive, combinatory
biomarkers used in assessing NAFLD (70). Yang et al.
(25) investigated the hepato-protective effects of NaB and
Clostridium butyricum on diabetes-induced NAFLD after
16 weeks. Clostridium butyricum prevented liver enlargement
and decreased liver index and serum ALT, AST, and alkaline
phosphatase concentrations (25). Another study revealed a
significant reduction in the plasma concentration of ALT and
AST after NaB administration (23). Most studies (25, 33, 35,
37, 40) reported the potential of NaB in reducing serum liver
enzymes, while some studies did not show any significant
changes (23, 31).

Based on GLA, the development of dietary approaches
for modulating the intestinal environment seems effective to
our knowledge. In this context, NaB is a beneficial strategy
that improves the intestinal microbiome and subsequently
ameliorates liver function. Briefly, the intestinal microbiome
regulates glucose, lipid metabolism and metabolic homeostasis,
thereby contributing to the progression of hepatic steatosis.
Furthermore, NaB supplementation via the mechanisms
mentioned above reduces hepatic lipid accumulation and
prevents the development of NAFLD. Nevertheless, the exact
signalling pathways are not fully understood, and future studies
are needed to investigate the mechanisms and determine the
effects of oral NaB supplementation in human clinical trials.

The effects of butyrate on NAFLD risk
factors

The effects of butyrate on obesity-induced
NAFLD

A growing body of evidence suggests that butyrate is
distributed beyond the gut to the central nervous system and
peripheral tissues, including white and brown adipose tissue,
which regulates whole-body energy metabolism, substrate
metabolism and the development of NAFLD in animal models
(71). The effects of butyrate under chow diet-fed conditions
remain controversial. Previous studies indicated that butyrate
could reduce appetite and food intake by stimulating the
secretion of GI hormones, including GLP-1 and peptide YY
(PYY), as anorexic hormones (72). Furthermore, several studies
highlight butyrate’s role in modifying intestinal barrier integrity
and the modulation of intestinal microbiota as a management

strategy for regulating energy homeostasis (27, 73). Beisner
et al. indicated that 5% NaB (mg/kg) supplementation reduced
HFD-induced body weight gain in mice compared with HFD
only (30). For eight consecutive weeks, rats treated with NaB
(200 mg/kg/day) had a lower body weight gain (33). Four studies
agreed that NaB reduced weight gain in HFD-fed mice (23,
34, 36, 37), although other studies showed no changes in body
weight or body composition after NaB treatment (25, 31, 39–41).
The anti-obesity potential of butyrate remains controversial and
needs further investigation. The effects of butyrate in different
doses, interventional periods and delivery methods should be
validated to accurately determine the effects of butyrate on
energy harvest and obesity.

Butyrate and lipid metabolism disorders
Dyslipidaemia appears to significantly influence the

development and progression of the metabolic disorders
associated with NAFLD (74). Butyrate can potentially regulate
lipoprotein metabolism in the liver and gut, and some evidence
has confirmed that it exerts favourable effects on liver disorders
(75). The effect of butyrate administration on lipid metabolism
in mice with NAFLD was assessed in four studies (25, 30, 32,
40). Yang et al. (25) observed that NaB (500 mg/kg NaB per
day for 6 weeks) restored the elevated serum TG, TC and
low-density lipoprotein cholesterol (LDL-C) concentrations in
16-week-old T2D-induced NAFLD mice. Beisner et al. (30) fed
mice with a WSD, and they obtained higher plasma TG levels,
which were significantly reduced when NaB (5% mg/kg for
12 weeks) was supplemented. In the study mentioned above, the
lipid profile improved due to weight loss and decreased hepatic
fat accumulation due to NaB. Additionally, Zhang et al. (32)
and Mattace-Raso et al. (40) demonstrated that intervention
with NaB decreased the serum contents of TC, TG, LDL-C
and high-density lipoprotein cholesterol in the NAFLD mouse
model. From the results of these studies, it can be concluded that
butyrate, as a regulator, is involved in improving the lipid profile
by inducing fatty acid oxidation and reducing lipogenesis (76).

Butyrate can attenuate hypercholesterolemia by
downregulating the expression of crucial genes for the
biosynthesis pathway of cholesterol in the intestine (77).
Cholesterol homeostasis is achieved by closely regulating
dietary absorption, biosynthesis, esterification and excretion.
In the liver and intestine, cholesterol is esterified or released
as a prime component of plasma lipoproteins, including
chylomicrons, very-low-density lipoprotein (VLDL), LDLs and
high-density lipoprotein (78). In general, butyrate’s inhibitory
effect was seen in apolipoprotein B-48 output, TG export and
chylomicron and VLDL secretion (79). Moreover, butyrate
significantly reduced cholesterol synthesis by decreasing 3-
hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA
reductase) levels in the liver microsomes of rats (80). It is
suggested that the reverse cholesterol transport system played a
significant role in atherosclerosis progression, stimulating the

Frontiers in Nutrition 09 frontiersin.org

https://doi.org/10.3389/fnut.2022.1037696
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1037696 November 28, 2022 Time: 15:34 # 10

Amiri et al. 10.3389/fnut.2022.1037696

cholesterol movement from the peripheral tissues to the liver
for re-use or excretion into the bile acid and by upregulating
cytochrome P450 7A1 (81). Butyrate promotes reverse
cholesterol transport and activates adenosine triphosphate-
binding cassette transporter genes that stimulate cholesterol
efflux from cells to lipid-free apolipoprotein A1 and transport
them to the liver for further metabolism (82). Based on these
mechanisms, butyrate can be proposed as a novel management
strategy to improve lipid and lipoprotein homeostasis.

Butyrate and glucose metabolism disorders
It is known that NAFLD is an integral part of the metabolic

syndrome, which comprises dysglycaemia and IR as central
pathogenic factors (83). The comorbidities and complications
of impaired glucose homeostasis correlate with increased
opportunistic pathogen load and declined butyrate-producing
bacteria levels in the intestine (59). Two animal studies have
demonstrated the beneficial effects of NaB supplementation
on glucose tolerance and fasting blood sugar (FBS) (23, 25).
Hyperglycaemia can cause advanced IR and a responding
failure of functional pancreatic beta cells (islet failure) to
preserve appropriate insulin output and compensate for
decreased insulin sensitivity (84). G-protein-coupled receptor
(GPR) 41 and GPR43 are two primary receptors influenced
by SCFAs, especially butyrate expressed by beta cells (85).
Some evidence has stated that butyrate can act as ligands of
GPR41 and GPR43, which induce the secretion of the GLP-
1 and play a role in improving diabetes-induced histological
alteration of islet and functional damage (86). Evidence suggests
that the anti-diabetic effects of butyrate are related to its
function as an HDAC inhibitor, which modifies hyperglycaemia
by controlling the glucose-6 phosphate expression and the
subsequent gluconeogenesis (87, 88). Furthermore, butyrate
enhances the release of GLP-1, which plays a crucial role in the
regeneration of beta cells and is referred to as a differentiation-
inducing agent for insulin-producing cells (89). GLP-1 activates
the GLP-1 receptor (GLP-1R) in pancreatic beta cells, resulting
in and promoting glucose-stimulated insulin secretion (90).

Zhou et al. found that serum GLP-1 concentrations were
significantly elevated after NaB treatment, although improved
insulin sensitivity did not reach statistical significance in HFD-
fed NAFLD mice (36). Recently, Zhang et al. administered
200 mg/kg/day of butyrate in HFD-induced NAFLD mice
and found that it was negatively associated with FBS and IR;
however, the intervention with butyrate failed to alter insulin
concentrations (32). The effects of butyrate on insulin levels
were consistent in different studies. Mattace-Raso et al. and
Zhou et al. reported that butyrate supplementation significantly
decreased homeostatic model assessment for IR (HOMA-IR)
and FBS levels without changes in insulin concentration (37,
40). However, Jin et al. found that FBS concentrations did not
differ after NaB intervention (600 mg/kg) in a NASH animal
model, although insulin receptors were markedly higher in

the livers of the NaB-supplemented group (31). The study’s
results suggest that butyrate exerts its effects more by increasing
insulin sensitivity to glucose metabolism. Overall, the studies
mentioned earlier suggest that butyrate may protect mice from
HFD-induced glucose metabolism disorders. The activation of
GLP-1R and GPRs and the inhibition of HDAC may contribute
to glucose homeostasis regulation; therefore, butyrate and its
derivatives may have potential applications in preventing and
managing metabolic disorders.

The effects of butyrate on
inflammation-induced NAFLD

Growing evidence suggests that inflammation is a critical
precursor of NAFLD (91). Excessive hepatic fat deposits trigger
the impairment of an inflammatory response (92). Moreover,
the gut microbiota system and its metabolites can change
the immuno-inflammatory state (19, 93), which is indicated
by the abnormal production of chemokines, cytokines and
inflammatory markers (94). An ascending trend in serum pro-
inflammatory mediators like ILs, NF-kB, TNF-α and other
general markers have previously been shown in NAFLD (95).
Previous findings propose managing the inflammatory response
as an optimal target in treating NAFLD. As mentioned above,
therapeutic pharmacological doses of NaB (200–600 mg/kg/day)
have demonstrated many beneficial properties, including anti-
inflammatory responses in different tissues (23, 96, 97).

Mattace-Raso et al. (40) first demonstrated that
the administration of NaB and its synthetic derivative,
phenylalanine butyramide (20 and 42.5 mg/kg/day,
respectively), for 6 weeks significantly reduced inflammation in
HFD-fed rats with steatosis by suppressing the NF-kB pathway.
In this line, subsequent studies also reported the inhibition of
the NF-kB pathway after NaB supplementation (25, 31, 34).
One of the critical underlying epigenetic mechanisms of NaB is
via the inhibition of HDAC, which leads to a reduction in the
acetylation of NF-kB and P53 transcription factors (34, 35, 98).
Moreover, HDAC inhibition is followed by PPARα upregulation,
binding to p-p65 and H3K9Ac modifications on its promoter
and eventually suppressing NF-kB-dependent signalling
mechanisms (34). Additionally, NF-kB pathway suppression
results in lowered IL levels (40). Cumulative evidence implies
significant improvements in mRNA expression and protein
levels of cytokines and chemokines after NaB administration
(40). This evidence illustrates lowered pro-inflammatory
cytokines, including IL-1β, IL-2 and IL-6 (23, 25, 32, 34, 35, 40,
99) as well as increased anti-inflammatory cytokines, including
IL-4 and IL-10 (35, 40, 99). In contrast, one model of NASH-
induced mice reported elevated levels of IL-1β expression after
supplementation with oral NaB (600 mg/kg) for 6 weeks (31).
Similarly, a more recent study showed permanent levels of
ileum and elevated levels of IL-1β expression in the colon of
NAFLD mice supplemented with NaB (5% diet) for 12 weeks
(30). Moreover, serum levels of TNF-α were correlated with the
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severity of NAFLD (100). NaB administration has reduced the
protein and gene expression levels of TNF-α in many NAFLD
studies (23, 25, 32, 34, 35, 39, 40, 99).

Various pathways may play a role in the anti-inflammatory
properties of NaB. Based on previous studies, TLR-4 signalling
pathway induction enhances disease progression (39). TLR-
4 induction is followed by an initial inflammatory response
illustrated as cytokine production-inducing secondary TLR
stimulation (101). Many studies have elaborated on the “TLR-4
inhibiting effect” of NaB (23, 25, 35, 39, 40).

In this context, NaB downregulates high mobility group
box 1 mRNA expression and has an HDAC inhibitory effect
that finally lowers TLR-4 levels (23, 102). As a component
of “associated lipopolysaccharide mechanisms of NaB,” the
downregulation of TLR-4/MyD88/NF-kB pathways inhibits NF-
kB translocation (99). Eventually, the suppressed production
of pro-inflammatory cytokines reduces hepatic and adipocyte
pro-inflammatory cytokine gene expression, and enhanced
anti-inflammatory cytokine gene expression is evident (99).
NaB also suppresses the induction of TLR-4 and CD14
mRNA expression in the liver and TLR2 in the colon,
improves cytokines and decreases Kupffer cell activation (35).
Intragastric NaB (500 mg/kg/day) and/or Clostridium butyricum
(5∗107 CFU/kg/day) for 6 weeks of treatment in db/db mice
(with T2D-induced NAFLD) along with a Caco-2 cell culture
supported the downregulation of the TLR-4/MyD88/NF-kB
pathway, and the improvement was more significant in the
group receiving Clostridium butyricum (25). It was also reported
that 300 mg/kg/day of NaB in HFD-fed rats for 9 weeks
suppressed obesity-induced inflammation in the adipocytes by
inhibiting the NLRP3 inflammasome signalling pathway in
the adipose tissue (34, 103). NaB significantly reduced colon
inflammatory markers via F4/80 inhibition in mice and cellular
models as well as improving gut inflammation (25).

Zhang et al. (32) also discovered hepatic changes in NAFLD-
induced mice that had been gavaged with intragastric NaB
(200 mg/kg/day). The results revealed the action of NaB on
upregulating miR-150, which downregulates the expression of
CXCR4, leading to protection against lobular inflammation
and ballooning as detected by the NAFLD activity score (32).
Another study showed the alleviation of macrophage infiltration
parameters (MCP-1 and F4/80) as a predictor of inflammation-
related tissue damage (40, 104). Additionally, Sun et al. (34)
reported decreased levels of pro-inflammatory protein M1
macrophage marker F4/80 expression along with increased anti-
inflammatory M2 macrophage marker CD206 after NaB gavage
(300 mg/kg/day) for 7 weeks in NAFLD-induced rats.

Another favourable mechanism has been attributed to
melatonin’s role in managing NAFLD (105). Jin et al. (39) and
Baumann et al. (23) reported the efficacy of 600 mg/kg/day NaB
for six and 5 weeks on increasing melatonin concentrations
and related enzymes in a NAFLD mouse model. Melatonin
reduces pro-inflammatory cytokines (106). The most recent

in vitro study highlighted NaB’s multi-organ effects against
inflammation (38). These findings suggest that NaB is a novel
pharmacological agent for improving systemic and hepatic
inflammation involved in NAFLD.

The effects of butyrate on oxidative-induced
NAFLD

Beyond inflammation, liver steatosis leads to the formation
of toxic lipid species that activate the vicious cycle of
lipotoxicity and oxidative stress (107). Oxidative stress is an
imbalance between pro-oxidant and anti-oxidant levels (108)
that eventually affects organelles and results in cell death (109).
The rapid oxidation of fatty acids in hepatic mitochondria
leads to the production of high amounts of ROS, oxidative
stress and NAFLD progression (110, 111). Oxidative stress can
also accelerate fat deposition and inflammation (112). Despite
studies highlighting the efficacy of anti-oxidant agents on
NAFLD patients, a Cochrane meta-analysis has demonstrated
that the effect of these drugs is still unconfirmed (113).

First, Jin et al. (31) investigated the effect of orally
administering NaB (600 mg/kg/day) and its oxidative response
in NASH-induced mice after 6 weeks. Results indicated that
iNOS and 4-HNE protein adduct levels were normalised by
the NaB supplementation (31). Further studies aligned with
this result and demonstrated the indirect anti-oxidant effect
of NaB on the liver (23, 39). This effect was mediated by
increased intestinal levels of melatonin that exhibited anti-
oxidant effects such as attenuating iNOS induction, ROS
generation and hepatic lipid peroxidation (39). Interestingly,
the same study showed that superoxide dismutase-1 (SOD1)
activity was significantly lower in the group that received
NaB (39). In contrast, other findings indicate the protective
role of NaB against SOD reduction by elevating SOD2
mRNA expression levels and SOD enzyme activity per total
liver tissue (32, 41). This controversy is related to different
administration strategies of NaB (intraperitoneal vs. oral)
(114). The underlying mechanism is related to the effect of
NaB on regulating HDAC expression and binding levels to
transcription factor fork-head box O3a (Foxo3a) (41). Foxo3a
mediates the regulation of oxidative stress by increasing anti-
oxidant enzyme expressions like SOD2 and catalase (115).
Sun et al. (34) administrated NaB (300 mg/kg/day) via gavage
on NALFD-induced rats for 9 weeks. Results illustrated an
evident upregulated PPARs transcription factor expression,
increased protein concentrations of cytochrome c oxidase
subunit 1 (COX1), COX4 and mitochondrial complex III
and V activity, indicating the favourable effects of NaB
on mitochondrial function and fatty acid β-oxidation (34).
Other animal studies also suggested the PPAR-dependent
manner of NaB on lipid metabolism, fatty acid uptake
and oxidation (35, 99). Honma et al. (41) refed Sprague–
Dawley rats with a high-sucrose diet or a high-sucrose
diet containing 5% NaB for 12 or 24 h. NaB significantly
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FIGURE 2

Butyrate’s beneficial effects on NAFLD. It has been proved that butyrate inhibits HDAC and binds to specific GPCRs, which hereby interferes with
the expression of several genes. It downregulates TLR 4/MyD88/NF-kB pathways (inhibits NF-kB translocation) and upregulates PPAR-related
pathways. Butyrate, mainly through these mechanisms, contributes to the management of NAFLD. Clinical manifestation of butyrate effects on
the liver, gut, and brain pictured in this figure: (1) in the liver: butyrate improves liver enzymes, lipid metabolism, glycemic control, mitochondrial
thermogenesis, oxidative status, hepatic lipid accumulation, and inflammatory markers, (2) in the gut: butyrate modifies dysbiosis and
microbiota, reduces endotoxemia, increases intestinal integrity, increases anorexic hormones such as PYY and GLP-1 and modulates tight
junction proteins, and (3) in the brain: as a positive effect of butyrate on managing obesity, it may suppress appetite and food intake. AMPK,
adenosine monophosphate-activated protein kinase; GLP1, glucagon-like peptide-1; GPCR, G-protein coupled receptor; HDAC, histone
deacetylase; MyD88, myeloid differentiation factor 88; NAFLD, non-alcoholic fatty liver disease; NF-kB, nuclear factor kappa-light-chain
enhancer of activated B cells; PPAR, peroxisome proliferator-activated receptor; TJs, tight junctions; TLR-4, toll-like receptor-4.

reduced the expression levels of genes involved in fatty acid
synthesis and increased the genes involved in β-oxidation and
modified mitochondria functions (including lowering FAS) as
well as increasing Aco1 and carnitine palmitoyl transferase
1α (Cpt1α) expression (41). NaB has favourable effects on
altering the enzymatic systems related to oxidative defence
(116). As a biomarker for lipid peroxidation, a reduction
in pancreatic and hepatic malondialdehyde was reported
and attributed to oxidative stress (32, 117). Mitochondrial
GSH regulates ROS; thus, GSH depletion is a critical factor
in the progression of NASH (118). One study reported
elevated Mn-SOD and catalase mRNA levels along with
genes involved in the synthesis of GSH, including the NaB
group; however, the activity of SOD, GSH levels and the
GSSG/GSH ratio did not change significantly (41). Recent
evidence suggests that NaB neither derives extra oxidative
stress nor inserts defences against oxidative stress by increasing
hepatic GSH (41).

Other marginal positive mechanisms of NaB that have been
proposed based on in vivo and in vitro studies in NAFLD

models may include (1) GLP-1 sensitising effects followed
by enhanced hepatic fatty acid oxidation (33); (2) fibroblast
growth factor-21 induction that subsequently stimulates hepatic
fatty acid β-oxidation (35); (3) miR-150 upregulation followed
by CXCR4 downregulation that eventually protects cells from
oxidative stress (32); (4) nuclear factor erythroid 2-related
factor 2 signalling alleviation, resulting in anti-oxidant genes
expression, lipid peroxidation improvement and cell protection
(117). Overall, NaB can be considered an anti-oxidative
mediator in NAFLD.

Knowledge gaps and future
directions

Despite extensive investigative efforts, the underlying
molecular mechanisms of NaB that affect NAFLD pathogenesis
are still unclear. The mechanism of NaB action on NAFLD
treatment has only been investigated in in vivo and in vitro
studies, and there is a need for more clinical trials. More studies
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are needed to clarify these underlying mechanisms in HDAC
inhibition and GPCR binding after NaB supplementation.
Moreover, considering the potential role of Clostridium
butyricum in previous studies, further investigation is needed
to compare its effectiveness and NaB supplementation. Further
studies are also necessary to examine the effect of NaB on
melatonin-dependent molecular pathways and the eventual
effect on NAFLD. Regardless of the commercial availability of
NaB, the determination of appropriate formulation, suitable
delivery systems and effective doses in NAFLD patients needs
to be assessed in future trials.

Conclusion

This systematic review indicates that NaB contributes to
NAFLD management by(a) improving intestinal homeostasis
(modulating TJs and gut microbiota); (b) decreasing
intrahepatic TG deposition by modulating hepatocytes lipid
metabolism, which causes hepatic steatosis inhibition [(1)
inhibition of hepatic lipogenesis; (2) increasing fatty acid
oxidation; (3) upregulating miRNAs involved in pathways
related to lipid metabolism; (4) stimulation of β-oxidation
through the hepatic peroxisome proliferator-activated receptor
α (PPARα) activation]; (c) reducing obesity by regulating
energy metabolism (increasing energy expenditure, decreasing
energy intake); (d) regulating blood glucose and lipid levels;
(e) general and hepatic anti-inflammatory and anti-oxidative
effects. All protective effects of NaB on different body organs are
summarised in Figure 2. In conclusion, NaB’s beneficial effects
on NAFLD and the associated risk factors may have potential
applications in the prevention and management of NAFLD, but
further research is needed to confirm suggestive findings.
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