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Nutritional interventions are a promising therapeutic option for addressing

obesity and cardiometabolic dysfunction. One such option, intermittent

fasting (IF), has emerged as a viable alternative to daily caloric restriction

and may beneficially modulate body weight regulation and alter the gut

microbiome (GM) and plasma metabolome. This secondary analysis of a

larger, registered trial (ClinicalTrials.gov ID: NCT04327141) examined the effect

of a four-week intervention comparing one vs. two-consecutive days of IF

in combination with protein pacing (IF-P; 4-5 meals/day, >30% protein/day)

on the GM, the plasma metabolome, and associated clinical outcomes in

overweight and obese adults. Participants (n = 20) were randomly assigned

to either a diet consisting of one fasting day (total of 36 h) and six low-

calorie P days per week (IF1-P, n = 10) or two fasting days (60 h total) and

five low-calorie P days per week (IF2-P, n = 10). The fecal microbiome, clinical

outcomes, and plasma metabolome were analyzed at baseline (week 0) and

after four weeks. There were no significant time or interaction effects for

alpha diversity; however, baseline alpha diversity was negatively correlated

with percent body fat change after the four-week intervention (p = 0.030).

In addition, beta-diversity for both IF groups was altered significantly by

time (p = 0.001), with no significant differences between groups. The IF1-P

group had a significant increase in abundance of Ruminococcaceae Incertae

Sedis and Eubacterium fissicatena group (q ≤ 0.007), while the IF2-P group

had a significant increase in abundance of Ruminococcaceae Incertae Sedis
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and a decrease in Eubacterium ventriosum group (q ≤ 0.005). The plasma

metabolite profile of IF2-P participants displayed significant increases in

serine, trimethylamine oxide (TMAO), levulinic acid, 3-aminobutyric acid,

citrate, isocitrate, and glucuronic acid (q ≤ 0.049) compared to IF1-P. Fecal

short-chain fatty acid concentrations did not differ significantly by time

or between groups (p ≥ 0.126). Interestingly, gastrointestinal symptoms

were significantly reduced for the IF2-P group but not for the IF1-P

group. Our results demonstrate that short-term IF modestly influenced the

GM community structure and the plasma metabolome, suggesting these

protocols could be viable for certain nutritional intervention strategies.

KEYWORDS

gut microbiome, intermittent fasting, metabolome, caloric restriction, obesity,
weight loss, gastrointestinal symptoms, protein pacing

Introduction

Obesity continues to be highly prevalent in the
United States. In 40% of the adult population, increased
adiposity is tightly intertwined with cardiometabolic
perturbation and is a primary comorbidity of major chronic
disease (1). Non-invasive, nutrition-based approaches are the
most widely utilized, feasible, and effective options to reduce
body fat and support healthy lifestyle changes (2). To promote
energy deficit, a daily caloric restriction of 10–40% is a common
intervention in weight loss research and clinical practice (2, 3).
However, such a dietary prescription may not be sustainable
for most individuals in relation to long term adherence due
to behavioral, psychosocial, and environmental factors (4). As
a dietary regimen growing in scientific, clinical, and public
interest, intermittent fasting (IF) is an alternative approach
that holds promise for promoting healthy body weight and
metabolic functioning (5). Intermittent fasting encompasses
eating patterns in which individuals go extended periods (e.g.,
16–60 h) with little or no energy intake and intervening periods
of normal food intake (6). A common and well-tolerated IF
regimen that has been implemented in long-term weight loss
and weight maintenance interventions is modified fasting
regimens, which allows the consumption of 20–25% of energy
needs on scheduled fasting days. For example, normal feeding
for five to six days and fasting for one to two days weekly (5).

In comparison to complete fasting, nutritionally supported
fasts have been reported to improve glycemic control and
reduce hunger ratings (7). Such nutritional regimens have
offered a new frontier for research and pose a potential dietary
framework for treating obesity and metabolic disease. Indeed,
encouraging results have been reported for improved body
composition, energy expenditure, and cardiometabolic markers
(e.g., fasting plasma lipids, insulin, and glucose) (8–10). The

lack of attention to the non-fasting days/period in previous
investigations is a significant oversight and may impact the
effectiveness of the IF. Previous research has consistently shown
a higher protein diet (>30%), evenly distributed throughout
the day (4–5 meals/day), moderate-carbohydrate (<40%) and
low-glycemic index (<50), known as protein pacing (P)
during feeding days, with and without caloric restriction,
significantly enhances body composition, energy expenditure,
and cardiometabolic health (8–10) and should be considered in
the overall weight loss regimen.

Another emerging research area is the influence of nutrition
on the composition and function of the microbes harbored in
the gastrointestinal (GI) tract, known as the gut microbiome
(GM). This research suggests significant shifts in microbial
composition, function, and metabolic output in response to
dietary changes (11, 12). Accordingly, GM dysfunction has
been linked to obesity (13, 14). Diets that drive increased
adiposity are generally high in energy and fat while low in
fiber and diet quality. Obesogenic diets may promote luminal
mucus degradation and pathogen encroachment (15), decrease
community diversity and beneficial taxa (16), and malign GM
function and metabolic output (17, 18). As a dense microbial
bioreactor, gut microorganisms have tremendous functional
capacity, producing an array of metabolites that have varying
effects on host health (19). Analogously, the metabolome is
defined as the complete suite of small molecules present in a
biological system and is also modified by similar host-associated
characteristics, including the GM (20). Therefore, any potential
interactions between the GM and metabolome may be of
significant interest in obesity and obesity-related conditions.

Recent, well-performed clinical trials implementing
daily caloric restriction have focused on the effects of
weight loss on the GM (21–23). However, evidence also
demonstrates that IF significantly impacts the GM composition
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and function (24). Much clinical research has employed
time-restricted eating regimens in various populations,
revealing significant dissimilarity compared to control but
no differences in taxa abundance (25–28). More recent
work utilizing IF has shown shifts in GM community
metrics and gut-related metabolites compared to control
in patients diagnosed with metabolic syndrome (29, 30).
However, the control group participants were asked to
maintain a routine diet without specific dietary instructions.
Intermittent fasting research could greatly benefit by better
establishing well-controlled comparison groups and carefully
considering nutritional quality during feeding periods.
Moreover, the evaluation of different fasting durations is sparse
in the literature.

To the best of our knowledge, the direct comparison of
different IF durations emphasizing dietary control and quality
of nutrition consumed during both fasting and feeding days
in a randomized study design assessing the GM has not yet
been conducted. Therefore, as part of a larger clinical weight-
loss trial, this exploratory analysis compared the effect of a
four-week intervention of one-day (IF1-P) versus two-day (IF2-
P) fasting with protein pacing on the GM and the plasma
metabolome of overweight and obese adults. As a secondary
aim, we examined self-reported GI symptomology between
groups. We hypothesized that there would be a significant shift
in GM community metrics and the plasma metabolome between
IF1-P and IF2-P.

Materials and methods

Participant characteristics and study
design

Participant samples and data used in the present
analysis were procured from a larger, registered clinical
trial (ClinicalTrials.gov ID: NCT04327141). Study design,
clinical outcomes, and participant characteristics have been
reported previously (31). Briefly, participants were healthy,
non-smoking, sedentary/lightly active, males and females
with overweight/obesity. Participants taking antibiotics,
antifungals, or probiotics within the previous two months
were excluded. This study was approved by the Institutional
Review Boards of Skidmore College, NY, USA, and Arizona
State University, AZ, USA, and all participants provided
written informed consent before study enrollment. A total
of 20 participants were enrolled and completed a one-week
run-in period maintaining stable body weight and physical
activity level. Following this period, participants were then
randomly assigned to a modified fasting regimen consisting
of one fasting day (total of 36 h) and six P feeding days per
week (IF1-P, n = 10) or two fasting days (60 h total) and
five P feeding days per week (IF2-P, n = 10) (Figure 1). This

dietary regimen has been previously shown to be effective
for weight loss and has high compliance rates (9, 10, 31).
Detailed guidelines were provided to participants at weekly
meetings with a registered dietitian nutritionist (RDN).
On the fasting days, participants were supplied nutritional
support providing approximately 400-500 kcals per day and
comprised of various supplements and snacks, as previously
described (31). On P feeding days in the IF1-P group, females
consumed four meals daily, providing 1,350 kcals, and males
consumed five meals daily, providing 1,700 kcals [for a full
description of both fasting and feeding days, see (31)]. The
nutritional profile was 35% carbohydrate, 35% protein, and
30% fat, consisting of two liquid meal replacements (Isagenix
International, LLC, Gilbert, AZ, USA), one whole food dinner,
and one or two snacks (female and male, respectively). To
ensure an equivocal macronutrient profile and weekly energy
intake as IF1-P (∼8,500 kcals), IF2-P followed a similar
dietary regimen consisting of four meals a day for females
providing 1,500 kcals and five meals a day for males providing
1,850 kcals. The same nutritional profile of 35% protein, 35%
carbohydrate, and 30% fat was used and consisted of two liquid
meal replacements, one whole food dinner, and one or two
snacks (female and male, respectively). Throughout the study,
the RDN and investigators ensured adherence to the IF-P
regimens via weekly meetings, detailed written instructions,
and daily communication (e.g., email, text, and mobile phone).
Moreover, two-day food diary analyses were conducted, as well
as weekly inspection of dietary intake, distribution of weekly
meal/supplement containers, and return of empty packets and
containers.

Gastrointestinal symptom rating scale

Participants completed the 15-question gastrointestinal
symptom rating scale (GSRS) (32) at baseline and the end of the
four-week intervention. Briefly, each question is rated on a 7-
point Likert scale (1 = absent; 2 = minor; 3 = mild; 4 = moderate;
5 = moderately severe; 6 = severe and 7 = very severe) and
recalled from the previous week. Questions include symptoms
related to upper abdominal pain, heartburn, regurgitation
(acid reflux), empty feeling in the stomach, nausea, abdominal
rumbling, bloating, belching, flatulence, and questions on
defecation. The GSRS questionnaire provides explanations of
each symptom, is understandable, and has reproducibility for
measuring the presence of GI symptoms (33). In our analysis,
a score of ≥2 (minor) was defined as symptom presence, and
a score ≥4 (moderate) was defined as moderate symptom
presence. Furthermore, to better categorize symptom location,
bloating, flatulence, constipation, diarrhea, and defecation
urgency were classified as lower GI symptoms, and nausea,
heartburn, regurgitation, upper abdominal pain, empty feeling
in the stomach, and belching were classified as upper GI
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symptoms. Total scores were also generated for both overall
symptom and moderate symptom presence.

Fecal sample collection and processing

Participants were instructed to provide stool samples
at baseline and after week four of the intervention. The
entire bowel movement was collected and transported within
24 h of defecation to the Skidmore College laboratory using
a cooler and ice packs, and frozen at −80◦C. Samples
were then sent to ASU (Phoenix, AZ, USA) overnight on
dry ice for analysis, where they were thawed at 4◦C and
processed. Wet weight was recorded to the nearest 0.01 g
after subtracting the weight of fecal collection materials. Stool
samples were then rated according to the Bristol Stool Scale
(BSS) (34), homogenized in a stomacher bag, and the pH
was measured (Symphony SB70P, VWR International, LLC.,
Radnor, PA, USA). DNA extraction was performed using
the DNeasy PowerSoil Pro Kit (Cat. No. 47016, Qiagen,
Germanton, MD, USA), per the manufacturer’s instructions.
DNA concentration and quality were quantified using the
NanoDropTM OneC Microvolume UV-Vis Spectrophotometer
(Thermo ScientificTM, Waltham, MA, USA) according to
manufacturer instructions. The OD260/OD280 ratio of all
samples was ≥1.80 (demonstrating DNA purity).

Fecal short-chain fatty acid analysis

High-performance liquid chromatography (HPLC;
Shimadzu, Kyoto, Japan) was used to quantify short-chain
fatty acid (SCFA) concentrations in fecal samples, as reported
previously with slight modifications (35). Briefly, for each
sample 300 mg fecal matter was added to 6 mL of 18� deionized
water in a 15 mL falcon tube and vortexed at 3,200 rpm for
10 min at 24◦C. This mixture was then centrifuged at 4,000 rpm
for 10 min at 24◦C and then filtered/sterilized through a
0.22 µm syringe filter. One mL of the resulting supernatant was
then used as the analytical sample for the HPLC analysis. The
organic acids were separated and identified using a Bio-Rad
column (Aminex HPX-87H) with an Agilent diode array
detector at 65◦C, 5 mM H2SO4 as mobile phase, 210 nm
measurement wavelength, and a 0.6 mL/min flow rate that was
increased to 0.8 mL/min at 60 min.

Fecal microbiome analysis

The GM was assessed from the DNA extracted from the fecal
collections at the Biodesign Institute at ASU (Tempe, AZ, USA).
Amplification of the 16S rRNA gene sequence was completed
in triplicate polymerase chain reactions (PCRs) using 96-well

plates for GM composition. Barcoded universal forward 515F
primers and 806R reverse primers containing Illumina adapter
sequences, which target the highly conserved V4 region, were
used to amplify microbial DNA (36, 37). These primers were
selected as recommended by the Earth Microbiome Project (36,
37) and the National Institutes of Health Human Microbiome
Project (38) to enhance reproducibility and comparability to
other studies while obtaining broad coverage of Bacteria.
PCR, amplicon cleaning, and quantification were performed as
previously outlined (37). Equimolar ratios of amplicons from
individual samples were pooled together before sequencing on
the Illumina platform (Illumina MiSeq instrument, Illumina,
Inc., San Diego, CA). Raw Illumina microbial data were
cleaned by removing short and long sequences, sequences with
primer mismatches, uncorrectable barcodes, and ambiguous
bases using the Quantitative Insights into Microbial Ecology 2
(QIIME2) software, version 2021.8 (39).

16S rRNA gene sequencing produced 2,610,204 reads with
a median of 50,609 per sample (range: 9,512 – 470,848).
Paired-end, demultiplexed data were imported and analyzed
using QIIME2 software. Upon examination of sequence
quality plots, base pairs were trimmed at position 20 and
truncated at position 240 and were run through DADA2
to remove low-quality regions and construct a feature table
using amplicon sequence variants (ASVs.). All singleton reads
were also removed from the dataset. Next, the ASV feature
table was passed through the feature-classifier plugin (40),
which was implemented using a naive Bayes machine-learning
classifier, pre-trained to discern taxonomy mapped to the latest
version of the rRNA database SILVA (138.1; 99% ASVs. from
515F/806R region of sequences) (41). A phylogenic tree was
then constructed using the fragment-insertion plugin with the
SILVA database. Based on the assessment of alpha rarefaction,
a threshold of 6,407 sequences/sample was established and
used to normalize samples for uneven sequencing depth
for the subsequent diversity analyses (42). Alpha diversity
was measured using Shannon (abundance and evenness
of taxa present) and Faith’s phylogenetic difference (PD)
(incorporates phylogenetic difference between taxa) indexes.
Beta diversity was measured using the Bray-Curtis dissimilarity
index. Predicted functional potential of the overall bacterial
community was surveyed via the Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States 2
(PICRUSt2) algorithm (v2.4.2) (43). Pathway abundances were
inferred based on structured pathway mappings of Enzyme
Commission gene families to the MetaCyc database (44).

To provide an estimate of total bacterial biomass per
sample (16S rRNA gene copies per gram of wet stool),
DNA extracted from the fecal collections was assessed
via quantitative polymerase chain reaction (qPCR) based
on previously published methods (45, 46). Briefly, all
20 µL qPCR reactions contained 10 uL of 2X SYBR
Premix Ex TaqTM (Tli Rnase H Plus) (Takara Bio USA,
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Inc., San Jose, CA, USA), 0.3 µM (0.6 µL) of each
primer (926F: AAACTCAAAKGAATTGACGG; 1062R:
CTCACRRCACGAGCTGAC), 2 µL DNA template (or PCR-
grade water as negative control), and 6.8 µL nuclease-free
water (Thermo Fisher Scientific, Waltham, MA, USA). PCR
thermal cycling conditions were as follows: 95◦C for 5 min,
followed by 35 cycles of 95◦C for 15 s, 61.5◦C for 15 s, and
72◦C for 20 s, then hold at 72◦C for 5 min, along with a melt
curve of 95◦C for 15 s, 60◦C for 1 min, then 95oC for 1 s.
Quantification was performed using a QuantStudio3 Real-Time
PCR System by Applied Biosystems with QuantStudio Design
and Analysis Software 1.2 from Thermo Fisher Scientific
(Waltham, MA, USA). All samples were analyzed in technical
replicates. For quality assurance and quality control, molecular
negative template controls (NTC) consisting of PCR-grade
water (Invitrogen, Waltham, MA, USA) along with positive
controls created by linearized plasmids were run on every qPCR
plate. Standard curves were run in triplicate and used for sample
quantification, ranging from 107 to 101 copies/µL with a cycle
threshold (CT) detection limit cutoff of 33. Reaction efficiency
was approximately 101%, with a slope of -3.29 and R2

≥ 0.99.

Targeted plasma metabolomic analysis

For the plasma metabolomic analysis, a 12-h fasted venous
blood sample (∼20 mL) was collected into EDTA-coated
vacutainer tubes and centrifuged (Hettich Rotina 46R5) for
15 min at 2,500 RPM at 4◦C. After separation, 2 mL of plasma
was aliquoted and stored at −80◦C. Samples were then sent to
the Arizona Metabolomics Laboratory at ASU (Phoenix, AZ,
USA) overnight on dry ice for analysis, where they were thawed
at 4◦C and processed. Briefly, 50 µL of plasma from each sample
was processed to precipitate proteins and extract metabolites by
adding 500 µL MeOH and 50 µL internal standard solution
(containing 1,810.5 µM 13C3-lactate and 142 µM 13C5-glutamic
acid). The mixture was vortexed (10 s) and stored for 30 min
at –20◦C, then centrifuged at 14,000 RPM for 10 min at 4◦C.
Supernatants (450 µL) were extracted and transferred to new
Eppendorf vials and dried (CentriVap Concentrator; Labconco,
Fort Scott, KS, USA). Samples were then reconstituted in 150µL
of 40% phosphate-buffered saline (PBS)/60% acetonitrile (ACN)
and centrifuged again at 14,000 RPM at 4◦C for 10 min.
Supernatants (100 µL) were transferred to an LC autosampler
vial for subsequent analysis. Internal quality-control (QC) was
performed by creating a pooled sample from all plasma samples
and injected once every ten experimental samples to monitor
system performance.

The highly reproducible targeted LC-MS/MS method used
in the current investigation was modeled after previous studies
(47–49). The specific metabolites included in our targeted
detection panel are representative of more than 35 biological
pathways most essential to central carbon metabolism, and have

been successfully leveraged for the sensitive and broad detection
of effects related to diet (50), disease (51), drug treatment
(52), environmental contamination (53), and lifestyle factors
(54). Briefly, LC-MS/MS experiments were performed on an
Agilent 1290 UPLC-6490 QQQ-MS system (Santa Clara, CA,
USA). Each sample was injected twice for analysis, 10 µL
using negative ionization mode and 4 µL using positive
ionization mode. Chromatographic separations were performed
in hydrophilic interaction chromatography (HILIC) mode on a
Waters Xbridge BEH Amide column (150 × 2.1 mm, 2.5 µm
particle size, Waters Corporation, Milford, MA, USA). The
flow rate was 0.3 mL/min, the auto-sampler temperature was
maintained at 4◦C, and the column compartment was set at
40◦C. The mobile phase system was composed of Solvents A
(10 mM ammonium acetate, 10 mM ammonium hydroxide in
95% H2O/5% ACN) and B (10 mM ammonium acetate, 10 mM
ammonium hydroxide in 95% ACN/5% H2O). After the initial
1 min isocratic elution of 90% Solvent B, the percentage of
Solvent B decreased to 40% at t = 11 min. The composition of
Solvent B was maintained at 40% for 4 min (t = 15 min), and
then the percentage of Solvent B gradually went back to 90% to
prepare for the next injection.

The mass spectrometer was equipped with an electrospray
ionization (ESI) source. Targeted data acquisition was
performed in multiple-reaction-monitoring (MRM) mode.
The LC-MS system was controlled by Agilent MassHunter
Workstation software (Santa Clara, CA, USA), and extracted
MRM peaks were integrated using Agilent MassHunter
Quantitative Data Analysis software (Santa Clara, CA, USA).

Statistical analysis

Gastrointestinal (GI) symptom scores were on the low end
of the GSRS scale and not normally distributed; therefore,
non-parametric statistical tests were applied. Individual scores
between groups were assessed using a Mann-Whitney U test.
Symptom prevalence (number of scores ≥2) and moderate
symptom prevalence (≥4) for total, upper, and lower GI GSRS
clusters were analyzed using contingency tables. Specifically,
differences between IF1-P and IF2-P GI symptoms at baseline
were compared using a Fisher’s Exact test, whereas pre-post
values were compared with McNemar’s test. Stool weight, BSS,
fecal pH, and SCFAs were assessed for normality with Q-Q plots
and Shapiro-Wilk tests and log-transformed where appropriate.
These were then tested for time and interaction (group × time)
effects using linear-mixed effect (LME) models, with each
participant included as a random effect. All tests were performed
with a significance level of p < 0.05. Statistical analyses were
performed using SPSS 27.0 (SPSS Inc., Chicago, IL, USA).

For analysis and visualization of the microbiome data,
artifacts generated in QIIME2 were imported into the R
environment (v4.1.2) using the phyloseq package (v1.38.0)
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FIGURE 1

Overview of study design. After enrollment, a one-week run-in period, and randomization, 20 overweight and obese males and females
followed an intermittent fasting, protein pacing-based weight loss diet consisting of one (IF1-P, n = 10) or two (IF2-P, n = 10) fasting days per
week for four weeks equated for weekly energy and macronutrient intake. Clinical data and fecal and blood samples were collected at baseline
and after week four. “Created with BioRender.com”.

(55). Before conducting downstream analyses, sequences were
filtered to remove all non-bacterial sequences, including
archaea, mitochondria, and chloroplasts. For beta diversity,
a permutational analysis of variance (PERMANOVA) was
conducted on Bray-Curtis dissimilarities using the Adonis
test in the vegan package (v2.6.2) with 999 permutations.
The PERMANOVA model incorporated the factors of time,
individual, and interaction (group × time). A permutation test
for homogeneity in multivariate dispersion (PERMDISP) was
conducted using the “betadisper” function in the vegan package
to compare dispersion. To support the Adonis analysis, the
first principal coordinate of a principal coordinate analysis on
the Bray-Curtis dissimilarity matrix was calculated and rank-
transformed. A LME model was constructed on these values,
using the nLME package (v3.1.153), testing the interaction effect
of group and time with individual as a random effect. Beta
diversity first-distances were also compared between groups,
as previously described (56), by calculating the within-subject
distance for paired samples (baseline vs. week 4) and testing
for group distances (Wilcoxon rank-sum test). After assessing
normality (Shapiro-Wilk’s tests), LME models were used to
test the effect of time and the interaction of group and time
with each participant included as a random effect on the
alpha diversity metrics using the nLME package. Associations
between baseline GM and adiposity were assessed with multiple
regression models to explore potential differential diet responses
using GM as a determinant. These associations were calculated
using baseline alpha diversity metrics and change in percent
body fat (post – pre values), accounting for age, sex, and baseline
body mass index (BMI) covariates.

Estimates of bacterial biomass (qPCR data) were assessed
for normality and entered into a LME model, as described
above. With taxonomy, a ratio was calculated for two of the
most predominant phyla, Firmicutes/Bacteroidota (FB ratio),
log-transformed, and assessed via LME analysis. For differential

abundance testing, analysis of compositions of microbiomes
with bias correction (ANCOM-BC) was employed on GM
taxa and PICRUSt2 output using the R package ANCOMBC
(v1.4.0) (57). First, raw counts from the ASV table were
filtered for any sequence not present in at least 30% of all
samples, and a detection limit for the ANCOM-BC models
was established at a value of 0.7 (tested at each phylogenic
level). The same approach was followed on the predicted
functional pathways from the PICRUST2 data. Based on the
sample size, parallel-group design, and zero-inflation common
to microbiome data, ANCOM-BC was implemented for each
group separately, assessing the effect of time. Changes were
calculated as the log2 fold change (log2FC) of abundance at
week 4 versus baseline. Differentially abundance genera were
also assessed for potential associations with adiposity by running
Spearman rank correlation tests between change in centered
log-ratio transformed taxa (post – pre abundance) and change
in percent body fat (post – pre values). Where appropriate,
false discovery rate (FDR) corrections were used to adjust
for multiple hypothesis testing with a significance level of
q < 0.05.

Univariate and multivariate analyses of plasma metabolites
and metabolic ontology analysis were performed, and results
were visualized using the MetaboAnalystR 5.0 (58). Human
metabolomic data were mapped to the Kyoto Encyclopedia of
Genes and Genomes (KEGG) human pathway library to analyze
predicted states (59). The data were log10-transformed, and
Pareto scaled to approximate normality prior to all analyses.
A general linear model (GLM) was constructed with age, sex,
time, and baseline BMI covariates to determine significantly
affected metabolites by group intervention. Levene’s test was
performed to detect significant homogeneity. Spearman rank
correlation tests were performed using change in percent body
fat and change in metabolites (post – pre values). Corrections
were performed as indicated. An FDR correction was adjusted
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TABLE 1 Baseline characteristics of study participants.

Variable IF1-P
(n = 10)

IF2-P
(n = 10)

Total
(n = 20)

Age 47.3 ± 10.0 52.0 ± 8.6 49.7 ± 9.3

Sex,% (n)

Male 30 (3) 30 (3) 30 (6)

Female 70 (7) 70 (7) 70 (14)

Race/ethnicity,% (n)

White 90 (9) 90 (9) 90 (18)

Asian 10 (1) 10 (1) 10 (2)

Height (cm) 166.4 ± 12.7 172.8 ± 10.0 169.6 ± 11.6

Weight (kg) 86.9 ± 18.5 99.4 ± 25.6 93.2 ± 22.7

Body fat (%) 38.2 ± 7.4 42.0 ± 8.2 40.1 ± 7.8

Body mass index (kg/m2) 31.3 ± 5.1 33.6 ± 9.7 32.4 ± 7.6

Waist circumference
(cm)

98.0 ± 9.8 108.9 ± 17.8 103.4 ± 15.1

Physical Activity
(kcals/day)

322 ± 274 289 ± 188 305.6 ± 229.9

Dietary intake

Kcals 2452 ± 526 2483 ± 473 2467 ± 487

Carbohydrates (g) 256.9 ± 75.5 268.3 ± 82.4 262.7 ± 77.1

Sugar (g) 99.6 ± 54.6 106.9 ± 46.1 103.3 ± 49.4

Fiber (g) 20.1 ± 8.9 19.3 ± 8.0 19.6 ± 8.3

Protein (g) 93.7 ± 25.3 105.3 ± 33.4 99.5 ± 29.5

Fat (g) 103.9 ± 26.2 109.6 ± 30.6 106.8 ± 27.8

Sodium (mg) 3456.5 ± 1088.9 3196.9 ± 1392.8 3326.7 ± 1224.1

Reported as mean ± SD unless stated otherwise.

for multiple hypothesis testing with a significance level of
q < 0.05.

Results

Participant characteristics

Baseline characteristics of the study participants of the
IF1-P and IF2-P groups are displayed in Table 1. Age, sex, BMI,
and physical activity level did not differ by group. The overall
mean percentage of kilocalories from carbohydrate, protein and
fat at baseline was 43.6 ± 12.8%, 16.5 ± 4.9%, and 39.9 ± 10.4%,
respectively. Both carbohydrate and fat consumption were
outside the acceptable macronutrient distribution range
(AMDR) of 45–65% and 20–35%, respectively, whereas mean
protein consumption was on the lower end of the AMDR range
of 10–35% (60). The mean self-reported daily intake of sugar
consumed was 103.3 ± 49.4 g/d. Mean daily consumption
of dietary fiber for males (n = 6) and females (n = 14) was
25.9 ± 10.9 g/d and 17.0 ± 5.4 g/d, respectively, for which
both fell below the AMDR for males (38 g/d) and females
(25–26 g/d) (60). As previously described, both IF1-P and
IF2-P similarly and significantly altered participants’ dietary

energy and macronutrient intake (31). Briefly, total energy
intake decreased by ∼40% (∼1,000 kcals/d) with no significant
difference between groups. This reduction was due to significant
decreases in dietary fat (-50 to 60 g/d) and carbohydrate (-138
to 152 g/d) intake. Protein intake increased significantly (21–
25 g/d) in both groups. These macronutrient changes resulted
in a distribution of 32–37% carbohydrate, 34–35% protein,
and 28–34% fat. Moreover, dietary fiber intake significantly
increased (8–12 g/d), whereas sugar (-57 to 77 g/d) and sodium
(-1,500 to 2,000 mg/d) significantly decreased. As previously
reported, both groups maintained similar physical activity and
energy expenditure throughout the weight loss period (31).

Gastrointestinal symptoms reduced in
IF2-P participants

A baseline assessment of individual GSRS scores revealed no
difference between IF1-P and IF2-P (p > 0.05; Supplementary
Table 1). Upon summing GSRS scores, 39% of IF1-P and 45% of
IF2-P participants reported at least one symptom (score ≥ 2) for
total GI symptoms, and 17% of IF1 and 12% of IF2-P reported
at least one moderate symptom (score ≥ 4; Table 2). There
were no significant differences between groups at baseline for
any GI symptom clusters (p ≥ 0.567). However, after comparing
baseline to post-intervention symptom prevalence, significant
reductions in total and moderate GI symptom presence were
found in IF2-P (p < 0.001 and p = 0.017, respectively). Similar
findings were found in IF2-P for reductions in total upper and
lower symptom presence (p = 0.031 and p = 0.013, respectfully),
though no significant reductions were noted for moderate upper
and lower symptom presence (p ≥ 0.146). In comparison, there
were no significant changes for total or moderate upper, lower,
and overall symptom presence in IF1-P (p ≥ 0.125). For stool
characteristics, there were no significant changes from baseline
or between groups for stool weight, BSS, or stool pH (p ≥ 0.146;
Table 2). Stool weights were categorized as low for Western
populations (i.e., 80–120 g/day) (61), whereas values for BSS
were generally within the range of an ideal stool, indicating
normal colonic transit time and ease of defecating while not
containing excess liquid. Stool pH was within a healthy range
(reference range: 6.5–7.5). Similarly, detected concentrations of
SCFAs, including acetate, propionate, isobutyrate, and butyrate,
were within normal ranges but did not differ significantly by
time or interaction (p ≥ 0.126; Supplementary Table 2).

Structure of the gut microbiome
altered after short-term fasting

Both IF groups’ baseline microbial community structures
were significantly altered after the four-week dietary
intervention as assessed by the Bray-Curtis beta diversity
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TABLE 2 Self-reported gastrointestinal (GI) symptoms and stool characteristics between IF1-P and IF2-P at baseline and week 4.

Variable Baseline Week 4

IF1-P(n = 10) IF2-P(n = 10) IF1-P(n = 10) IF2-P(n = 10)

Total GI scores ≥ 2 43 (39%) 49 (45%) 37 (34%) 30 (27%)*

Total GI scores ≥ 4 19 (17%) 13 (12%) 8 (7%) 4 (4%)*

Total upper GI scores ≥ 2 21 (35%) 26 (43%) 16 (27%) 17 (28%)*

Total upper GI scores ≥ 4 12 (20%) 3 (5%) 1 (2%) 0 (0%)

Total lower GI scores ≥ 2 22 (44%) 23 (38%) 21 (35%) 13 (22%)*

Total lower GI scores ≥ 4 7 (14%) 10 (20%) 7 (14%) 4 (8%)

Stool weight (g) 103.20 ± 92.65 78.01 ± 40.31 65.98 ± 30.11 106.33 ± 64.49

BSS 3.50 ± 1.08 3.20 ± 1.39 2.80 ± 1.31 3.30 ± 1.41

Stool pH 6.97 ± 0.81 6.94 ± 0.32 6.76 ± 0.34 6.95 ± 0.35

GI scores are displayed as the sum of GI symptoms and the percent of participants reporting ≥ 1 symptom per category. Stool characteristic data are reported as mean ± SD. *Significant
decrease from baseline values, p < 0.05.

metric and visualized by non-metric multidimensional scaling
(NMDS) ordination (R2 = 0.042; p < 0.001; Figure 2A;
Supplementary Table 3), though no significant differences
between IF1-P and IF2-P were noted (R2 = 0.009, p = 0.823).
Homogeneity of dispersion tests did not reveal any significant
differences (p ≥ 0.191), increasing our confidence that the
significant compositional differences were not an artifact of
variance in group dispersion. Comparison of the first distances
of Bray-Curtis dissimilarity between groups was non-significant
(p = 0.579; Figure 2B), indicating no difference in the change
in dissimilarity from baseline between IF1-P and IF2-P. Results
from the PERMANOVA analysis were paralleled with the
LME model, which identified the overall IF-P intervention as
a significant factor in the participant’s GM composition (time
effect, p = 0.013), with no differences between groups detected
(group × time effect, p = 0.473; Figure 2C). Null findings
were observed for Shannon diversity and Faith’s PD, with no
significant effects for time (p ≥ 0.155) or interaction (p ≥ 0.341;
Figures 2D,E). Overall, these data show alpha diversity was
unaffected by this short-term intervention. However, there was
a significant negative correlation between baseline Shannon
diversity and percent body fat change after the four-week
intervention (R2 = 0.287, p = 0.030; Figure 2F). Therefore,
individuals with increased baseline Shannon diversity had the
greatest reduction in body fat percentage. This finding was
not paralleled with Faith’s PD, though it was trending toward
significance (R2 = 0.358, p = 0.084; Figure 2G).

Alterations in gut microbiome
composition and predicted function

For the qPCR analysis, no significant time (p = 0.603)
or interaction effects (p = 0.653) in total bacterial numbers
were detected, indicating the estimated number of microbes
remained relatively constant throughout the study and across

groups (Figure 3A). With high throughput 16S amplicon
sequencing, we identified 115 ASVs after filtering, represented
by five phyla and 67 genera (Class: 8; Order: 17; Family:
26). At baseline, the composition of the gut microbiome for
both groups was dominated by Firmicutes (IF1-P: 85.1% vs.
IF2-P: 81.1%), followed by Actinobacteriota (6.9% vs. 15.2%),
Bacteroidota (7.2% vs. 3.5%), Proteobacteria (0.8% vs. 0.2%),
and Desulfobacterota (0.1% vs. < 0.1%). The GM at the genus
level displayed much greater variation by individual. No taxa
above the genus level differed significantly in their abundances
from baseline to week four, nor was there a significant
time or interaction effect for the Firmicutes/Bacteroidota ratio
(p ≥ 0.527). The abundances of phyla and genera (at an
individual level) at baseline and week four for each group
with greater than 1% mean relative abundance are shown in
Figures 3B,C, respectfully.

Differential abundance testing identified three genera that
significantly changed from baseline to week four in the IF1-P
group, including a decrease in Sellimonas (log2FC = −0.997,
q < 0.001) and an increase in Ruminococcaceae Incertae Sedis
(log2FC = 2.289, q = 0.007) and Eubacterium fissicatena group
(log2FC = 2.215, q < 0.001; Figure 4A). In comparison, two
genera significantly changed in the IF2-P group, including an
increase in Ruminococcaceae Incertae Sedis (log2FC = 2.435,
q = 0.005) and a decrease in Eubacterium ventriosum
group (log2FC = −1.990, q = 0.001) (Figure 4B). Analysis
between the change in these differently abundance genera
with change in percent body did not reveal any significant
associations, though Sellimonas was trending toward a negative
correlation (R2 = −0.274, q = 0.072). Predicted functional
composition of microbial communities was assessed via
PICRUSt2, identifying 265 MetaCyc pathways after filtering.
Upon differential abundance testing, IF1-P had a significant
decrease in the predicted function of peptidoglycan biosynthesis
II (log2FC = −1.674; q < 0.001) and chorismate biosynthesis II
(log2FC = −1.509, q < 0.001), whereas IF2-P had a significant
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FIGURE 2

Variation in gut microbiome diversity metrics at baseline and week four of IF1-P and IF2-P participants. (A) Non-metric multidimensional scaling
(NMDS) ordination of Bray-Curtis dissimilarity matrix. The GM of both IF1-P (n = 10) and IF2-P (n = 10) groups shifted significantly from baseline
to week four (R2 = 0.042, p < 0.001), but there was no difference between groups by time (R2 = 0.009, p = 0.823). The same participant is
connected by a dotted line, starting at baseline and the arrow pointing to the end of the intervention period. (B) The first distances of the
Bray-Curtis dissimilarities between IF1-P and IF2-P were not significant (p = 0.579). Boxes denote the interquartile range (IQR) between the first
and third quartiles, and the horizontal line defines the median. (C) First principal coordinate (PCo1) values differed by time (p = 0.013), with no
differences between groups over time detected (p = 0.473). (D) Shannon diversity index did not change significantly over time for IF1-P and
IF2-P groups (p ≥ 0.341). (E) Faith’s PD diversity index did not change significantly over time for IF1-P and IF2-P groups (p = 0.653). Boxes
denote the IQR between the first and third quartiles, and the horizontal line defines the median. A dotted line connects the same participant.
(F) Correlation of baseline Shannon Diversity with percent body fat loss from the four-week IF intervention. (G) Correlation of baseline Faith’s
phylogenetic diversity (PD) with percent body fat loss from the four-week IF intervention. Both groups were combined for the correlation
analyses and are displayed in different colors. The gray cloud around the regression line indicates the 95% confidence interval.

increase in the predicted function of adenosine nucleotides
degradation IV (log2FC = 0.719, q < 0.001; Figures 4C–E).

Alterations in the plasma metabolome
between groups after short-term
fasting

A total of 138 aqueous metabolites were reliably
detected across 40 samples (i.e., QC CV < 20% and
relative abundance > 1,000 in 80% of samples). Data were

log10-transformed, and Pareto scaled (mean-centered and
divided by the square root of the standard deviation of each
variable) prior to all subsequent analyses and visualizations
(Supplementary Figure 1). Following normalization, Levene’s
test of homogeneity showed equal variance between study
groups (p > 0.05). Outlier analysis was performed via
random forest (RF) and principal component analysis
(PCA). RF performed with 500 decision trees indicated
five potential outliers according to the greatest outlying
measure (Supplementary Figure 2A), although no sample
fell outside of the 95% CI as indicated by two-dimensional
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FIGURE 3

(A) Total bacterial number observed in both IF1-P (n = 10) and IF2-P (n = 10) groups at baseline and week four. No significant effects of time or
interaction (p ≥ 0.603) were noted. Total bacterial numbers were calculated as average copies of 16S rRNA gene/g wet feces via qPCR. Group
means at each time point are displayed as black bars. (B) Average relative abundance of the most prevalent gut microbiome phyla among study
participants for IF1-P (n = 10) and IF2-P (n = 10) at baseline and week four by 16S rRNA sequencing. Phyla with a median relative abundance of
less than 1% are collapsed into the category “Other”. (C) Average relative abundance of the most prevalent gut microbiome genera among study
participants for IF1-P (n = 10) and IF2-P (n = 10) at baseline and week four by 16S rRNA sequencing. Genera with a median relative abundance of
less than 1% are collapsed into the category “Other”.

PCA (Supplementary Figure 2B). As such, no samples
were confirmed as outliers, and all data were retained for
subsequent analysis.

Next, we performed ANOVA-simultaneous component
analysis (ASCA) to determine the significant main effects of
time and group interactions. As can be seen in Supplementary
Figure 3A, little separation was observed in the three-
dimensional PCA, showing no observable clustering due to
time or group. However, the ASCA did reveal a significant
effect of time (p < 0.01; Supplementary Figure 3B), but no
significant effect of group (p = 0.17, Supplementary Figure 3C)
or any significant interactions between time and group (p = 0.78;
Supplementary Figure 3D). Given the significant effect of time
and our interest in the effects of the IF-P group, we prepared a
GLM with age, sex, BMI, and time as covariates and corrected
for FDR (Figure 5A). When controlling for these relevant

covariates, we observed significant effects of IF-P on seven
metabolites (Figure 5B, Supplementary Table 4), which may
be considered candidate markers of intermittent fasting: serine
(q = 0.003), TMAO (q = 0.012), levulinic acid (q = 0.017), 3-
aminobutyric acid (q = 0.029), citrate (q = 0.033), isocitrate
(q = 0.033), and glucuronic acid (q = 0.049).

Fold change (FC) and receiver operating characteristic
(ROC) analyses assessed the magnitude of change between
IF-P groups and the univariate classification performance of
the candidate fasting markers, respectively. For FC analysis,
groups were analyzed as IF2-P/IF1-P. While all seven significant
metabolites were increased in the IF2-P group, the magnitude
of change was consistent; FC ranged from 1.14 to 1.60 (see
Supplementary Table 4 for significance, FC, and AUC details of
metabolite markers). The area under the curve (AUC) estimates
for individual candidate markers ranged from 0.63 to 0.74.
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FIGURE 4

(A) Genera were differentially abundant between baseline and week four for IF1-P participants (n = 10). (B) Genera that were differentially
abundant between baseline and week four for IF2-P participants (n = 10). Points represent each genera’s log2 fold change (log2FC; effect size).
A positive value indicates that a feature increased in abundance at week four (right), and a negative value indicates a decrease in abundance at
week four (left). Bars represent 95% confidence intervals derived from the ANCOM-BC model. Note, the genus Incertae Sedis is from the
Ruminococcaceae family. Boxplots displaying statistically significant differences in (C) peptidoglycan biosynthesis II and (D) chorismate
biosynthesis II from baseline to week four of predicted metabolic pathways for IF1-P participants. Boxplot displaying a statistically significant
difference in (E) adenosine nucleotides degradation IV from baseline to week four of the predicted metabolic pathway for IF2-P participants.
Pathways are displayed as centered log-ratio (CLR) transformed abundances. Boxes denote the interquartile range (IQR) between the first and
third quartiles, and the horizontal line defines the median.

Although no significant correlations were observed between
changes in metabolite levels and percent body fat, positive
associations were observed between citrate and glucuronic acid
(R2 = 0.282, p = 0.019), glucuronic acid and 3-aminobutyric acid
(R2 = 0.311, p = 0.013), and between 3-aminobutyric acid and
serine (R2 = 0.271, p = 0.022).

To increase the predictive accuracy of the candidate marker
panel, we constructed a multivariate orthogonal partial least
squares-discriminant analysis (OPLS-DA) model using the
seven significant metabolites identified by GLM. Analysis of the
OPLS-DA scores plot revealed the model to account for more
variance than an orthogonal data matrix of equal dimension
(Figure 6A). While the OPLS-DA model showed low-to-
moderate predictive and explanatory capacity (R2X = 0.351,
R2Y = 0.237, Q2 = 0.202) (Figure 6B), permutation testing
showed good fit to data and, notably, did not indicate
model overfitting (Perm R2Y p < 0.01, Perm Q2 p < 0.01)
(Figure 6C). Following model construction and validation, we
performed ROC analysis to assess the classification performance
of the multivariate OPLS-DA model. ROC analysis showed
good accuracy of the model for assessing the duration of
the IF-P intervention; AUC was observed to be 0.83 (95%

CI: 0.70-0.94) when sensitivity and specificity were set to
0.80 (Figure 6D). Importantly, the OPLS-DA model provided
greater classification accuracy than any significant metabolite
individually. A box plot of model-implied Y-values derived from
the OPLS-DA model is visualized between IF1-P and IF2-P
groups in Figure 6E.

Next, we performed debiased sparse partial correlation
(DSPC) networking modeling and metabolite ontology analysis
to evaluate pathway-informed correlations and metabolite
localization, respectively. The DSPC analysis was based on
a least absolute shrinkage and selective operator (LASSO)
algorithm, and revealed significant functional correlations in
valine, leucine, and isoleucine biosynthesis (p = 8.59E-9)
and degradation (p = 7.91E-5), aminoacyl-tRNA biosynthesis
(p = 1.94E-4), fatty acid biosynthesis (p = 0.018), and
phenylalanine, tyrosine, and tryptophan biosynthesis (p = 0.048)
(Supplementary Figure 4). Qualitative metabolite ontology
analysis was performed to identify organ, tissue, cellular,
and subcellular localizations of study metabolites. Although
metabolome coverage is admittedly limited given our targeted
MS approach, network visualization of ontology results showed
our experimental metabolites were derived, in order of most to
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FIGURE 5

(A) GLM adjusted for age, sex, BMI, and time, with FDR-correction, and (B) box plots of significant metabolites as indicated by GLM: serine
(q = 0.003), TMAO (q = 0.012), levulinic acid (q = 0.017), 3-aminobutyric acid (q = 0.029), citrate (q = 0.033), isocitrate (q = 0.033), and
glucuronic acid (q = 0.049). Red lines in box plots denote optimal cutoff values as calculated by the Youden method, black lines indicate median
values, and yellow diamonds show group averages.

least, from the central nervous system, brain, neuron, prostate,
and mitochondria (Supplementary Figure 5).

Discussion

The GM is tightly intertwined with host health, which has
raised considerable interest in how the resident GI microbes
respond to dietary intervention. Advances in understanding
how the GM influences and is modified by body weight will
allow for a greater understanding of this relationship. Moreover,
changes in the GM and associated metabolites may provide
optimal dietary input for GM modulation and, ultimately, host
health. Therefore, in this exploratory analysis, we sought to
examine the GM and plasma metabolome of a subgroup of adult
participants with overweight/obesity who were randomized into
an IF-P regimen of one versus two days. Over four weeks,
participants in both groups lost a significant amount of body
fat with associated metabolic improvements. In contrast, the
community structure of the GM was minimally impacted, with
beta-diversity shifting approximately 4%. Similarly, differential
abundance analysis revealed some shifts at the genus level,
including increased Incertae sedis (from the Ruminococcaceae
family) abundance in both groups. Analysis of the plasma
metabolome revealed a significant increase in seven out of
138 validated metabolites in the IF2-P group. Overall, these
results support that controlled, short-term IF-P regimens
modestly impact the GM. Perhaps more importantly, the GM

displayed resiliency and marked inter-individuality despite the
significant weight loss and cardiometabolic improvement in
these overweight/obese participants.

To our knowledge, this study is the first to directly
compare two IF regimens on longitudinal GM changes.
While a direct comparison to similar work is limited, our
results generally align with the results from short-term
inventions. For example, in an energy-restricted IF intervention
using a modified fasting regimen of 5:2 (5 days normal
feeding:2 days fasting), 12 weeks of energy restriction elicited
approximately a 5% reduction in weight (62). While weight
loss was associated with significant metabolic improvements,
comparatively, there was less change in the GM and targeted
plasma metabolome. However, the GM composition at baseline
was moderately predictive of weight loss. Similarly, we noted
baseline alpha diversity was significantly correlated with loss
in percentage body fat, suggesting that the initial community
dynamics of the GM may be an important determinant in
response to periods of fasting and nutritional interventions.
These findings add to previous reports that the GM of
participants entering weight-loss interventions may greatly
influence the host’s response to these dietary regimens (63,
64). In terms of the baseline profile of the GM, increased
diversity has been associated with enhanced response to a
dietary weight loss intervention (65). Other calorie restriction
interventions have noted increased alpha diversity (Shannon
index) over short-term periods by implementing a high
protein diet (30% of daily kcal) (21). Participants in the
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FIGURE 6

(A) Scores plot of OPLS-DA model constructed using seven significant metabolites identified by GLM, showing percent variance accounted for
by experimental and orthogonal data. (B) OPLS-DA model overview showing predictive and explanatory capacity (R2X = 0.351, R2Y = 0.237,
Q2 = 0.202); y-axis represents proportion of total variance. (C) Permutation test with 100 iterations showing model fit distributions (Perm R2Y
p < 0.01, Perm Q2 p < 0.01). (D) ROC analysis of OPLS-DA model for assessing IF-P (AUC = 0.83, 95% CI: 0.70-0.94, sensitivity = 0.8,
specificity = 0.8). (E) Box plot of OPLS-DA predictive values; the red line in the box plot denotes the optimal cutoff value, while yellow diamonds
show group averages, and black lines illustrate group medians.

current study consumed 35% of their total energy intake
from protein, though we only reported results after four
weeks, whereas the other study had a longer intervention

(eight weeks). In another high-protein CR intervention, protein
supplementation had little effect on microbial diversity and
relative abundance (22). However, decreased body weight
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and fat mass were significantly correlated with increased
microbial diversity.

Differential abundance analysis revealed increases in several
genera, including Incertae sedis and Eubacterium fissicatena
group, and a decrease in Sellimonas in IF1-P. Incertae sedis
is an unclassified genus from the Ruminococceacae family,
a group of strict anaerobes normally present in healthy
individuals (66). Overall, the family Ruminococcaceae plays
an important role in maintaining gut health through the
potential to produce butyrate and other SCFAs. Eubacterium
is phylogenetically diverse and forms the core genera of
health-associated human GM (67). Indeed, multiple species
of this genus are currently regarded as promising targets for
microbial therapeutics (67), though Eubacterium fissicatena
group remains a poorly described genus, with few clinical studies
detecting its presence (68). Sellimonas is also a genus less
characterized. Under the Lachnospiraceae family, Sellimonas
contains certain species that have been proposed as an indicator
of GI homeostasis (69). Incertae sedis was also increased in IF2-
P, while Eubacterium ventriosum group decreased. The decrease
in Eubacterium ventriosum group was of interest as this microbe
was previously found to be enriched in high vs. low-BMI twin-
dyads (70). Similar findings have been reported in a broader
examination of unrelated obese vs. non-obese study participants
(71). It may be that these butyrate producers provide substrate
to the host as energy harvesters, which could contribute to a
positive energy balance. Conversely, reduced abundance of this
genus is well noted in colorectal cancer patients (72–75) and has
been proposed as a biomarker for lower disease risk (67). Such
findings display the complexity of Eubacterium, highlighting
the importance of better mapping function and host-health
implications at the genus and species level.

Less affected were the predicted functional pathways of the
GM. IF1-P resulted in a significant decrease in two predicted
functions. This included peptidoglycan biosynthesis II, which
is a step in forming cell wall components of Gram-positive
bacteria, including pathogenic species (like Staphylococcus
aureus), and plays a role in GM-derived inflammation in the
host (76). Previously, IF in a diabetic mice model reduced
plasma peptidoglycan, a surrogate marker for gut barrier
function (77). The other pathway, chorismate biosynthesis
II, contributes to chorismate synthesis and is a precursor to
tryptophan and subsequent serotonin production in the GI
tract. IF2-P resulted in a significant increase in adenosine
nucleotides degradation IV, which may signal increased microbe
and energy turnover.

Regarding the plasma metabolome, we identified an increase
in several metabolites that were significant over time and
increased in the IF2-P group. The elevation in these specific
metabolites was intriguing as some are linked to healthy
states, while others are linked to disease. For example, serine
plays an important role in glutathione production (78), citrate
and its isomer, isocitrate, are involved in energy metabolism,

and glucuronic acid is involved in detoxifying xenobiotic
compounds and has been proposed as a biomarker of longevity
(79). In contrast, TMAO is a compound found in high protein
foods (e.g., fish) and can be generated from precursors like
choline and carnitine (e.g., found in eggs and beef) and has
been associated with heart disease (80, 81). Concentrations of
TMAO in circulation appear reliant on dietary intake (82, 83).
Like participants in the present study, healthy individuals with
a high relative abundance of Firmicutes have been reported to
have greater circulating levels of TMAO (82). While increased
levels of this metabolite have been associated with metabolic
disease, participants in the present study displayed significant
improvements in cardiometabolic outcomes, including lipid
profiles. In relation to diet, a notable component of both the IF1-
P and IF2-P diet was resistant starch, which has been reported to
be associated with higher circulating TMAO levels when overall
carbohydrates are reduced, and protein levels increased (84).
We have used a similar dietary intervention, noting substantial
improvements in postprandial metabolism, including reduced
glucose and insulin response (85, 86). Therefore, it may be
that circulating concentrations of TMAO were reflective of
differences in the GM community and dietary intake, rather
than indicating a role of TMAO in negative cardiometabolic
outcomes in the present study. More work exploring the impact
of increased resistant starch and relative protein during caloric
restriction is warranted, particularly concerning the GM and
different metabolomic assessments (e.g., contents of the GI
tract at different sections). Relatedly, while fecal metabolites
might be more reflective of the direct metabolic output of the
microbiota, blood metabolites provide a window into which of
these compounds make it into circulation (18, 79). Indeed, the
plasma metabolome is connected and partially reflective of the
GM as it can present a person-specific signature and is largely
predicted by host-associated characteristics (87–89).

Regarding metabolomic pathway analysis, our DSPC model
detected several negative correlations in accordance with calorie
restriction, including biosynthesis of the amino acids valine,
leucine, isoleucine, phenylalanine, tyrosine, and tryptophan.
While decreases in plasma branched-chain and aromatic
amino acids are reportedly associated with weight loss and
improvement in insulin resistance in obese individuals (90,
91), the implications of reduced tryptophan synthesis are less
clear. Decreased circulating levels of tryptophan may influence
the serotoninergic system and mood. Reductions have been
observed in other short-term weight loss trials with suggestive
susceptibility to food cravings (92). In contrast, these behaviors
were not reflected in participants from the present study
as hunger ratings significantly improved over baseline levels
(31). The other notable negative correlation was fatty acid
biosynthesis. Interestingly, the current study showed significant
loss of body weight, total and abdominal fat loss, despite not
detecting a significant association with fat oxidation. Although,
alterations in fatty acid synthesis have displayed a greater
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magnitude of change over fatty acid oxidation in preclinical
models of calorie restriction and appears to be an important
metabolic adaptation to reduced energy states (93, 94). In
particular, decreased saturated fatty acid synthesis such as
palmitic acid, myristic acid, and capric acid appears to be
associated with cell longevity and protective against cancerous
traits, perhaps mediated through the p53 tumor suppressor
gene (95). These results are notable considering the short-
term intervention period and warrant future exploration with
expanded omic surveys and longer time durations.

Finally, we captured self-reported GI symptoms and stool
characteristics (pH, SCFAs, and biomass estimate). While
routine, these assessments are generally lacking in diet-focused
GM research, and adverse GI symptoms remain highly reported
in Western populations (96, 97). We noted a similar trend in the
participants in the present study, with nearly half reporting GI
symptom presence at baseline. After the four-week intervention,
participants in the IF2-P group reported significantly decreased
incidence of minor and moderate symptoms, while IF1-P
did not. These findings are noteworthy as restrictive diets
have been positively associated with self-reported GI issues
(98). Differences may have been due to the longer periods of
supported fasting, providing “gut rest” (24). We did not find
significant changes in stool pH after IF, which is interesting
because prolonged fasting (+18 h) has been reported to produce
a higher gut pH than constant feeding (99). In relation,
SCFA concentrations did not change significantly despite the
significant reduction in energy and periods of IF. Presumably,
during periods of dietary restraint, the host would more readily
absorb these SCFA, resulting in decreased detection in the stool
(100). While speculatory, this presumed reduction in SCFAs
was bolstered by the significant increase in dietary fiber by
approximately 10 grams in the dietary intervention. Much
of this increase was supplied by isomaltooligosaccharide, a
non-digestible fiber metabolized by the GM (101). Regardless,
SCFAs concentrations were within range of those found in stool
samples of healthy humans (102, 103). Overall, our findings
support the notion that short-term dietary intervention impacts
the microbial ecosystem of the human gut, showcasing the
resilience of the GM community (104). Indeed, this paralleled
the biomass estimates provided by our qPCR analysis, where we
did not detect a significant decrease over time.

The present study has several strengths, including a
tightly controlled design and well-matched comparator groups
regarding participant characteristics and nutrient intake during
the intervention. Moreover, we provided a simultaneous
investigation of the changes in structure and predicted function
of the gut microbiota, plasma metabolome, and host-associated
features. However, there are several limitations. First and
foremost, the sample size was small. A greater sample and a
more robust design protocol, such as a cross-over design, for
GM research may better account for interpersonal variabilities.
Second, we employed 16S rRNA gene sequencing on fecal

samples to assess the GM which constrained our taxonomic
resolution and survey of microbial gene content and function.
In fasting, where many important microbial changes in more
proximal sections of the GI tract are suggested, we were limited
by our sample collection. Third, the fecal metabolome was not
assessed, which would have better reconciled the apparent gap
between the GM and the plasma metabolome. Fourth, we did
not collect samples directly after fasting and fed periods to make
these important comparisons. Such investigations will likely
require time-series and in-patient designs, features that were
not within the scope of this current exploratory work. Finally,
our participants were overweight/mildly obese individuals with
baseline cardiometabolic parameters frequently characterized
in the literature as “healthy obese” (31). Generally, host-
microbe metabolic associations are more apt to be disrupted in
individuals experiencing more severe obesity (i.e., BMI ≥ 35)
relative to individuals with a normal weight (BMI < 25) (105).
The group BMI means of IF1-P and IF2-P in the current study
could be considered only slightly obese (i.e., 31.3 ± 5.1 and
33.6 ± 9.7 kg/m2, respectively) and thus may not have been as
sensitive to change during the short-term intervention. Indeed,
a health-associated GM appears to display resilience to change,
including dietary intervention (104). These factors may have
contributed to some of the current study’s findings.

Conclusion

In the current study, we observed that short-term IF-P
induced modest shifts in the GM and plasma metabolome,
despite conferring significant body weight and fat reduction.
These results indicate that IF may promote minor increases in
health-associated taxa and alterations in microbial community
structure and plasma metabolite profile. However, when
controlled for overall energy intake and nutritional profile,
fasting for one vs. two days did not promote significant
differential changes in this short-term, calorically restricted
protein pacing intervention. Importantly, we show that the
GM in overweight and obese individuals appears to have
great resiliency despite significant energy restriction and fat
loss. Moreover, the baseline composition of the GM may
be an important variable in weight loss, though larger and
longer duration studies are needed to better characterize IF
modifications of microbial and metabolic factors.
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