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Polysaccharides show protective effects on intestinal barrier function due

to their effectiveness in mitigating oxidative damage, inflammation and

probiotic effects. Little has been known about the effects of polysaccharides

from Artocarpus heterophyllus Lam. pulp (jackfruit, JFP-Ps) on intestinal

barrier function. This study aimed to investigate the effects of JFP-Ps on

intestinal barrier function in high fat diet-induced obese rats. H&E staining

and biochemical analysis were performed to measure the pathological and

inflammatory state of the intestine as well as oxidative damage. Expression

of the genes and proteins associated with intestinal health and inflammation

were analyzed by RT-qPCR and western blots. Results showed that JFP-

Ps promoted bowel movements and modified intestinal physiochemical

environment by lowering fecal pH and increasing fecal water content. JFP-

Ps also alleviated oxidative damage of the colon, relieved intestinal colonic

inflammation, and regulated blood glucose transport in the small intestine.

In addition, JFP-Ps modified intestinal physiological status through repairing

intestinal mucosal damage and increasing the thickness of the mucus layer.

Furthermore, JFP-Ps downregulated the inflammatory genes (TNF-α, IL-6)

and up-regulated the free fatty acid receptors (GPR41 and GPR43) and tight

junction protein (occludin). These results revealed that JFP-Ps showed a

protective effect on intestinal function through enhancing the biological,

mucosal, immune and mechanical barrier functions of the intestine, and

activating SCFAs-GPR41/GPR43 related signaling pathways. JFP-Ps may be

used as a promising phytochemical to improve human intestinal health.

KEYWORDS

Artocarpus heterophyllus Lam. polysaccharide, intestinal function, inflammation,
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Introduction

The intestine is the largest digestive and immune organ
which closely linked to the body health, participates in the
digestion and absorption of nutrients. The intestine also
provides a favorable anaerobic environment for microbial
colonization, plays an important role in defending the host
from pathogens, and regulating the host’s immune system
(1–4). The contents of short-chain fatty acids (SCFAs) and
colonic water, and colonic pH value are basic indicators for
intestinal health, which is closely linked to the body health (5).
Changes in dietary composition can affect the development of
gastrointestinal disease and the integrity of the gut by altering
the growth and metabolism of the intestinal flora (6). Wang
et al. (7) found that walnut green husk polysaccharides alleviated
obesity, chronic inflammatory responses, non-alcoholic fatty
liver disease and colonic tissue damage via regulating gut
microbiota and SCFAs content.

Polysaccharides have been reported to improve gut health
via enhancing intestinal barrier function and restoring intestinal
homeostasis, and regulate intestinal function via mitigating
oxidative damage and inflammation, and probiotic function
(8, 9). Polysaccharides from Cyclocarya paliurus leaves,
Dendrobium officinale, fruiting body of Hericium erinaceus
and polysaccharide-rich sage weed extracts were found to
maintain intestinal health through lowering fecal pH value,
increasing fecal water content and SCFAs concentration (5, 6,
10, 11). Gao et al. (12) reported that polysaccharide fractions
from okra improved intestinal function via increasing the
contents of SCFAs and caecum moisture, thickness of mucosa
and muscular layer. Dendrobium huoshanense polysaccharide
improved intestinal mucosal barrier function by modifying
intestinal mucosal structures, regulating the production of
cytokines and promoting the expression of the tight junction
proteins (8).

Polysaccharides from Artocarpus heterophyllus Lam
(jackfruit) pulp (JFP-Ps) has been demonstrated to possess
immunomodulatory effects (13). In the past few years, our team
has investigated the isolation, purification, in vitro digestive
properties, antioxidant activity and in vivo prebiotic effects of
JFP-Ps (14–16). However, to our knowledge, little has been
known about the protective effects of JFP-Ps on intestinal
health. Therefore, the present study aimed to investigate the
protective effects of JFP-Ps on intestinal function of obese rats
induced by a high-fat diet.

Abbreviations: JFP-Ps, polysaccharides from Artocarpus heterophyllus
Lam. (jackfruit) pulp; SOD, superoxide dismutase; GSH-Px,
glutathione peroxidase; CAT, catalase; MDA, malondialdehyde; MPO,
myeloperoxidase; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β;
IL-6, interleukin-6; IL-10, interleukin-10; SGLT1, sodium-glucose
cotransporter 1; GPR43, G protein-coupled receptor 43; GPR41, G
protein-coupled receptor 41; SCFAs, short-chain fatty acids.

Materials and methods

Materials and reagents

Jackfruit fruits were collected from Xinglong Tropical
Botanical Garden (Wanning, Hainan, China). JFP-Ps was
extracted from the Artocarpus heterophyllus Lam pulp using
hot water extraction and ethanol precipitation as previously
described by Zhu et al. (14). JFP-Ps was mainly composed of
Rha, Ara, Gal, Glc, Xyl, and GalA, with an average molecular
weight of approximately 1,668 kDa.

The normal-chow diet (D12450H, 10% calories from
fat) and high-fat diet (D12451, 45% calories from fat)
were obtained from Jiangsu Synergy Pharmaceutical and
Biological Engineering Co., Ltd., (Jiangsu, China). Assay kits
for the activity of superoxide dismutase (SOD), glutathione
peroxidase (GSH-Px) and catalase (CAT) and the content
of malondialdehyde (MDA) were obtained from Suzhou
Grace Biotechnology Co., Ltd., (Jiangsu, China). ELISA kits
for myeloperoxidase (MPO), tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-
10 (IL-10) and sodium-glucose cotransporter 1 (SGLT1)
were purchased from Shanghai Enzyme-linked Biotechnology
Co., Ltd., (Shanghai, China). The qPCR primers for TNF-
α, IL-6, G protein-coupled receptor 43 (GPR43), G protein-
coupled receptor 41 (GPR41) and β-actin were purchased
from Sangon Biotech (Shanghai) Co., Ltd., (Shanghai, China).
TriQuick reagent and bicinchoninic acid (BCA) assay kits
were purchased from Beijing Solarbio Science & Technology
Co., Ltd., (Beijing, China). SuperReal Premix Plus assay kits
were purchased from Tiangen Biotech (Beijing) Co., Ltd.,
(Beijing, China). Rabbit-derived polyclonal antibodies against
occludin (27260-1-AP) and secondary antibody (SA00001-
2) were purchased from Proteintech Group, Inc., (Wuhan
Sanying, Hubei, China). BeyoRTTM III first-strand synthesized
kit, BeyoECL Plus reagent, poly (vinylidene fluoride) (PVDF)
membrane, rabbit-derived monoclonal antibodies against β-
actin (AF5003) and paraformaldehyde were purchased from
Beyotime Biotechnology (Shanghai, China).

Animal experiments

Sprague-Dawley rats (SPF-grade, male), with body weights
(BW) ranging from 180 to 200 g, were purchased from Hunan
Silaikejingda Experimental Animal Co., Ltd., (Changsha, China)
with the experimental animal production license SCXK (Xiang)
2019-0004. All rats were housed in an animal facility under
controlled interior temperature (23 ± 2◦C), relative humidity
(55 ± 15%), noise (≤60 dB) and lighting cycle (12:12 h light-
dark). After 1-week acclimation, the rats were divided into
two groups: normal control (NC) group (n = 8) fed with
normal-chow diet, obesity group (n = 45) fed with high fat diet
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(HFD). After 12 weeks, the average body weight (BW) of the
obesity group was significantly higher than that in the normal
group (p< 0.01). The animals in obesity group were further
randomly divided into five groups: HFD group, inulin group,
low-, medium- and high- dose JFP-Ps groups (JFP-Ps-L, JFP-Ps-
M, JFP-Ps-H), and continually fed with the high fat diet. During
the diet intervention, the NC group and HFD group were treated
daily with an equivalent volume of distilled water by oral gavage.
The inulin group was treated daily with inulin (1.5 g/kg BW)
by oral gavage (17, 18). The JFP-Ps-L group, JFP-Ps-M group
and JFP-Ps-H group were treated daily with 50, 100, and 200
mg/kg JFP-Ps by oral gavage, respectively. The diet intervention
was lasted for 6 weeks. The recipes of the diets are listed in S1
and S2. All animal experimental procedures were approved by
the Animal Ethics Committee of Hainan University and Hainan
Medical University with experimental animal use permit SYXK
(Qiong) 2017-0013.

Sample collection

All the rats were fasted for 12 h and anesthetized with
chloral hydrate by intraperitoneal injection, and then dissected.
Fecal samples were collected, immersed immediately in liquid
nitrogen, and stored at −80◦C for water content and pH value
analysis. The length of the colon was measured and the intestinal
tissue was rinsed with pre-cooled saline, blotted on filter paper,
and divided into three portions for further analysis.

Water content and pH value of feces

A portion of fecal sample was heated in an air-oven at 105
± 2◦C to a constant weight. The water content of the feces was
calculated from the mass of the feces before and after drying.
The other part of fecal sample was diluted with distilled water
at a ratio of 1:10 (w/v) and the pH value was determined using a
SevenCompactTM S220 pH meter (Mettler Toledo, Switzerland).

Antioxidant activities analysis

One hundred milligram colon tissue were mixed with
pre-cooled saline (4◦C, 0.9%, w/w) at a ratio of 1:10 (w/v),
homogenized over ice for 3 min, and centrifuged (12,000
× g, 15 min, 4◦C) to gather supernatants. The activities
of SOD, GSH-Px and CAT and the content of MDA
were determined using the biochemical kits following the
manufacturer’s protocols.

Enzyme-linked immunoassay

One hundred milligram of colon tissue were homogenized
with 1.0 mL pre-cooled saline (4◦C, 0.9%, w/w) over ice

for 5 min. Then tissue homogenate was centrifuged (12,000
× g, 20 min, 4◦C) to collect supernatants. The activity of
MPO and the concentrations of TNF-α, IL-1β, IL-6, and
IL-10 in the colon were measured by ELISA assay kits
following the manufacturer’s instructions. The activity of
SGLT1 in the small intestine was analyzed following the
manufacturer’s instructions.

Histological examination

The small intestine tissue was fixed in 4% paraformaldehyde
overnight, dehydrated with graded alcohol, imbedded in a
paraffin wax, and whittled down to 4 µm thickness. Then the
sections were mounted onto clean glass slides, soaked in graded
xylene and alcohol, stained with hematoxylin and eosin. Lastly,
slides were sealed with neutral balsam for inspection under a
binocular microscope.

RT-qPCR analysis

The mRNA levels of TNF-α, IL-6, GPR43, and GPR41
were determined by RT-qPCR. Total RNA was extracted
from the small intestine tissue with the TriQuick reagent
according to the manufacturer’s protocol. The purity and
concentration of total RNA was determined by Thermo
ScientificTM NanoDropTM 2000C spectrophotometer. cDNA
was generated by reverse transcription of RNA using BeyoRTTM

III first-strand synthesized kit. RT-qPCR analysis of the target
genes was performed on the Bio-Rad R©CFX96 Real Time PCR
System using a SuperReal PreMix Color (SYBR Green). The
relative expression levels of the genes were calculated according
to the 2−11 Ct method and normalized to the housekeeping
gene, β-actin. Primer information is listed in Table 1.

Western blot analysis

Fifty milligram of small intestine tissue were homogenized
with 0.5 mL pre-cooled RIPA buffer, 5 µL PMSF lysis
buffer and 5 µL protease inhibitor cocktail over ice for
5 min, and centrifuged (12,000 × g, 10 min, 4◦C) to collect
supernatants. The protein concentrations were quantified
by BCA Protein Assay Kit. Denatured protein samples were
fractionated on a 10% SDS-PAGE and transferred onto 0.45
µm PVDF membranes. After the membranes were blocked
with 5% skimmed milk at room temperature for 60 min, the
membranes were incubated overnight with primary antibodies
(1:1,300) at 4◦C, and then HRP-conjugated secondary
antibody (1:1,000) following the manufacturer’s instructions.
Protein bands were developed using an ultrasensitive ECL
chemiluminescence kit and visualized using a Tanon 5200 Multi
chemiluminescent imaging system, and lastly quantified using
Image J software.
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TABLE 1 The primer sequences for amplification in RT-qPCR.

Target gene Primer Sequence (5′–3′) Product size (bp)

β-actin Forward TGTCACCAACTGGGACGATA 165

Reverse GGGGTGTTGAAGGTCTCAAA

TNF-α Forward AAAGGACACCATGAGCACGGAAAG 136

Reverse CGCCACGAGCAGGAATGAGAAG

IL-6 Forward ACTTCCAGCCAGTTGCCTTCTTG 110

Reverse TGGTCTGTTGTGGGTGGTATCCTC

GPR43 Forward TGCACCATCGTCATCATCGTTCAG 137

Reverse ACCAGGCACAGCTCCAGTCG

GPR41 Forward TCTGCTCCTCTTCCTGCCATTCC 150

Reverse CGTTCTATGCTCACCGTCATCAGG

Statistical analysis

Results are expressed as means ± standard error of the mean
(SEM). Data were analyzed by one-way analysis of variance
(ANOVA), followed by Duncan’s multiple comparison tests with
SPSS Statistics 26 software (IBM, USA). p < 0.05 indicated a
statistically significant difference.

Results

Effects of JFP-Ps on water content and
pH value of feces

The water content of feces was significantly lower in the
HFD group (56.75 ± 2.64%) than that in the NC group (64.68
± 1.28%) (Figure 1A). JFP-Ps and inulin treatments increased
water content as compared with HFD treatment. Moreover, the
water content in the JFP-Ps-H group (67.05 ± 1.34%) was close
to that in the inulin group (67.47 ± 2.02%), which was slightly
higher than that in the normal group. As shown in Figure 1B,
the pH value of feces in the HFD group was significantly
higher than the NC group (p < 0.05). After feeding with JFP-Ps
and inulin, the pH values of feces were significantly decreased
in obese rats compared with the HFD treatment. The results
indicated that JFP-Ps significantly increased fecal water content
and decreased fecal pH value in obese rats.

Effects of JFP-Ps on colon length and
intestinal micromorphology

As shown in Figures 2A,B, the colon of the HFD group
was significantly shorter than the NC group (p < 0.05). JFP-Ps
and inulin significantly inhibited the decrease of colon length
compared with the HFD group (p < 0.01).

Morphological changes in jejunal tissue between the groups
were visualized by H&E staining. As shown in Figure 2C,

the jejunum in the NC group showed clear tissue structure,
with finger-shaped villi closely and evenly arranged, a large
number of cup-shaped cells within the columnar epithelium,

FIGURE 1

Effect of JFP-Ps on fecal water content (A) and fecal pH value
(B) in obese rats. Data are expressed as mean ± SEM (n = 6 for
each group) and analyzed using one-way ANOVA. *p < 0.05,
**p < 0.01 compared to the NC group; #p < 0.05, ##p < 0.01
compared with the HFD group.
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FIGURE 2

Effect of JFP-Ps on colon length and intestinal
micromorphology in obese rats. (A) Representatives of colonic
tissue in each group, (B) colon length, (C) jejunal
micromorphology (original magnification 20X). Data are
expressed as mean ± SEM (n = 6 for each group) and analyzed
using one-way ANOVA. *p < 0.05, **p < 0.01 compared to the
NC group; ##p < 0.01 compared with the HFD group.

and a clear demarcation between the submucosa and the
muscular layer. In the HFD group, the mucosal layer of jejunum
was disorganized; the shape of the villi was not clear; and
the tips of the villi were mixed and accompanied by severe
inflammatory infiltration, with cup-shaped cells visible only
at the base of the villi. Comparison to the HFD group, the
jejunum of the JFP-Ps-L group and JFP-Ps-M group showed
clearer structure, with the villi gradually becoming clearer
in shape and more uniformly arranged, with less mixing
of the villi apices and less inflammatory infiltration, and a
gradual increase in the distribution of cupped cells within the
columnar epithelium. The morphology and structure of the
jejunal tissue in the JFP-Ps-H group was similar to that in
the NC group, but the length and number of villi increased.

Moreover, villi were more closely arranged; the volume of
the intestinal lumen decreased; more cup-shaped cells were
distributed within the columnar epithelium and the thickness
of the mucosal layer increased. The results showed that JFP-
Ps restored intestinal mucosal damage induced by a high-
fat diet in obese rats, increased the thickness of the mucus
layer and protected the barrier function of the intestinal
mucosa, which in turn had a positive effect on intestinal
health.

Effects of JFP-Ps on antioxidant
activities in colon

As shown in Table 2, in comparison to the NC group,
the activities of SOD, GSH-Px, and CAT in the HFD group
were decreased and the content of MDA in the HFD group
was increased (p< 0.01). Compared with HFD group, JFP-Ps
treatment increased the activities of SOD, GSH-Px and CAT,
and the activities of GSH-Px increased significantly (p < 0.01).
Moreover, JFP-Ps decreased the content of MDA significantly
(p < 0.01). The results indicated that JFP-Ps may alleviate
oxidative damage in the colon of obese rats and improve
integrity of the intestinal epithelium by enhancing the activities
of antioxidant enzymes in the colon.

Effects of JFP-Ps on
inflammation-related indicators in
colon

As shown in Table 3, the MPO activity in the HFD group
was significantly increased (p < 0.05), and the contents of pro-
inflammatory cytokines (TNF-α, IL-1β, and IL-6) increased, and
the content of anti-inflammatory cytokine (IL-10) decreased,
compared to that in the NC group. However, compared
with HFD group, the MPO activity in the JFP-Ps group
was significantly decreased (p < 0.01), the contents of pro-
inflammatory cytokines were decreased in a dose-dependent
manner, and the level of the anti-inflammatory cytokine was
increased. The results indicated that JFP-Ps may decrease the
inflammation in the colon of obese rats induced by high-fat diet.

Effects of JFP-Ps on glucose transport
in the small intestine

As shown in Figure 3, SGLT1 activity in the small intestine
of rats from the HFD group was decreased compared with the
NC group. The JFP-Ps intervention reduced SGLT1 activity in
HFD group. The results showed that JFP-Ps may inhibit glucose
transport in the small intestine by reducing SGLT1 activity in the
intestinal epithelium of obese rats.
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TABLE 2 Effect of JFP-Ps on antioxidant activities in the colon of obese rats.

Group SOD (U/mL) GSH-Px (nmol/mL) CAT (µ mol/mL) MDA (nmol/mL)

NC 39.64 ± 2.57 97.35 ± 3.91 117.16 ± 18.75 2.47 ± 0.17

HFD 22.72 ± 2.28 54.92 ± 2.38** 77.48 ± 2.72 3.85 ± 0.10**

Inulin 33.40 ± 1.59 109.12 ± 3.54## 104.28 ± 17.24 2.44 ± 0.14##

JFP-Ps-L 25.08 ± 9.18 96.73 ± 1.63## 98.42 ± 15.27 2.94 ± 0.45#

JFP-Ps-M 30.24 ± 8.80 108.34 ± 4.32## 113.46 ± 32.90 2.06 ± 0.18##

JFP-Ps-H 34.68 ± 3.05 105.87 ± 5.33## 115.53 ± 12.86 1.80 ± 0.06##

Data are presented as mean ± SEM (n = 6). **p < 0.01 compared to the NC group; #p < 0.05, ##p < 0.01 compared with the HFD group.

TABLE 3 Effect of JFP-Ps on inflammation-related factors in the colon of obese rats.

Group MPO (U/L) TNF-α (ng/L) IL-1β (ng/L) IL-6 (pg/mL) IL-10 (ng/L)

NC 50.74 ± 0.71 82.25 ± 6.29 5.55 ± 0.12 29.68 ± 0.70 6.70 ± 1.53

HFD 58.10 ± 3.44* 89.87 ± 12.44 6.30 ± 0.54 36.98 ± 5.73 4.21 ± 0.33

Inulin 47.71 ± 2.11# 81.89 ± 1.56 4.91 ± 0.30# 32.12 ± 2.75 6.34 ± 0.30

JFP-Ps-L 46.67 ± 2.61## 83.32 ± 8.35 5.67 ± 0.12 32.39 ± 5.24 5.67 ± 0.60

JFP-Ps-M 46.63 ± 2.68## 73.92 ± 4.03 5.59 ± 0.41 27.88 ± 2.90 5.79 ± 0.95

JFP-Ps-H 45.70 ± 1.32## 72.37 ± 0.95 5.24 ± 0.37 26.44 ± 1.85 5.86 ± 0.26

Data are presented as mean ± SEM (n = 6). *p < 0.05 compared to the NC group; #p < 0.05, ##p < 0.01 compared with the HFD group.

Effects of JFP-Ps on the expression of
gut barrier function-related genes in
small intestine

The levels of TNF-α and IL-6 mRNA expression were
significantly increased in the small intestine of the HFD
group, and the gene expression levels of GPR41 and GPR43
were slightly down-regulated (Figures 4A–D). Interestingly,
treatment with JFP-Ps decreased the expression of TNF-α and
IL-6, while increased the gene expression of GPR43 and GPR41

FIGURE 3

Effect of JFP-Ps on SGLT1 activity in small intestinal tissues. Data
are expressed as mean ± SEM (n = 6 for each group) and
analyzed using one-way ANOVA. No significant difference was
observed.

in a dose-dependent manner. These results showed that JFP-Ps
may inhibit inflammation and enhance immune function in the
small intestine of obese rats.

Effects of JFP-Ps on the protein
expression level of occludin in small
intestine

Western blot analysis showed that protein expression level
of occludin in the HFD group was significantly lower than
the NC group (p < 0.01) (Figures 4E,F). JFP-Ps significantly
increased the protein expression of occludin in a concentration-
dependent manner (p < 0.01). The result showed that JFP-Ps
may enhance mechanical barrier function in the small intestine.

Discussion

Intestine is the largest digestive and immune organ in
the body, provides a favorable and anaerobic environment
for microbial colonization and performs an important role
in nutrient absorption, detoxification and immune regulation
(2, 3). Intestinal dysfunction is closely associated with
obesity and other related metabolic diseases (19, 20). Natural
polysaccharides could prevent and treat intestinal diseases
caused by various factors via restoring intestinal barrier function
(21). The results of this study indicated that JFP-Ps possessed a
protective effect on the intestine via improving intestinal barrier
function and alleviating intestinal inflammation.
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FIGURE 4

Effect of JFP-Ps on the expression of inflammatory genes, free fatty acid receptor genes and tight junction protein in the small intestine of
obese rats. (A) TNF-α, (B) IL-6, (C) GPR43, (D) GPR41, (E) protein expression of occludin, (F) relative band intensities of occludin. Data are
expressed as mean ± SEM (n = 6 for each group) and analyzed using one-way ANOVA. *p < 0.05, **p < 0.01 compared to the NC group;
#p < 0.05, ##p < 0.01 compared with the HFD group.

The higher water content in the feces is accompanied by
an increase in the volume and looseness of the feces, which
facilitates the body’s bowel movements (22). A high water
content in feces also indicates a high moisture environment
in the intestine, which may help the exchange and transport
of substances and the intestinal mucus layer in dissolving

mucins, immune factors, electrolytes, etc., thus maintaining the
integrity of the intestinal mucosal layer and the balance of
osmotic pressure and protecting the intestinal barrier (23–25).
In addition, water in the intestinal lumen enters the enterocytes
in the villi by osmosis, causing the cells to swell and the
tissue to thicken, leading to spontaneous bending of adjacent
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FIGURE 5

The beneficial effects of JFP-Ps on intestinal barrier function in high fat diet-induced obese rats.

tissue, promoting the formation of crypt foci in the intestine,
and reducing the lumen volume (26). Do et al. (27) reported
that polysaccharide fraction from greens of Raphanus sativus
increased water content in the feces of obese mice induced
by high-fat diet. JFP-Ps increased the water-holding capacity
of feces and promoted the body’s bowel movements, implying
that the intake of JFP-Ps may contribute to the integrity of the
intestinal mucosal layer, formation of the crypt, and protection
of the intestinal barrier.

The pH value of the intestinal contents is an important
parameter in measuring intestinal health (28). An increased
intestinal pH value is associated with a decrease in the
abundance of probiotic bacteria (such as Lactobacillus
and Bifidobacterium) and an increase in the abundance
of pathogenic bacteria. Oligosaccharides were fermented
by intestinal microorganisms to produce SCFAs, lowering
intestinal pH value and promoting the growth of probiotic
bacteria (29). In the study, JFP-Ps was found to decrease
intestinal pH value, suggesting that JFP-Ps may be fermented
by intestinal microorganisms to produce SCFAs, creating an
acidic intestinal environment, inhibiting the growth of harmful
bacteria, promoting the growth of probiotic bacteria and the
balance of intestinal flora, thereby enhancing the biological
barrier function of the intestine in the obese rats. The results
were consistent with our previous study (16).

The colon acts as an important site for absorbing water and
salt from food residues and provides a habitat for intestinal
flora. Dietary fibers are fermented in the colon, and the timing
and effect of fermentation is influenced by the growth state

of the colon (30). The colon length may be shortened due
to intestinal diseases. However, the butyric acid produced by
intestinal probiotics (e.g., Lactobacillus, Bifidobacterium, etc.)
from the fermentation of dietary polysaccharides provides 60–
70% energy for the colon cells, promoting the regeneration
and growth of colon epithelial cells, which in turn increases
colon length (30, 31). Polysaccharide fraction from greens of
Raphanus sativus was reported to increase colon length and
restore intestinal barrier function in high-fat diet induced obese
mice (27). In the study, JFP-Ps increased colon length in a dose-
dependent manner, restored intestinal mucosal damage and
increased the thickness of the mucus layer in obese rats induced
by a high-fat diet, suggesting that JFP-Ps may enhance intestinal
barrier function and reduce the risk of intestinal diseases.

The antioxidant enzymes SOD, GSH-Px and CAT constitute
the body’s enzymatic antioxidant system, play an important
role in protecting the body from oxidative damage, and are
regarded as the first line of defense against oxidative damage
(32). MDA is a product of lipid peroxidation in tissues and
organs, and its level reflects the degree of tissue damage. A high-
fat diet causes oxidative damage in the body and promotes the
development of obesity. Wang et al. (7) reported that walnut
green husk polysaccharides could prevent colonic oxidative
stress and inflammation damage caused by high-fat diets. Our
previous study has found that JFP-Ps exhibited a strong free
radical scavenging activity (14). Consistent with these reports,
JFP-Ps increased the activities of SOD, GSH-Px and CAT and
decreased the content of MDA, suggesting that JFP-Ps may
maintain the integrity of intestinal epithelium by increasing
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the activities of antioxidant enzymes in the colon of obese rats
induced by a high-fat diet.

Weakening of the intestinal mucosal barrier allows a large
number of foreign antigens to enter the intestinal wall, inducing
an inflammatory response in the gut and accumulation of
inflammatory cells and inflammatory cytokines, and triggering
an immune response and damage (33). MPO is a hemoglobin
enriched in neutrophils, and MPO activity was used to reflect
neutrophil aggregation and tissue inflammation. TNF-α, IL-1β

and IL-6 are typical pro-inflammatory cytokines that promote
the inflammatory cascade; IL-10 is an anti-inflammatory
cytokine that inhibits the inflammatory response. Liu et al. (34)
reported that Rheum tanguticum polysaccharide significantly
reduced MPO activity in the colonic mucosa of rats with colitis.
A polysaccharide purified from Arctium lappa inhibited the
increase of pro-inflammatory factors in the colon of mice with
colitis (35). Angelica sinensis polysaccharide increased IL-10
level in the colon of rats with immune colonic injury (36).
Consistent with these reports, JFP-Ps decreased the contents
of TNF-α, IL-1β and IL-6, and increased the content of IL-10,
suggesting that JFP-Ps may alleviate colonic inflammation in
high-fat diet-induced obesity rats.

SGLT1 is a key transporter mainly expressed in small
intestinal tissues, which involved in glucose absorption in
the intestinal lumen, and closely associated with metabolic
diseases, such as obesity and diabetes (37). In obese patients
with type 2 diabetes, the overexpression of SGLT1 caused
an abnormal increase in blood glucose in the body (38).
Inhibition of SGLT1 expression can reduce glucose absorption
in small intestine, the escaped glucose transferred into the
large intestine and fermented to produce SCFAs, which
in turn reduces the occurrence of obesity and type 2
diabetes (37, 39). Consistent with the previous study, JFP-
Ps reduced SGLT1 activity in the intestinal epithelial cells
of obese rats, suggesting that JFP-Ps may alleviate the
development of obesity.

The expression levels of TNF-α and IL-6 in small
intestinal tissues may reflect the inflammatory status of
small intestinal tissues in obese rats. Han et al. (40)
found that polysaccharide from Gracilaria Lemaneiformise
reduced intestinal inflammation and prevented colitis in
mice by decreasing the levels of pro-inflammatory factors
in the mouse colon. GPR41 and GPR43 is a group of free
fatty acid receptors that are activated by SCFAs. Intestinal
microbes can ferment indigestible dietary fiber to produce
SCFAs, which in turn activate GPR41 and GPR43, and
mediate immune function in the small intestine (41–43).
Consistent with these reports, our results showed that
JFP-Ps down-regulated the expression of pro-inflammatory
genes (TNF-α, IL-6), up-regulated the expression of GPR41
and GPR43. These results suggested that JFP-Ps could
alleviate inflammation and enhance immune barrier function
of the small intestine in obese rats via inhibiting the

expression of pro-inflammatory genes and activating SCFA- and
GPR41/GPR43-related signaling pathways in the small intestine
of obesity rats.

Occludin is a tight junction protein and is believed to
be directly involved in the barrier and fence functions of
tight junctions (44). Occludin has been identified as an
important component of the intestinal mechanical barrier and
regulates macromolecule flux across the intestinal epithelial
tight junction barrier (45). Sang et al. (46) reported that
polysaccharide from sporoderm-broken spore of Ganoderma
lucidum up-regulated the expression of occludin protein in
the ileum of mice fed with high-fat diet. In line with this
report, JFP-Ps increased the protein expression of occludin
in a concentration-dependent manner, suggesting that JFP-
Ps may enhance mechanical barrier function in the small
intestine of obese rats.

Conclusion

In conclusion, JFP-Ps exhibited a protective effect on
intestinal function and was beneficial to intestinal health.
As shown in Figure 5, JFP-Ps promoted bowel movements
and modified intestinal physiochemical environment by
lowering fecal pH value and increasing fecal water content.
Meanwhile, JFP-Ps was found to increase the length of the
colon, alleviate oxidative damage of the colon, relieve intestinal
colonic inflammation, and inhibit glucose transport in the
small intestine. In addition, JFP-Ps repaired intestinal mucosal
damage, and increased the thickness of the mucus layer.
The potential mechanism of JFP-Ps improved intestinal
barrier functions involved in inhibiting the expression
of the inflammatory genes (TNF-α, IL-6), promoting the
expression of the tight junction protein (occludin), and
activating SCFA-GPR41/GPR43 related signaling pathways.
Our findings would provide theoretical support for the
development of JFP-Ps as a promising phytochemical to
improve human health.
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