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Introduction: Lead (Pb) has many applications in daily life, but in recent years,

various problems caused by lead exposure have aroused people’s concern.

Folic acid is widely found in fruits and has received more attention for its

antioxidant function. However, the role of folic acid in lead-induced kidney

injury in rats is unclear. This study was designed to investigate the effects of

folic acid on oxidative stress and endoplasmic reticulum stress in the kidney

of rats caused by lead exposure.

Methods: Forty specific pathogen-free male Rattus norvegicus rats were

randomly divided into control, lead, intervention, and folic acid groups. The

levels of SOD, GSH-Px, GSH, and MDA were measured by biochemical kits.

The protein levels of Nrf2, HO-1, CHOP, and GRP78 were measured by

immunofluorescence.

Results: This study showed that lead exposure increased the blood levels

of lead in mice. However, the intervention of folic acid decreased the levels

of lead, but the difference was not statistically significant. Lead exposure

causes oxidative stress by decreasing kidney SOD, GSH-Px, and GSH levels

and increasing MDA levels. However, folic acid alleviated the oxidative damage

caused by lead exposure by increasing the levels of GSH-Px and GSH and

decreasing the levels of MDA. Immunofluorescence results showed that

folic acid intervention downregulated the upregulation of kidney Nrf2, HO-1,

GRP78, and CHOP expression caused by lead exposure.

Discussion: Overall, folic acid alleviates kidney oxidative stress induced by lead

exposure by regulating Nrf2 and HO-1, while regulating CHOP and GRP78 to

mitigate apoptosis caused by excessive endoplasmic reticulum stress.
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GRAPHICAL ABSTRACT

It illustrates the mechanism of action of folic acid in alleviating oxidative stress and endoplasmic reticulum stress in the kidney caused
by lead exposure.

Introduction

Lead (Pb) is widely distributed in nature and used in
human life, but it is also a highly toxic pollutant (1).
Although people are aware of its hazards and have tried
to control the exposure levels of lead in the environment.
Nevertheless, lead is non-biodegradable and accumulates in
the body, which causes lead poisoning to remain one of the
world’s most common health problems (2–4). Lead can cause
various physiological, biochemical and behavioral disorders
in the central and peripheral nervous system, hematopoietic
system, cardiovascular system, kidney, liver and reproductive
system, and destroy the integrity of the biological mechanism
of oxidative stress (1, 5). As one of the main excretion
pathways of lead in organisms, the kidney is the target organ of
lead cytotoxicity.

Oxidative stress is a key factor in the mechanism of lead
actors (6, 7). Chronic lead exposure generates excess reactive
oxygen species (ROS) and different free radicals. These free

Abbreviations: Pb, lead; ROS, reactive oxygen species; GSH, glutathione;
MDA, malondialdehyde; Nrf2, nuclear factor erythroid 2-related factor
2; HO-1, heme oxygenase 1; ARE, anti-oxidative response element;
SOD, superoxide dismutase; ER, endoplasmic reticulum; UPR, unfolded
protein response; GRP78, glucose-regulated protein 78; PERK, protein
kinase RNA-like ER kinase; CHOP, C/EBP-homologous protein.

radicals promote the high production of reactive oxygen species
and then the production of malondialdehyde (MDA) (8). At the
same time, the body’s antioxidant systems are damaged, such as
superoxide dismutase (SOD), catalase (CAT), and glutathione
(GSH) redox systems (8). The nuclear factor erythroid 2-related
factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway is
thought to be a major defense mechanism for oxidative stress-
induced renal cytotoxicity (9, 10). Nrf2 is an oxidative stress-
related transcription factor that can exert antioxidant effects by
entering the nucleus to activate HO-1 (11, 12).

The endoplasmic reticulum (ER) is one of the important
subcellular organelles in cells. Its function mainly enables the
protein to be correctly folded, assembled, and transported after
being synthesized, modified, and processed (13). Several factors
can lead to dysregulation of the ER microenvironment, such
as hypoxia, nutrient imbalance, reactive oxygen species, and
low PH. All these factors can lead to protein misfolding and
accumulation of unfolded proteins, thus causing ER stress (13).
When cells are subjected to ER stress, a protective response is
initiated accordingly. The unfolded protein response (UPR) is a
stress-protective response. It can reduce and alleviate the burden
and damage of the ER to some extent, restore the proteostasis
of ER and re-establish ER homeostasis (14–16). However, if
the UPR is insufficient to restore and maintain ER homeostasis
when subjected to more intense and prolonged stress, it can
lead to apoptosis (17). C/EBP-homologous protein (CHOP) and
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glucose-regulated protein 78 (GPR78) are key markers of ER
stress, and their upregulation indicates that cells suffer from
different levels of ER stress (18). It has been shown that lung
cancer cell death is caused by ER stress, which may be due
to ER stress-mediated apoptosis (19). In addition, it has also
been found that lead-induced nephrotoxicity is mainly due to
apoptosis, which is closely associated with ER stress (20).

Oxidative stress and ER stress are interactive (21). When
cells undergo oxidative stress, the redox homeostasis of the
ER is disrupted, which disturbs the function of the ER and
finally leads to ER stress. However, ER stress also generates a
large number of reactive oxygen species, further aggravating
oxidative stress. The downstream signaling pathways of ER
stress and oxidative stress overlap. ER stress can activate the
Nrf2 signaling pathway through protein kinase RNA-like ER
kinase (PERK) (22, 23). It has been shown that curcumin can
effectively upregulate the level of reactive oxygen species in
lung cancer cells, which in turn activates ER stress, leading to
apoptosis and cell scorching (19).

Folic acid is a water-soluble B-type vitamin, which plays a
key biological role in many physiological processes, especially
in single carbon transfer reactions, nucleic acid synthesis, and
methionine regeneration (24, 25). There is evidence that folic
acid regulates lipid metabolism and oxidative stress, scavenges
ROS, inhibits the activity of ROS-producing enzymes, and
restores the activity of antioxidant enzymes. It is an effective
free radical scavenger (26). In addition, by its antioxidant action,
folic acid can inhibit the activation of the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κ B) (27).

Currently, there is less report on the repairing effect of
folic acid on oxidative damage of rat kidneys caused by lead
exposure. Therefore, we designed a lead-exposed rat model to
study the effects of folic acid on the antioxidant indexes and the
expression of Nrf2, HO-1, GRP78, and CHOP in the kidneys of
lead-exposed rats and to explore the repair effect of folic acid on
lead-induced oxidative damage in the kidneys of rats.

Materials and methods

Animals and treatments

Two months old SPF grade SD male rats were acquired
from Henan Laboratory Animal Center (SYXK 2018-0005).
The rats were housed in a clean and sterile environment with
a temperature of 18–22◦C, 12/12 light/dark, and humidity
of 50–60%. After a week of adaptive feeding, start the
experiment (Irradiation experimental pellet feed provided by the
Experimental Animal Center of Henan Province).

The doses of lead and folic acid used in this study were
the same as those previously reported (28, 29). Forty rats were
randomly divided into four groups: Control group (n = 10),
free drinking water, and 1 mL deionized water was intragastrical

administered. Lead group (n = 10), free drink 0.2% lead
acetate solution and 1 mL deionized water were intragastrical
administered. Intervention group (n = 10), free drink 0.2%
lead acetate solution, and 1 mL folic acid (Sigma-Aldrich)
suspension was intragastrical administered (prepared according
to the dose of 0.4 mg/kg BW folic acid). Folic acid group
(n = 10), free drinking water and 1 mL folic acid suspension were
intragastrical administered (prepared according to the dose of
0.4 mg/kg BW folic acid).

Two weeks later, the rats were anesthetized with 10% chloral
hydrate. After fixation, kidney tissues were dissected, and the
indexes were determined. The Scientific Ethics Committee
approved the experiment, and the experimental process was
carried out according to the operating rules of animal
experiments. The scientific Ethics Committee approved the
experimental animal protocol of Henan Agricultural University
(Zhengzhou, China) (Ethical protocol code: 4101055342743).

Determination of blood lead content

The determination of lead concentration in blood was
consistent with previous studies (30). Briefly, 100 µl of blood
sample was mixed with 3,900 µl of ultrapure nitric acid and
centrifuged for 10 min, and the supernatant was analyzed for
lead concentration. The blood lead content was determined
by Z-5000 graphite furnace atomic absorption spectrometer
(Hitachi, Ltd., Japan). Parameters: wavelength 283.3 nm,
passband 0.5 nm, lamp current 9 mA, 95◦C 15 s, 105◦C 15 s,
800◦C 15 s, 2500◦C 3 s.

Determination of kidney oxidative
stress indicators

The measurement of oxidative stress indicators was
consistent with previous studies (31). In brief, 10% tissue
homogenate was prepared according to rat tissue weight (g):
0.86% physiological saline volume (mL) = 1:9. The prepared
10% tissue homogenate was centrifuged at 4,000 rpm for 10 min
at 4◦C and the centrifuged tissue homogenate was discarded.
According to the experiment, an appropriate amount of the
supernatant is diluted with physiological saline to a suitable
concentration for measurement. The activity of SOD, GSH-
Px, and the content of GSH and MDA in the kidney were
determined by the kit produced by Nanjing Jiancheng Institute
of Bioengineering.

Immunofluorescence

The measurement of immunofluorescence was consistent
with previous studies (32). In brief, the kidney tissue fixed
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with 4% paraformaldehyde solution was embedded in the slice
and then dewaxed to water. The sections were microwaved
in citrate buffer (PH = 6) for 10 min, and 3% H2O2

blocked the endogenous peroxidase at room temperature for
20 min. 3% of goat serum was added dropwise to block
endogenous biotin at room temperature for 20 min and
then incubated with primary antibody at 4◦C overnight. The
primary antibodies were rabbit polyclonal antibody-Nrf2 (1:200;
Proteintech, China), rabbit polyclonal antibody-HO-1 (1:100;
Proteintech, China), rabbit polyclonal antibody-CHOP (1:200;
Proteintech, China), rabbit polyclonal antibody-GRP78 (1:200;
Proteintech, China). The second antibody was added and
incubated at 37◦C for 2 h. DAPI stained the nucleus for
1 min and sealed the tablet with anti-fluorescence quenching.
The images were collected under the fluorescence microscope.
Before each step, soak in PBS solution for 5 min and
clean three times.

Statistical analysis

All experimental data were expressed as mean ± SD, and
One-way ANOVA analyzed data by Duncan’s test for multiple
comparisons using SPSS 23.0 software (IBM Corporation,
Armonk, NY, United States). P < 0.05 was considered a
significant difference.

Results

Effect of folic acid on serum lead
content of lead-exposed rats

Figure 1 shows the blood lead content of each group of
rats. It was evident that compared with the control group,
the blood lead content in the lead group and the intervention
group was significantly increased (P < 0.05), and the blood lead
content in the folic acid group was decreased, but the difference
was not statistically significant (P > 0.05). Compared with the
lead group, the blood lead content of the intervention group
decreased, but the difference was not statistically significant
(P > 0.05), and the blood lead content of the folic acid group
was significantly decreased (P < 0.05).

Effects of folic acid on superoxide
dismutase, GSH-Px activity and
glutathione, malondialdehyde content
in kidneys of lead-exposed rats

Figure 2 shows the changes of SOD, GSH-Px activity
and GSH, MDA contents in kidney tissues of rats in

FIGURE 1

Effect of folic acid on serum lead content of lead-exposed rats
(n = 10). Data were presented as mean ± SD. Different
superscript letters indicate differences (P < 0.05).

each group. In the lead group, SOD, GSH-Px activity and
GSH content in the kidney decreased significantly compared
with the control, but MDA content increased significantly
(P < 0.05). However, compared to the lead group, the
intervention group elevated the activity of GSH-Px and GSH
levels and decreased the level of MDA, with statistically
significant differences (P < 0.05). Although the activity of
SOD was also elevated, there was no statistical difference
(P > 0.05). Compared with the control group, the folic
acid group increased the activity of SOD and GSH-Px and
the level of GSH, but the difference was not statistically
significant (P > 0.05). At the same time, the levels of MDA
were reduced, and the difference was statistically significant
(P < 0.05).

Effect of folic acid on the expression of
nuclear factor erythroid 2-related
factor 2 protein in the kidney of lead
exposed rats

Expression of Nrf2 protein in the kidney was detected
by immunofluorescence. The results of immunofluorescence
are shown in Figure 3A. As can be seen by Figure 3B,
the expression of NRF2 was up-regulated in the lead group
compared with the control group, and the difference was
statistically significant (P < 0.05). The expression of NRF2
was down-regulated in the intervention group compared with
the lead group, and the difference was statistically significant
(P < 0.05).
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FIGURE 2

Effects of folic acid on superoxide dismutase (SOD) (A), GSH-Px (B) activities and glutathione (GSH) (C), malondialdehyde (MDA), (D) contents in
kidney of lead-exposed rats (n = 10). Data were presented as mean ± SD. Different superscript letters indicate differences (P < 0.05).

FIGURE 3

Effect of folic acid on the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) protein in the kidney of lead exposed rats.
(A) Immunofluorescence results of Nrf2 protein expression (200×). (B) The expression level of Nrf2 protein is represented by the average
integrated optical density value (n = 6). C: control group; L: lead-exposed group; T: intervention group; E: folic acid group. Data were presented
as mean ± SD. Different superscript letters indicate differences (P < 0.05).
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Effect of folic acid on the expression of
heme oxygenase 1 protein in the
kidney of lead exposed rats

The expression of HO-1 protein in the kidney was detected
by immunofluorescence. The results of immunofluorescence are
shown in Figure 4A. As can be seen by Figure 4B, the expression
of HO-1 was up-regulated in the lead group compared with
the control group, and the difference was statistically significant
(P < 0.05). The expression of HO-1 was down-regulated in
the intervention group compared with the lead group and
returned to the level of the control group, and the difference was
statistically significant (P < 0.05).

Effect of folic acid on the expression of
C/EBP-homologous protein in the
kidney of lead exposed rats

The expression of CHOP protein in the kidney was detected
by immunofluorescence. The results of immunofluorescence are
shown in Figure 5A. As shown in Figure 5B, the expression
of CHOP was upregulated in the lead group compared with
the control group, and the difference was statistically significant
(P < 0.05). Compared with the lead group, the expression
of CHOP in the intervention group was down-regulated and
returned to the level of the control group, and the difference was
statistically significant (P < 0.05).

Effect of folic acid on the expression of
glucose-regulated protein 78 in the
kidney of lead exposed rats

The expression of GRP78 protein in the kidney was detected
by immunofluorescence. The results of immunofluorescence are
shown in Figure 6A. As shown in Figure 6B, the expression
of GRP78 was upregulated in the lead group compared to the
control group, and the difference was statistically significant
(P < 0.05). Compared with the lead group, the expression
of CHOP in the intervention group was down-regulated and
returned to the level of the control group, and the difference was
statistically significant (P < 0.05).

Discussion

Lead enters the blood and quickly accumulates in soft tissues
such as the brain, liver, and kidneys and is most common in
the kidneys (7, 33). Lead-induced toxicity is mainly manifested
in the production of reactive oxygen species, inhibition of
SOD, GSH-Px, and other antioxidant enzymes, disruption

of the oxidation/antioxidant balance in vivo, ER stress, and
mitochondrial damage (3, 34). Folic acid, as a vitamin, can
participate in DNA synthesis as a methyl donor and plays
a key role in preventing single- and double-stranded DNA
breaks. In recent years, folic acid has been confirmed to enhance
neuroplasticity and antioxidant function (35). Some studies have
shown that folic acid can alleviate lipid disorders in rats fed with
a high-fat diet, enhance the ability of antioxidant defense and
enhance the activity of antioxidant enzymes (36). Therefore, this
study hypothesized that folic acid treatment could alleviate the
oxidative stress caused by lead exposure.

In this study, the extent of lead exposure was determined
by measuring lead concentrations in the blood of mice. The
antioxidant capacity of folic acid was verified by measuring
SOD, GSH-Px, GSH, and MDA in the kidney tissues of
mice. Finally, the effect of folic acid on the expression of
antioxidant-related proteins Nrf2, HO-1, and ER stress-related
proteins CHOP and GRP78 in mouse kidneys was examined by
immunofluorescence.

Previous studies have shown that lead treatment increases
lead levels in the blood of mice (30). By measuring lead
concentrations in the blood of mice, this study found a 10-
fold increase in blood lead levels in mice in the lead-exposed
group compared to the control group, which is consistent with
previous findings. Through further experiments, it was found
that the lead levels in the blood of mice in the intervention group
were reduced, but the difference was not statistically significant,
this may be because lead has a very stable structure and is not
easily degraded (37). There was no difference between the blood
levels of lead in the mice treated with folic acid alone and the
control group, demonstrating that folic acid treatment alone
does not increase the levels of lead in the blood of mice.

The kidney is the body’s main organ for accumulation and
excretion and is also a target organ for lead exposure (38). Many
studies have shown that lead exposure causes cell oxidative
stress (39–41). When cells are subjected to oxidative stress,
large amounts of ROS and lipid peroxides are produced, and
the antioxidant system is damaged. It has been reported that
hydrogen peroxide-induced oxidative stress in cells causes an
increase in the levels of ROS and MDA and a decrease in
SOD and GSH (42). Vitamin C in combination with vitamin
E has been reported to alleviate oxidative stress caused by lead
exposure by increasing the levels of SOD, CAT, and GSH-Px (43,
44). The present study found that lead exposure significantly
increased MDA levels and significantly decreased SOD, GSH,
and GSH-Px simultaneously. Therefore, this suggests that
lead exposure induced oxidative stress in the kidney. The
folic acid intervention of significantly increased the levels of
GSH and GSH-Px and significantly decreased the levels of
MDA. The levels of SOD also increased, but there was no
statistical difference; this may be because folic acid regulates the
antioxidant system by upregulating GSH and GSH-Px, causing
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FIGURE 4

Effect of folic acid on the expression of heme oxygenase 1 (HO-1) protein in the kidney of lead exposed rats. (A) Immunofluorescence results of
HO-1 protein expression (200×). (B) The expression level of HO-1 protein is represented by the average integrated optical density value (n = 6).
C: control group; L: lead-exposed group; T: intervention group; E: folic acid group. Data were presented as mean ± SD. Different superscript
letters indicate differences (P < 0.05).

FIGURE 5

Effect of folic acid on the expression of C/EBP-homologous protein (CHOP) protein in the kidney of lead exposed rats. (A) Immunofluorescence
results of CHOP protein expression (200×). (B) The expression level of CHOP protein is represented by the average integrated optical density
value (n = 6). C: control group; L: lead-exposed group; T: intervention group; E: folic acid group. Data were presented as mean ± SD. Different
superscript letters indicate differences (P < 0.05).

a decrease in MDA levels. However, SOD may not be involved
in this process.

It is well known that Nrf2 is a key factor in the
endogenous antioxidant system and plays an important role
in cell antioxidants and against exogenous damage (39). After
being transferred to the nucleus, Nrf2 binds to antioxidant
response elements (ARE), regulates the expression of HO-
1, SOD, and other enzymes, and enhances the antioxidant

defense ability (45). HO-1 is one of the important antioxidant
enzymes regulated by Nrf2. It is an important part of the
antioxidant system in the body and plays a vital role in
the oxidative stress damage of cells (46). There is evidence
that the Nrf2/HO-1 signaling pathway protects nerves in
a rat model of Parkinson’s disease induced by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) and also improves
lipopolysaccharide Induced acute lung injury (47). In recent
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FIGURE 6

Effect of folic acid on the expression of glucose-regulated protein 78 (GRP78) protein in the kidney of lead exposed rats.
(A) Immunofluorescence results of GRP78 protein expression (200×). (B) The expression level of GRP78 protein is represented by the average
integrated optical density value (n = 6). C: control group; L: lead-exposed group; T: intervention group; E: folic acid group. Data were presented
as mean ± SD. Different superscript letters indicate differences (P < 0.05).

years, the role of Nrf2/HO-1 in kidney oxidative stress injury
has received increasing attention. Studies have shown that
the formation of kidney stones can be suppressed through
the Nrf2/HO-1 signaling pathway (48). In this study, the
expression of Nrf2 was highest in the lead exposure group,
approximately one-fold compared with the control group.
The expression of HO-1 was also the highest in the lead
exposure group. This indicated that the Nrf2/HO-1 signaling
pathway was activated under the lead exposure condition.
After the folic acid intervention, the expression of Nrf2 and
HO-1 decreased, indicating that folic acid can repair the
oxidative damage caused by lead exposure to the kidneys.
However, the mechanism of folic acid in alleviating oxidative
damage caused by lead exposure is still unclear, and further
research is needed.

As previously reported, apoptosis is involved in lead-
induced nephrotoxicity, which is closely related to ER stress
(2). Furthermore, it is noteworthy that ER stress may damage
cells by activating apoptosis, which may result from excessive
ER stress (49). Related studies have shown that ER stress is
involved in the development of renal fibrosis and contributes
to the development of chronic kidney disease by promoting
apoptosis in renal tubular cells (20). GRP78 and CHOP are
considered to be markers of ER stress (50). Excessive ER
stress causes apoptosis by activating CHOP. ROS-mediated
ER stress has been reported to be attenuated by inhibition of
CHOP protein (51). In addition, it was also illustrated that LBP
could protect HaCat cells from PM2.5-induced apoptosis and
toxicity by decreasing the expression of CHOP and GRP78 (52).
The results of the present study showed that the expression

of GRP78 and CHOP proteins was significantly increased
in the lead-exposed group compared to the control group,
indicating that lead induces ER stress, which is consistent
with previous studies. Meanwhile, the present study showed
that the expression of GRP78 and CHOP decreased after folic
acid intervention compared with the lead group, suggesting
that folic acid could mitigate the damage caused by lead
exposure by inhibiting ER stress and could be restored
to normal levels.

Conclusion

In the present study, folic acid reduced the blood lead levels
in lead-exposed mice, but there was no statistical difference.
Also, folic acid alleviated oxidative stress caused by lead
exposure by increasing kidney GSH and GSH-Px levels, thereby
reducing MDA production. Lead exposure upregulated kidney
Nrf2, HO-1, CHOP, and GRP78 expression. However, folic
acid intervention reversed this regulation. The results of this
study suggest that folic acid alleviates oxidative stress and ER
stress caused by lead exposure in the kidney by regulating the
expression of Nrf2, HO-1, CHOP, and GRP78.
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