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Artificial induction of polyploidy is an efficient technique for improving

biological properties and developing new varieties of many plants. In

this study, we analyzed and compared differences in characteristics

(morphological and biological) of diploid and tetraploid Anoectochilus

roxburghii plants. We found significant differences between tetraploid plants

and their diploid counterparts. The tetraploid plants exhibited dwarfing and

stockiness. They were also bigger and had more voluminous roots and

larger stomata than the diploid plants. Moreover, the biochemical analyses

showed that the contents of some amino acids and minerals elements

were significantly higher in tetraploid plants. The chlorophyll content of the

leaves exhibited no definitive changes, but the photosynthetic performance

was higher in the tetraploid plants. In addition, contents of major bioactive

compounds, such as kinsenoside and some flavonoids, were enhanced in

tetraploids. This is the first detailed analysis of characteristics in diploid and

tetraploid A. roxburghii plants. The results may facilitate breeding programs

with the species.
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Introduction

Anoectochilus roxburghii (Wall.) Lindl, commonly known as Jinxianlian, belongs to
the Orchidaceae family and is naturally distributed in many parts of a broad zone of the
tropics, encompassing India, the Himalayas, southern China, large tracts of Southeast
Asia and Hawaii (1). As a valuable element of Chinese herbal medicine, this species is
frequently used in medical and health products in China and Asian countries (2–4).
It is also often used as an indoor plant as it is highly ornamental (5). In recent years
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industrial-scale use of A. roxburghii has grown as a result of its
wide application in many fields, such as medicine, healthcare
and so on (6). Most raw material of the plant for industrial
processing is obtained by artificial cultivation, as wild resources
cannot meet the market demand (7–9).

Polyploid plants, either naturally occurring or generated
with chromosome doubling techniques, are used in many
breeding programs for medicinal plants to increase biomass
and enhance desirable traits (10–12). Chromosome doubling is
often accompanied by substantial changes in morphology and
metabolic profiles (13, 14). It also has generally positive effects
on stress resistance (15). Thus, polyploidy induction can be used
to develop superior varieties. In this study, the morphology and
biochemical characteristics of diploid and induced tetraploid
A. roxburghii were compared. The ploidy level effects on the
plant’s ability to resist high temperature stress were also assessed.

Results

Detection of ploidy level and
morphological traits of diploid and
tetraploid plants

Flow cytometric peaks of the diploid mother and tetraploid
offspring plants (at channels 13,000 and 6,500, respectively)
confirmed their ploidy levels (Figure 1). We assessed various
morphological characteristics of the diploid and tetraploid
plants when they were 1 year old, and observed significant
differences in some of them (Figure 2). Tetraploid plants had
higher biomass (both fresh and dry weight), although the
diploids were significantly taller, due to longer internodes. The
tetraploid plants had thicker stems than the diploids, and shorter
but broader and hypertrophic leaves. The tetraploid plants also
produced more roots and had significantly higher total root
length, root surface area, and root volume (Table 1).

Comparison of free amino acid and
mineral element contents of diploid
and tetraploid plants

Anoectochilus roxburghii has traditionally been considered
to be one of the most valuable medicinal plants because it
is rich in amino acids, minerals and so on (8). The amino
acids are necessary for metabolic processes, the transport and
storage of all nutrients (16). Minerals play important roles in
human health, not only affecting the enzyme activities, but also
influencing the accumulation of metabolites (17). The types of
free amino acids identified in diploids and tetraploids plants
were identical, but the detected amounts differed (Table 2).
Two of the most abundant amino acids in A. roxburghii were

aspartate (Asp) and glutamate (Glu) and the average content
was 2,254 µg/g and 1,067 µg/g in diploids plants, respectively.
Contents of these two amino acids were greater in tetraploid
than diploid plants. In addition to these two amino acids,
there were some other amino acids that were more abundant
in tetraploids plants, such as serine (Ser) and glycine (Gly).
While there were some amino acids were more abundant
in diploids, such as phenylalanine (Phe) and histidine (His).
Tetraploid plants had higher concentrations of Ca, Mg, and Zn
than diploids. The largest difference in concentration recorded
between the plants was for Ca, which was about twice as high
in tetraploids than diploids. Concentrations of Mn and Cr
were lower in tetraploid plants (Table 3), but no significant
differences in contents of the other measured elements were
detected.

Determination of main bioactive
secondary metabolite production

Kinsenoside and flavonoids, the main bioactive compounds
in A. roxburghii, are often used as quality control markers
(8). Narcissin, isorhamnetin, rutin, and quercetin are the
characteristic flavonoids (8, 18). Thus, we examined contents
of these five compounds in leaves, stems and roots of diploid
and tetraploid plants (Table 4). They were mainly found in
leaves. The kinsenoside concentration was non-significantly
higher in tetraploid than diploid leaves, and the rutin level was
slightly higher in tetraploid plants. Contents of the other three
flavonoids were slightly higher in diploid plants. The results
suggest that chromosome doubling had little impact on the main
bioactive secondary metabolites.

Comparison of chlorophyll contents,
stomatal characteristics, and
chlorophyll fluorescence

Chlorophyll (Chl) is the most important pigment for
capturing the light required for photosynthesis in higher plants
and thus plays a key role in the conversion of light energy
into chemical energy needed for plant growth. Chl content was
not much affected by polyploidization. Chl a and Chl b levels
were higher in diploid A. roxburghii plants than in tetraploids,
but the differences were not significant (Table 5). However,
tetraploids had significantly longer and wider stomata than
diploids (Table 6).

Variations in structural and physiological elements may
influence plants’ photosynthetic performance and we found
significant differences in chl fluorescence traits between diploid
and tetraploid plants (Table 7). The maximum photochemical
efficiency of PSII photochemistry (Fv/Fm) was significantly
higher in tetraploid plants. However, Y (I) and ETR (I) were

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.1034751
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1034751 November 1, 2022 Time: 15:8 # 3

Huang et al. 10.3389/fnut.2022.1034751

FIGURE 1

Histograms showing the results of flow cytometric analysis of diploid (A) and tetraploid (B) A. roxburghii plants.

FIGURE 2

Morphological characteristics of diploid and tetraploid A. roxburghii: whole plants (A–C), leaves (D) and stems (E). Diploids on the left and
tetraploids on the right in each picture.

higher in tetraploid than diploid plants and stronger than Y
(II) and ETR (II). We also found that polyploidy resulted in a
significant reduction in NPQ.

Discussion

Multiple studies have shown that polyploid plants may differ
morphologically, ecologically, physiologically, and cytologically
from parental lines (10, 12–14). The variations have also

been exploited in the development of superior varieties in
breeding programs. Our results are consistent with findings that
polyploidy is often associated with agronomic improvements,
such as higher biomass, leaf thickness, stem diameter, and root
development (12, 19). The mechanisms by which chromosome
doubling produces superior traits in induced polyploid plants
are not known. The increases in stem and leaf thickness may
be due to increases in cell size, while genetic changes in the
cells may enhance activities of key genes (19). It has also been
suggested that changes in polyploid plants’ morphology may
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TABLE 1 Morphological characteristics of diploid and tetraploid
A. roxburghii.

Characters Diploid Tetraploid

Fresh weight (g) 13.0 ± 2.63a* 16.31 ± 2.99a

Dry weight (g) 1.20 ± 0.31a 1.32 ± 0.20a

Plant height (cm) 12.71 ± 3.05a 7.33 ± 1.22b

Stem diameter (mm) 4.80 ± 0.49a 5.24 ± 0.30a

Internode length (cm) 1.12 ± 0.22a 0.68 ± 0.17b

Leaf length (cm) 7.17 ± 0.75a 5.83 ± 0.28b

Leaf width (cm) 4.98 ± 0.46a 5.38 ± 0.36a

Leaf area (cm2) 26.35 ± 4.14a 22.57 ± 1.65a

Leaf index (length/width) 1.44 ± 0.05a 1.09 ± 0.12b

Leaf thickness (mm) 0.62 ± 0.02b 1.10 ± 0.12a

Root length (cm) 37.38 ± 14.35b 78.12 ± 10.02a

Root diameter (mm) 1.50 ± 0.20a 1.93 ± 0.25a

Root surface area (cm2) 20.23 ± 9.96b 56.24 ± 8.14a

Root volume (cm3) 0.78 ± 0.44b 2.76 ± 0.71a

*Means followed by the same letter in the same row are not significantly different
from each other.

be associated with improvements in abiotic tolerance, genetic
adaptability and tolerance of environmental stresses (20).

Although effects of polyploidy are not generally predictable
and may be taxon-specific, doubling the chromosome number
of plant species may enhance their overall nutrient contents
and secondary metabolism (21, 22, 12). Accordingly, we found
that concentrations of Asp (six times) and γ-ABA (more
than twice) were higher in tetraploid A. roxburghii plants
than in the diploids. Similar increases have been reported in
artificial tetraploid rice (23). We also found much higher Ca
contents, which may result in increased cell volumes (13), in
tetraploid plants. The higher Ca levels in tetraploids may also
be related to stress adaptation (24). The tetraploid leaves had
significantly higher kinsenoside and rutin levels than diploid
leaves, indicating that these phytochemical characteristics are
strongly influenced by the plant ploidy level. Similar increases
have been described in other artificial tetraploid plants, such as
a higher yield of cichoric acid in tetraploid Echinacea purpurea
(12) and a 47.7% increase in rubber concentration in tetraploid
Taraxacum kok-saghyz (25) tetraploids.

Stomatal lengths and widths have often been used as
morphological markers for identifying putative polyploid
plants (26). We found that tetraploid A. roxburghii plants had
significantly longer and wider stomata than the diploids, in
accordance with previous findings that diploids Taraxacum
kok-saghyz plants have lower stomatal length and width than
counterparts with higher ploidy levels (25). Larger leaves and
greater numbers of stomata may enhance photosynthesis,
thereby indirectly increasing the plants’ environmental
adaptability and improving their abiotic tolerance (13).

TABLE 2 Free amino acid content of diploid and tetraploid
Anoectochilus roxburghii.

Amino acid (µg/g) Diploid Tetraploid

P-Ser 195.92 ± 27.81a* 197.88 ± 6.86a

PEA 13.08 ± 2.82b 42.17 ± 6.49a

Asp 2254.47 ± 48.82b 13562.55 ± 359.80a

Thr 38.13 ± 9.45a 38.51 ± 5.10a

Ser 110.71 ± 11.68b 150.82 ± 15.97a

AspNH2 12.07 ± 1.44b 684.07 ± 27.13a

Glu 1066.92 ± 26.94a 1474.79 ± 68.53b

GluNH2 245.94 ± 15.44b 401.01 ± 17.94a

Gly 4.38 ± 1.59b 27.0 ± 5.51a

Ala 260.24 ± 9.94a 285.58 ± 19.96a

Val 31.96 ± 6.93a 28.03 ± 3.41a

Met 3.26 ± 0.81a 1.52 ± 0.27b

Ile 19.73 ± 3.68a 16.97 ± 3.44a

Leu 9.84 ± 1.09a 11.37 ± 0.35a

Tyr 11.52 ± 1.67a 9.97 ± 1.44a

Phe 35.59 ± 2.13a 24.05 ± 4.59b

b-Ala 5.05 ± 0.44b 21.51 ± 5.02a

g-ABA 32.29 ± 3.04b 89.33 ± 2.39a

Hylys 2.98 ± 0.84a 1.32 ± 0.53b

Orn 3.11 ± 0.44b 16.97 ± 3.08a

Lys 31.88 ± 5.57a 31.40 ± 5.11a

His 67.46 ± 8.07a 37.32 ± 5.79b

Arg 16.32 ± 2.59b 78.69 ± 7.33a

*Means followed by the same letter in the same row are not significantly different
from each other. P-Ser, PhosphoSerine; PEA, Phenylethylamine; Asp, Aspartate; Thr,
Threonine; Ser, Serine; AspNH2, Isoasparagine; Glu, Glutamate; GluNH2, Isoglutamine;
Gly, Glycine; Ala, Alanine; Val, Valine; Met, Methionine; Ile, Isoleucine; Leu, Leucine;
Tyr, Tyrosine; Phe, Phenylalanine; β-Ala, β-Alanine; γ-ABA, γ-Aminobutyric Acid;
Hylys, 5-Hydroxylysine; Orn, Ornithine; Lys, Lysine; His, Histidine; Arg, Arginine.

TABLE 3 Mineral elements detected in diploid and tetraploid
Anoectochilus roxburghii.

Mineral elements Diploid Tetraploid

K (mg/Kg) 30140.32 ± 1037.19a* 25911.55 ± 3955.27a

Ca (mg/Kg) 250.33 ± 28.16b 578.65 ± 14.94a

Mg (mg/Kg) 140.10 ± 0.90b 167.93 ± 4.08a

Fe (mg/Kg) 230.51 ± 94.83a 233.45 ± 53.35a

Zn (mg/Kg) 4.78 ± 0.12b 6.67 ± 0.15a

Mn (mg/Kg) 7.70 ± 0.09a 6.0 ± 0.13b

Cu (mg/Kg) 3.21 ± 0.24a 3.39 ± 0.98a

Co (µg/Kg) 149.34 ± 44.31a 142.75 ± 19.25a

Cr (µg/Kg) 4052.50 ± 58.60a 3491.10 ± 53.53b

Ni (µg/Kg) 1256.6221 ± 566.88a 866.06 ± 124.10a

*Means followed by the same letter in the same row are not significantly different
from each other.

Chl is a key player in interactions with light during the
entire life cycle of plants. We detected no clear ploidy level-
associated variation in A. roxburghii leaves. No such variation
had been detected in Urgenia indica either (27). However,
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TABLE 5 Content of photosynthetic pigments in diploid and
tetraploid Anoectochilus roxburghii.

Characters Diploid Tetraploid

Chlorophyll a (mg/g) 0.39 ± 0.10a* 0.31 ± 0.04a

Chlorophyll b (mg/g) 0.24 ± 0.04a 0.19 ± 0.02a

Chlorophyll a + b (mg/g) 0.63 ± 0.15a 0.50 ± 0.05a

*Means followed by the same letter in the same row are not significantly different
from each other.

TABLE 6 Stomatal characteristics of diploid and tetraploid
Anoectochilus roxburghii.

Characters Diploid Tetraploid

Length (µm) 49.60 ± 1.41b* 82.0 ± 3.55a

Width (µm) 11.48 ± 0.97b 21.67 ± 1.91a

*Means followed by the same letter in the same row are not significantly different
from each other.

TABLE 7 Chlorophyll fluorescence of diploid and tetraploid
Anoectochilus roxburghii.

Chlorophyll fluorescence Diploid Tetraploid

Fv/Fm 0.77 ± 0.02b* 0.79 ± 0.01a

Y (I) 0.60 ± 0.05b 0.68 ± 0.04a

ETR (I) 23.76 ± 1.99b 26.75 ± 1.39a

Y (ND) 0.30 ± 0.06a 0.20 ± 0.04b

Y (NA) 0.10 ± 0.02a 0.13 ± 0.04a

Y (II) 0.26 ± 0.03b 0.34 ± 0.03a

ETR (II) 10.49 ± 1.08b 13.48 ± 1.34a

NPQ 2.53 ± 0.46a 1.56 ± 0.17b

*Means followed by the same letter in the same row are not significantly different
from each other. Fv/Fm, maximum efficiency of PSII photochemistry; Y(I), quantum
yield of PSI; ETR(I), electron transport rates of PSI; Y (ND), non-photochemical
quantum yields of PSI due to donor-side limitation; Y (NA), non-photochemical
quantum yields of PSI due to acceptor-side limitation; Y (II), effective photochemical
quantum yield of PSII; ETR (II), electron transport rates of PSII; NPQ, non-
photochemical quenching.

chromosome doubling has reportedly increased chl contents of
some species, e.g., Miscanthus× giganteus (13), and decreased
those of Juncus effusus (28). Chl fluorescence measurements
are mainstays of studies of photosynthetic regulation and
plants’ environmental responses because of their sensitivity,
convenience, and non-intrusive nature (29). Fv/Fm, indicating
the amount of absorbed energy trapped in PSII reaction centers,
is an excellent parameter for monitoring temperature stress
(30). We found that tetraploid A. roxburghii plants had higher
Fv/Fm values than diploids, indicating that tetraploid plants
were more resistant to heat. NPQ reflects the amount of energy
from photosynthetic electron transport that is not used but
dissipated harmlessly as heat from PSII antennae, which is a
key damage-avoidance mechanism in plants (29). We found
that tetraploids had lower NPQ values than diploids, indicating
higher ability to minimize heat damage and efficiently utilize
absorbed light energy.
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After thorough phenotypic and physiological evaluation,
the tetraploids obtained exhibited obvious advantages in some
traits. One the one hand, these plants can be directly applied.
One the other hand, they can be used for further breeding, for
example, to cross with diploids or tetraploids in efforts to obtain
triploids or tetraploids with traits that provide higher economic
value than the parents.

Materials and methods

Plant material

We cultivated A. roxburghii plants, vegetatively propagated
in vitro, in the Chinese Medicinal Plants Garden on the South
China Agricultural University campus. Tetraploid plants were
obtained by colchicine treatment of diploid nodal explants,
following the process described by Wang et al. (31). The ploidy
level was estimated using a flow cytometer (CyFlow R© Ploidy
Analyzer, Sysmex, Japan) with a CyStain UV OxProtect kit
(Jiyuan Biotech, China) according to Cai and Kang (32) and
diploid A. roxburghii plants were used as controls.

Phenotypic characterization

We measured the height, stem diameter, internode length,
leaf area and thickness, stomata, root system, and whole weight
of sampled plants. We also determined their fresh weight using
an electronic balance (Sartorius, China), and their dry weight
after drying to a constant weight at 65◦C. Leaf thickness was
analyzed using a digital caliper (Meinaite, China). We measure
the size of mature leaves with a CL-203 laser area meter
(CID, USA). The root system, plant height, and stem diameter
were scanned using a WinRhizo Pro LA2400 system (Regent,
Canada). Stomatal areas were measured in fresh fully developed
and healthy adult leaf portions and observed under a microscope
(Nikon Eclipse Ni-U, Japan).

Chlorophyll fluorescence analysis

Chlorophyll fluorescence parameters of the second and third
leaves from the top of selected plants were measured with a
dual PAM-100 fluorometer (Heinz-Walz, German), using red
actinic light and a red measuring beam for fluorescence. After 30
min dark adaptation, minimal fluorescence (F0), the maximum
fluorescence (Fm), and maximal level of P700 signal (Pm) were
determined according to standard Dual-PAM-100 protocols.
We calculated the maximum efficiency of PSII photochemistry
(Fv/Fm), quantum yield of PSI Y(I), effective photochemical
quantum yield of PSII Y(II), electron transport rates of PSI and
PSII (ETR I and II, respectively), non-photochemical quantum

yields of PSI due to acceptor-side limitation Y(NA) and donor-
side limitation Y(ND), and non-photochemical quenching
(NPQ) following Hikosaka (33).

Photosynthetic pigment content

Second leaves from the top of sampled plants were collected
for determination of photosynthetic pigments. The fresh leaves
were ground with 80% (Vacetone/Vwater) acetone at room
temperature then centrifuged (5,000 g, 5 min). The supernatant’s
absorbance was measured with a Varioskan LUX spectrometer
(Thermo Scientific, Finland) at 663.2 and 646.8 nm. Chl a and
Chl b concentrations were then calculated using equations of
Porra (34).

Free amino acids and mineral elements
analysis

Free amino acids were determined following Liu et al.
(35) using a L-8900 automatic amino acid analyzer (Hitachi,
China). The concentrations of macro nutrients (K, Ca, Mg, Fe,
Mn, Zn, and Cu) were quantified by a 220FS flame atomic
absorption spectrometer (Varian, USA), following Li et al. (36).
Micro nutrients (Cr, Co, and Ni) were determined using a
Zeenit 650P graphite furnace atomic absorption spectrometer
(Analytik Jena, Germany) according to the method described by
Manjusha et al. (37).

Determination of main bioactive
secondary metabolite production

Kinsenoside, narcissin, rutin, quercetin, and isorhamnetin
were extracted and analyzed. For this, samples were oven-dried
and then ground to 100-mesh size. A sample of 10 mg powder
was weighed and soaked in 1.2 mL of 70% (Vmethanol/Vwater)
methanol. After ultrasonic extraction for 30 min, each resulting
suspension was centrifuged (10,000 g, 10 min), then filtered with
a 0.22 µm syringe filter, placed in a sample vial and stored at 4◦C
before measurement. The samples were analyzed using a HPLC-
ESI-MS/MS system (Agilent 1290–6470, USA) equipped with a
2.1 × 50 mm, 1.8 µm C18 reverse phase column. The mobile
phase consisted of water with 0.2% formic acid (solvent A) and
acetonitrile (solvent B) at a flow rate of 0.4 mL/min, starting with
a 1 min hold at 90% A followed by a linear 3-min gradient from
90 to 10% A, then a 1 min hold at 10% A, a 1 min linear rise back
to 90% A and 4 min hold at 90% A for re-equilibration before the
next injection. The column temperature was 40◦C and injection
volume 2 µL. The MS system was a 6470 Triple Quadrupole
mass spectrometer, with the following settings: dry temperature
300◦C, gas flow rate 6 L/min; nebulizer pressure 45 psi, sheath
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temperature 350◦C, sheath gas flow rate 10 L/min, and capillary
voltage 4 kV. Contents of analytes in samples were determined
using the external standard method, with peak height as the
quantitative parameter.

Statistical analysis

Three typical individuals of each ploidy and three biological
replicates, were used in all the experiments. Data acquired
in the experiments were sorted using Microsoft Office Excel
(Microsoft Corp., Redmond, WA, USA), then statistical analyses
were performed with SPSS software (Version 26.0; SPSS
Inc., Chicago, IL, USA). Student’s t-tests were applied to
assess the significance of differences between parameters of
diploid and tetraploid plants. P-values ≤ 0.05 were considered
statistically significant.
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