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Milk contains all essential macro and micro-nutrients for the development

of the newborn. Its high therapeutic and antimicrobial content provides an

important function for the prevention, treatment, and recovery of certain

diseases throughout life. The bioactive components found in milk are mostly

decorated with glycans, which provide proper formation and modulate the

biological functions of glycosylated compounds. The glycome of milk consists

of free glycans, glycolipids, and N- and O- glycosylated proteins. Recent

studies have shown that both free glycans and glycan-containing molecules

have antiviral characteristics based on di�erent mechanisms such as signaling,

microbiome modulation, natural decoy strategy, and immunomodulatory

action. In this review, we discuss the recent clinical studies and potential

mechanisms of free and conjugated glycans’ role in the prevention, treatment,

and recovery of COVID-19.
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Introduction

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a

single-stranded enveloped RNA virus that belongs to the beta coronavirus family. It was

initially identified in humans in late 2019, which immediately caused a serious outbreak

all over the world. The World Health Organization (WHO) reported the SARS-CoV-2

outbreak in the city of Wuhan, China in January 2020. Subsequently, WHO named

this novel disease COVID-19 (1). Transmission of COVID-19 is usually through the

respiratory system thus, the transmission commonly takes place by droplets spreading

by coughing, inhaling, or sneezing aerosols (2). COVID-19-infected people show a

variety of clinical symptoms ranging from cold-like symptoms to more severe ones that

may cause pneumonia, coma, and death (3). According to the WHO reports, about 500

million people in the world have been affected by COVID-19 and more than 6 million

deaths were recorded as of 01 July 2022. Many studies have been conducted to discover a

preventive measure or treatment for COVID-19 since the beginning. Regarding vaccine

studies, distinct types of vaccines such as messenger RNA (mRNA) based, DNA-based,
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viral-vector based, protein-based, and inactivated ones have

been developed to combat the COVID-19 (4). Parameters

including safety and efficacy have been considered during the

treatment (5). However, the mutation tendency of the virus still

results in the formation of different variants of SARS-CoV-2,

which causes challenges in the production of an effective vaccine

and treatment for COVID-19. Even though vaccines have been

developed based on spike protein structure to be more effective,

potential mutations on spike proteins create the same risk for

those vaccines (6). Therefore, it is undoubtedly needed to seek

new alternatives for treatment methods of COVID-19. Many

researchers are still looking for new and effective treatments that

may be effective to deal with the COVID-19 pandemic, leading

many scientists to investigate the antiviral and anti-SARS-CoV-2

properties of bioactive components derived from milk.

Mammalian milk is recognized as the major source of

immunity for newborns since it contains various bioactive

components such as free and conjugated oligosaccharides (7).

Glycoconjugates and their glycans counterparts are known

to have antiviral activities against different viruses such as

ranging adenoviruses, noroviruses, human immunodeficiency

virus (HIV) etc., (8, 9). Lactoferrin, a glycoprotein in mammal

milk, displays an antiviral effect on different types of viruses

including SARS-CoV-2 which is the main focus of this review

(10). Additionally, milk also contains other glycoconjugates

that are potentially involved in antiviral mechanisms and

human immunity. A key benefit of these proteins is their

potential to prevent serious viral infections (11–13). Besides,

free oligosaccharides have also been considered as a treatment

strategy due to their antiviral activity. Especially, human milk

oligosaccharides (HMOs), which are non-nutritional, complex

carbohydrates, that may be used in applications to treat SARS-

CoV-2 due to their functions such as receptor decoying,

immunomodulating, prebiotics, as well as signaling agents (14).

This review comprehensively summarizes the antiviral effects of

milk oligosaccharides and glycoconjugates as well as describes

the potential mechanisms of their actions upon COVID-19.

Glycoproteins

The protein glycosylation is the most prevalent and

significant posttranslational modification and takes place via

the conjugation of distinct sugar moieties to proteins. This

modification results in a microheterogeneity of glycoproteins

that influences a myriad of attributes ranging from cell-

to-cell communication to immune recognition (15, 16). N-

glycosylation and O-glycosylation are two main types of

glycosylation in eukaryotes. While N-linked glycans (N-glycans)

covalently bind to proteins at the carboxamide group in

asparagine (Asn) side chain residue of Asn-X-Ser/Thr sequons,

O-linked glycans (O-glycans) attach to the -OH group at the

side chain of serine (Ser) or threonine (Thr) amino acids

(17). N-glycans can be released from milk peptide chains by

distinct methods and they are found in three distinct forms;

high mannose, hybrid type, and complex type based on their

monosaccharide sequence and branching (18, 19). Though all

three types include the same core structure, the high mannose

type contains only mannose (Man) residues conjugated to the

core whereas the hybrid type consists of two branches; one

terminates in Man and the other terminates in the sugar of

complex form, and the complex type includes outer chains

of sialic acid (Neu5Ac), galactose (Gal), N-acetylglucosamine

(GlcNAc) residues, as well as α-linked Man substituted at C-

2 and−6 (20, 21). On the other hand, O-glycans have eight

different core structures whose cores 1–4 may be considered

common among others (Figure 1A). Core 1 O-glycan structure

is formed via the attachment of Gal to the GalNAc, whilst core

2 utilizes core 1 by introducing the GlcNAc. Furthermore, the

structure of Core 3 is formed with the linking of a GlcNAc to

the antigen of TN, which can be extended with GlcNAc in order

to produce the core 4 structure (22). Conjugated glycans on

proteins are involved in several biological mechanisms including

protein folding, cell-cell or cell-host interaction, antimicrobial,

antiviral, and prebiotic effects (23, 24). Over 70% of the proteins

in mammalian milk are found in the glycosylated form, which

can be categorized into three groups namely whey, casein, and

milk fat globule membrane (MFGM) (25, 26). All three groups

take critical roles in the defense system and disease prevention

with their varying degrees of antiviral activity (27, 28) (Table 1).

Whey proteins

Whey proteins account for about 20% of proteins found in

milk; however, their exact content and ratio to caseins vary based

on the lactation stage and species (29). Whey proteins consist

of a remarkable glycoprotein content including lactoferrin,

α-lactalbumin, serum albumin, lysozyme, lactoperoxidase,

sIgA, and other immunoglobulins (30). Bovine milk has

similar content but also contains a high concentration of

β-lactoglobulin, which is quite different from human milk.

Whey glycoproteins not only contain essential amino acids

but also take significant roles in various biological processes

including promotion of muscle strength and bone growth,

reducing cholesterol, and improvement of cognitive ability.

They display immunomodulatory, antimicrobial, and anti-

inflammatory functions (31, 32). As for antiviral properties,

whey glycoproteins are considered potential therapeutics

owing to their pharmacological activities against virus-related

infections (12). A variety of target viruses including influenza

virus A, HIV and rotavirus can be affected by whey glycoproteins

(28, 33–35).

Lactoferrin, which is an 80 kDa milk glycoprotein found in

whey, has been extensively studied for its antimicrobial activity

(36, 37) and considered an antiviral agent against adenovirus,
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FIGURE 1

Structures of O-glycans (Core 1-4) and N-glycans (high mannose, hybrid, and complex) conjugated a glycoprotein (A) and Basic HMOs (B)
(18, 19).

enterovirus 71, human papillomavirus, rotavirus, HIV, and

SARS-CoV-2 (10, 28, 36). Lactoferrin can exert an antiviral

impact in different ways including direct interaction with the

virus and cellular receptors on cells and stimulating immunity.

Lactoferrin derived peptides (lactoferricin, lactoferrampin) also

show antiviral activity against various virus types (28, 37).

The antiviral activity of lactoferrin against SARS-COV

pseudovirus was shown by inhibition of viral entry in

the mechanism of heparan sulfate binding in the literature

previously (9, 37). Such studies on SARS pseudovirus-infected

HEK293E/ACE2-Myc cells provided certain understading for

lactoferrin binding to the surface of cell at heparan sulfate

proteoglycans, which inhibits the binding of spike protein to

the cell surface (9). Lactoferrin was also show to be able to

directly attach to sialic acid residues, thus hindering the viral

attachment to the cell (38). Furthermore, bovine and human

lactoferrin are showed to be able to effectively block the entry

of SARS-CoV-2 and other coronaviruses in different cell lines

such as Calu-3, 293 T-ACE2 with the mechanism of inhibition of

the host attachment through membrane-bound heparan sulfate

proteoglycans (HSPGs). Bovine lactoferrin is also shown to

be able to block SARS-CoV-2 replication and the production

of virions when lactoferrin was introduced before the virus

entry (39). In addition to the HSPG binding mechanism, other

possible mechanisms have also been studied to increase the

understanding of the exact interaction between SARS-CoV-2

and lactoferrin. Lactoferrin can directly bind to SARS-CoV-2,

which prevents the attachment of the virus to the ACE2 receptor.

Another known antiviral mechanism of lactoferrin is related

to intracellular signaling pathways (11). Lactoferrin can induce

α and β interferon (IFN) with cell signaling and thus block

the replication of the virus after its entry into the cell (40).

It can also induce anti-inflammatory and proinflammatory

cytokines such as interleukin 6 (IL6), toll-like receptor 3 (TLR3),

TLR7, and interferon regulatory factor 7 (IRF7) in Caco-2

cells considerably thus increase the antiviral immune response

(41). Considering clinical studies related to lactoferrin antiviral

activity against SARS-CoV-2, lactoferrin could be considered

a significant therapeutic agent for the prevention and therapy

of COVID-19. Orally administered liposomal lactoferrin and

zinc mixtures are known to result in a complete and prompter

recovery from COVID-19 for all treated patients in comparison

to untreated controls within the first 5 days of treatment

(42). In a similar study with liposomal lactoferrin and zinc

mixtures, the treatment was also found to be effective to prevent

disease in treated individuals (10). Moreover, in asymptomatic,

paucisymptomatic, and moderate symptomatic patients, the

time needed for SARS-CoV-2 negativization in patients orally

treated with lactoferrin was reported to be significantly lower

than in control groups (42).

In addition to lactoferrin, other whey glycoproteins also

exhibit strong antiviral activities against several viruses. For

example, human and bovine α- and β-lactalbumin demonstrate

high antiviral activity against some viruses such as HIV-1

by inhibiting the viral replication (43–45). Serum albumin

known to have an antiviral impact against the sindbis and

the semliki forest viruses by inhibiting the virus receptors

on the cell surface (13). Similarly, lysozyme is also a milk

glycoprotein that has crucial biological functions in protecting

the host against infections. Its antiviral activity is linked with

its cationic characteristics which enables lysozyme to easily

attach to negatively chargedmembrane structure (12). Lysozyme

is known to be effective against herpes simplex, HIV-1, and

herpes zoster viruses (46, 47). Although the interaction between
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lysozyme and SARS-CoV-2 has not been studied, lysozyme

aerosol treatment is known to be effective in decreasing

inflammation, which could help against COVID-19-related

lung complications (48, 49). Lysozyme is also known to have

neuroprotective functions which can be effective to prevent

neurological COVID-19 outcomes. In a study, lysozyme in

combination with niclosamide has reported to decrease the

lung viral load in SARS-CoV infected mice considerably (49).

Lactoperoxidase enzyme is another whey glycoprotein, which

belongs to the heme peroxidase family. It is known to exert a

strong antimicrobial activity by interacting with thiocyanate in

the presence of hydrogen peroxide to produce an antimicrobial

hypothiocyanite anion. With this mechanism, lactoperoxidase

inhibits many viruses including HIV, HSV-1, respiratory

syncytial virus (RSV), and influenza virus. Antimicrobial anion

produced by the lactoperoxidase was shown to be effective

against SARS-CoV-2 at a micromolar level previously (42).

Additional to these proteins, whey immunoglobulins (sIgA,

IgA, IgG, IgM, IgE, and IgD) are also involved in antimicrobial

mechanisms against infections. Studies demonstrated that milk

immunoglobulins of raw milk from non-immunized bovines,

cows, and camels exert specific antibodies against human

rotavirus (50). In addition, these molecules also known to inhibit

the replication of rotaviruses in tissue culture and prevent mice

from rotavirus infection. When cows are vaccinated against viral

infection before taking their milk samples, IgGs from the super

immune bovine shown to attach themselves to the virus directly

and prevent the viral attachment to epithelial cells (51). As

for SARS-CoV-2, the variety of IgG milk samples against the

virus may rise with the consumption of hyper-immune milk

from vaccinated cows and in turn, they could be protective

against COVID-19. In a study, a human polyclonal IgG antibody

derived from vaccinated cattle against MERS is shown to be

safe and consumable up to 50 mg/kg in healthy people (52). In

addition to these, sIgA which is a highly glycosylated protein,

is found in high concentrations in human milk. It is shown

to be able to exert its antimicrobial effects against several

microbes and modulates immunity and also protect the host

via the mechanism of Fab (the antigen-binding fragment of an

antibody) mediated neutralization of viruses and toxins (53).

Casein

The casein accounts for a majority (about 80%) of the

protein mass in milk and includes different forms (αs1-, αs2, β-,

and κ-CN). Casein fractions are the main precursors of a myriad

of biopeptides including bioactive peptides (54). They have also

a critical role in immunity through the proliferation of immune

cells. Many immunomodulatory peptides from casein influence

macrophage activity, increase the number of antibodies and

regulate cytokines’ synthesis, which enables them powerful anti-

infection agents against different viruses (55).

Distinct forms of casein protein have different amino acid

sequences and perform different functions. Even though β-

casein is the most prevalent casein form present in human

milk (about 75%) it does not include known glycosylation

sites. κ-casein is the major glycosylated casein that accounts for

about 25% of total casein and has seven O-glycosylation sites

which noticeably contribute to its antimicrobial activity (56).

κ-casein and its derived peptides enhance the growth of some

beneficial bacteria in the gut such as Bifidobacterium infantis

and Lactobacillus bifidus and decrease the colonization of viral

pathogens in the gut (57). Furthermore, the κ-casein fraction

can bind to the virus surface spike protein to inhibit the entry

of the influenza virus into the cell. In a recent in-vitro study,

casein of goat milk was shown to be an effective potential

therapeutic against COVID-19 infection (58). Casein proteins

are also involved in antiviral and immune regulation functions

by regulating immunity response with upregulation to enhance

the inhibition of viruses and downregulation to reduce harmful

conditions including sepsis (59–61).

MFGM

MFGM, which is a component of human milk, derives

from the apical plasma membrane of lactating epithelial cells.

It contains glycoproteins such as mucins, lactadherin, and bile

salt-stimulated lipase (BSSL). MFGM glycoproteins could be

effective antiviral agents against several viruses such as HIV and

rotavirus; besides, they strengthen immunity against infections

(27, 62, 63).

Mucin is a significant glycoprotein and the primary

component of mucus structure in the gastrointestinal and

respiratory tracts. Mucin types 1 and 4 are found in human

milk and demonstrated to have antiviral activity against

HIV, influenza virus, and other viruses in-vitro. They are

extracellularly located and include a membrane-bound region,

a short cytoplasmic segment, as well as the highly O-glycan

part. O-glycans of MFGM proteins act as decoy proteins to

inhibit pathogen attachment to epithelial cells (64). Sialylic

acid-containing milk mucin shown to block the replication of

rotavirus in tissue culture and prevented rotavirus infection in

a mouse model. Deglycosylation of the mucin causes the loss

of antiviral activity, the inhibition mechanism against viruses

is mainly attributed to O-glycans in MFGM mucin (27). In

addition, maternal HIV-1 transmission through the child could

be prevented by MUC1 of human milk by binding to dendritic

cell-specific intercellular adhesion molecule-2-grabbing non-

integrin (DC-SIGN) receptors on dendritic cells which blocks

the gp129 protein initiating HIV infection (65).

Recently, it has been shown that bovine mucins can inhibit

infection of human coronavirus OC43 by depending on both

concentration and glycan manner (66). Regarding SARS-CoV-2

targets, protection by mucins has also been possible against this
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virus. Furthermore, the mucin content of human milk and its

viscosity can rise when the mother gets infected by SARS-CoV-

2, in turn, this could be an effective protection for the newborn.

Lactadherin, which is a 46 kDa glycoprotein, is a mucin-

associated sialic acid-containing glycoprotein in the MFGM

and includes five N-linked glycosylation sites (67). Lactadherin

is mainly linked with the inhibition activity against rotavirus

infection (8, 27). The attachment of lactadherin to rotavirus was

reported to reduce after hydrolysis of sialic acid which indicates

that lactadherin is a sialic acid determinant in the interaction.

In a clinical report, rotavirus infection was monitored for

200 infants and compared with the lactadherin level in their

mother’s milk. The infected infants who were fed milk with a

high concentration of lactadherin remained asymptomatic (68).

However, infants fed with a low concentration of lactadherin

suffered severe diarrhea. BSSL, another glycoprotein in MFGM,

is responsible for fat digestion (69). BSSL is secreted from the

pancreas and stimulated by bile salts in the intestine. This unique

enzyme is highly glycosylated with a mucin-like C-terminal

region and contains 10 O-linked glycosylation sites (70). With

its glycans, BSSL exerts an antiviral impact on some viruses such

as norovirus and HIV-1 (71, 72).

Conjugated glycans

The most significant properties of milk glycoconjugates are

attributed to their conjugate glycan parts. Since conjugated

milk glycans are considerably similar to HMOs in terms of

their linkages and monosaccharide composition, they play a

range of biological activities (23, 24). One of the important

properties of conjugated glycans is their prebiotic effects that

selectively induce the growth of some beneficial microorganisms

depending on glycosidase enzyme capability which might be

valued in different applications (73). For instance, N-glycans

released from bovine and human milk, exert a bifidogenic effect

on specific kinds of bifidobacterial species. While N-glycans

released from glycoproteins of bovine milk stimulate the growth

of B. infantis, selectively which is derived from the infant’s

gut, Bifidobacterium animalis (B. animalis) cannot utilize these

structures (24). An in-vivo study has shown that 19 distinct

N-glycan structures from lactoferrin and immunoglobulins

enhance Bifidobacterium longum subsp. infantis (B. infantis)

growth. The study has also indicated that an enzyme produced

by B. infantis, endo-ß-N-acetylglucosaminidase (EndoBI-1), can

release about 800mg of N-glycans from ten grams of either

bovine or human milk glycoproteins (74). Previous studies

regarding this unique enzyme suggested that up to 4–8% of

glycoproteins including lactoferrin can be released as glycans

by the activity of EndoBI-1 (74–77). In addition to EndoBI-1,

recombinant bifidobacterial enzymes are highly active on

conjugated N-glycans release (78). N-glycans are also fermented

to short-chain fatty acids (SCFAs) like HMOs, which lowers the

environment pH in the gut as well as creates a high resistance

to pathogen colonization through mucin structures since they

generally grow at pH 6-7. Some conjugated glycans such as

sIgA and lactoferrin take the role of binding epitopes to inhibit

pathogen adhesion in a similar way to soluble oligosaccharides

(79–81). Therefore, conjugated glycans significantly shape the

gut microbiota by providing colonization resistance, reducing

virulence factors, and inflammation (82). Conjugated glycans

can also play a critical role in different biological reactions

to inhibit some viruses. For example, sialylation in conjugated

glycans is known to affect the antiviral mechanisms positively

since the sialic acid in the terminal of glycans can bind to viruses.

Avian influenza viruses, major contributors to human influenza,

preferentially identify Siaα2- 3Galactose (Gal)-linked receptors.

In addition, sialic acid moieties on bovine milk glycoconjugates

act as competitive substrates in order to inhibit viral adhesion to

the receptors on the cell surface.

As the glycoconjugates are found in different concentrations

in human and bovine milk, they confer distinct levels of

protection. For example, a study has reported that Leb blood

group antigen including fucose at the terminal of human milk

κ-casein inhibited H. pylori adhesion to stomach cells more

efficiently than κ-casein isolated from bovine milk that does

not include fucose antigen (81, 83). On the other hand, the

high level of sialic acid in bovine milk may better help in the

inhibition of other pathogens based on the structure of the

receptor. High molecular mass mucin-like components isolated

from bovine milk inhibited hemagglutination of H. pylori with

its sialic acid moieties (83). Bovine milk glycoconjugates consist

of high sialylation and low fucosylation such as 68% sialylation,

31% fucosylation as well as 10% high mannose. The level of

sialylation and fucosylation is highest in colostrum and differs

in sialylation linked with glycosylation of immunoglobulins

(81). Furthermore, the bovine milk glycoconjugates are present

in a higher abundance than the bovine milk oligosaccharide,

whichmakes them considerable research interest regarding their

glycan structures and antipathogenic functions.

In a recent study, N-linked glycoproteins derived from

human and bovine colostrum as well as mature milk were

compared in whey and MFGM proteins. Great numbers

of diverse N-glycoproteins were characterized from human

colostrum (68 types), human milk (58 types), bovine colostrum

(100 types), and bovine milk (98 types) (84). One type of N-

glycosite was reported to be dominant for each sample and

the difference between bovine and human milk was significant

with only a minority of overlapping glycoproteins. In MFGM

glycoproteins’ analysis, the number of types of glycoproteins was

higher thanwhey as 465, 423, 334, and 175 for human colostrum,

human milk, bovine colostrum, and bovine milk, respectively

(85). Similarly, many N-glycoproteins from MFGM included a

single site, and differences were noticed between two types of

milk, probably associated with immune-related glycoproteins

which vary according to the lactation periods (86). The protein
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content of mammalian milk is found at the maximum level

in colostrum. Both bovine and human colostrum comprise the

maximum concentration of bioactive glycoproteins and their

conjugated glycans. For instance, bovine colostrum includes the

greatest level of high glycosylated proteins such as IgGs (20–

200 mg/mL) and lactoferrin (1.5–5 mg/mL) which decreases

gradually by transforming through the mature milk (87).

Human colostrum consists of 5–7 mg/mL lactoferrin and 1–

20 mg/mL IgGs and these levels considerably decline up to 1

mg/mL in mature milk (88–90). These increased glycoproteins

and their conjugated glycan levels in mammalian colostrum in

comparison to mature milk is strongly associated with their

greater bioactive and antiviral functions than milk (91). To date,

many studies are significantly interested in how colostrum can

be used as a supportive intake to benefit human health (7, 10, 92).

Free glycans

HMOs and their antiviral properties

HMOs are multifunctional and complex carbohydrates

found in both human and bovine milk. Since the bovine

colostrum consists of HMOs in high amounts, it is generally

prepared to be ready for human consumption as well as

health (93–96). The concentration of HMOs in human

milk, in particular, varies between 5–20 g/L depending on

maternity genetics and lactation level. They are the third-largest

component of human milk exerting various beneficial effects

on infants (23, 96). The fundamental core structure of HMOs

contains lactose at the reducing end, which can be elongated

by adding N-acetyllactoseamine units via glycosyltransferase

enzymes in the mammary gland. D-glucose (Glc), D-galactose

(Gal), GlcNAc, L-fucose (Fuc), and NeuAc are basic building

blocks of HMOs (Figure 1B) (97). The chain length is between

3–15 carbohydrate units; besides, HMOs can be the linear or

branched form which creates a diversity (98, 99). Based on

their chemical content, HMOs categorize in three subgroups

including neutral N-containing (non-fucosylated) (42–55%),

neutral (fucosylated) (35–50%), as well as acidic (sialylated)

(12–14%) (18). The lactose core structure can be extended

with repeats of lacto-N-biose (Galβ1-3GlcNAc; LNB) which are

named type 1 chains. Lacto-N-tetraose (LNT) as type 1 is the

most prevalent HMO (100). A type 2 chain is formed when the

N-acetyllactosamine unit (LacNAc; Galβ1-4GlcNAc) is linked to

the lactose. Both type 1 and 2 chains can be further elongated by

adding fucosyl and sialyl residues in order to create more diverse

and larger HMOs (101). HMOs are involved in several biological

functions (98, 102). They act as defensive agents against different

pathogens by exerting their antimicrobial capabilities (103, 104).

HMOs also act as receptor decoys, immunomodulatory agents,

prebiotics, as well as signaling agents to prevent viral infections

through distinct mechanisms.

Receptor decoys
One of the antiviral mechanisms of HMOs is acting as

soluble decoy receptors or competitive inhibitors to inhibit viral

attachment and entry through the host cell (32, 105, 106).

Two major mechanisms related to receptor decoying were

proposed to explain how HMOs cause viral inhibition in cells.

Firstly, since they have a similar structure to mucin glycans

found on the mucosal layer, HMOs act as soluble decoys and

bind to viruses, therefore, prevent early cellular attachment

of viruses. Secondly, HMOs can bind the receptors on the

epithelial cell surface to inhibit viral binding, which is critical

for the prevention of viral infection initiation (107). Several

HMO types including neutral, fucosylated, and sialylated shown

to have antiviral effects on various viruses such as noroviruses

(107), rotavirus (108, 109), HIV (110), and influenza virus (111,

112). Furthermore, the similarity between HMOs and receptor

glycans enables them great decoys for viruses. For example,

human norovirus needs the attachment to cell surface histo-

blood group antigen (HBGAs), which consists of several glycans,

for viral binding to epithelial cells. Similarly, SARS-CoV-2

initiates infection by binding to ACE2 receptors on the cell

surface which are highly glycosylated with mainly fucosylated

glycans (113, 114). An in-vitro study demonstrated that A-

type HBGA co-localized at the cell surface with transfected

SARS-CoV spike proteins. There was less interaction between

ACE2 and spike protein of SARS-CoV-2 when there were anti-

A-bodies (113). Moreover, some fucosylated HMOs including

2’FL, 3FL, and LNFP 1 are structurally similar to HBGAs and

can block infections of norovirus by competitively attaching to

capsid protein or P domain (114, 115). Importantly, 2’FL as a

fucosylated HMOmay inhibit SARS-CoV-2 entry to the cell with

a competitive binding (14).

Immunomodulatory agents
A variety of pathogens causing serious infections are

identified by recognition receptors in the human immune

system. Viral surface lectins, for example, recognize the glycans

bound to the epithelial cell surface to identify the host when

there is an infection emergency (14). For mucosal and systemic

immunomodulation, HMOs can attach to lectins or glycan-

binding proteins that are expressed on a variety of cells. These

complex carbohydrates show immunomodulatory as well as

anti-inflammatory impacts via unique mechanisms. HMOs have

the ability to bind to the lectins directly on the surface of

immune cells, promoting T cell proliferation, differentiation,

cytokine production (116, 117) and dendritic cells (118, 119)

involved in the anti-inflammatory mechanism. Additionally,

HMOs can interact with type I interferon which is a part of the

immunitymechanism against viruses. Type I interferon interacts

with various immunity receptors and cells including IFN α

receptors 1-2, STAT 1-2, and IFN regulatory factor 9 (IRF9) and

IFN stimulated genes (ISGs) to inhibit viral replication. Human
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milk enhances the type I interferon formation in infants with

the influenza virus, which can be caused by HMOs’ contribution

to the triggering type I interferon production in infected cells

(120). Thus, HMOs are known to exert immunomodulatory

functions by decreasing virus-related infection caused by many

viruses including RSV, rotavirus, HIV, norovirus, and maybe

SARS-CoV-2 (121–123).

Prebiotics
HMOs enhance the growth of beneficial microorganisms

in the human gut with their prebiotic properties, which is

an essential activity for immunity (124). As these complex

molecules cannot bemetabolized by human-associated enzymes,

they can reach the colon in intact form and are utilized by

some beneficial microorganisms such as Bifidobacteria (125,

126). As end-products of fermentation of these non-digestible

carbohydrates in the human gut, various short-chain fatty acids

called SCFAs formed from the microbiota, such as acetate

and butyrate. In turn, this prebiotic activity of HMOs on

gut microbiota significantly contributes to immunomodulating

action. SCFAs not only provide energy for epithelial cells

but also strongly affect intestinal homeostasis and exhibit

immunomodulatory impacts (126). On the other hand, when

the number of pathogens increases which produces more

toxic products, gut dysbiosis takes place and the balance

of gut microbiota is thoroughly destroyed. Many COVID-19

patients exhibit dysbiosis which can persist even after infection

resolution (127, 128). For up to 30 days following viral clearance,

commensal bacteria such as Faecalibacterium, Eubacterium, and

Bifidobacterium species showed a relative decrease in the fecal

samples of COVID-19 patients in a recent study (129). As

altered microbiota could play a crucial role in the regulation

of immunity, most of the COVID-19 patients’ immunity

diminished regarding gut dysbiosis. Regarding therapeutics,

prebiotic treatment is one of the effective solutions that should

be implemented to treat gut dysbiosis and strength immunity

by supporting the growth of beneficial microbiota (129). Since

HMOs are great prebiotic compounds, oral supplements of these

complex and undigestible molecules have a high potential for

COVID-19 infections treatments. With the supplementation

of HMOs, they are fermented by healthy gut microbiota,

which in turn, produce SCFA molecules that benefit intestinal

homeostasis and immunomodulation (130, 131).

Signaling agents
HMOs can act as signaling agents to modulate various types

of signaling pathways in cells. They modulate mucosal signaling

cascades such as toll-like receptor 4 (TLR4) and alter epithelial

cell gene expression, which improves tight junction function,

lung damage, maturation in intestinal cells, and tissue repair

(14). The development of epithelial glycocalyx which supports

TABLE 1 Some antiviral milk glycoproteins.

Glycoprotein/Source Virus Reference

Lactoferrin/whey SARS-CoV-2 (9, 10, 37, 39,

42)

HIV (138)

Hepatitis C virus (139)

Hepatitis B virus (140)

Human rotavirus (141)

Poliovirus (142)

Hantavirus (143)

Adenovirus (144)

Herpes simplex virus 1/2 (145)

Influenza virus A (H1N1) (146)

Lactoferrin and

Lactoferricin/whey

Papillomavirus (147)

Echovirus (148)

Herpes simplex virus 1/2 (149)

Lysozyme/whey SARS-CoV-2 (48, 49)

Herpes simplex virus type I (44)

HIV (150)

Lactoperoxidase/whey SARS-CoV-2 (42)

Herpes simplex virus 1 (151)

A/H1N1 (152)

Influenza virus (152, 153)

Beta-lactoglobulin/whey HIV (154)

Influenza virus A (155)

Human cytomegalovirus (156)

Papillomavirus (157)

Avian influenza virus (H5N1) (158)

Human rotavirus (45)

Alpha-lactoglobulin/whey Herpes simplex virus 1/2 (44)

HIV (158)

Human cytomegalovirus (156, 158)

Casein SARS-CoV-2 (58)

Serum albumin/whey Sindbis virus (45, 156)

Semlike forest virus (13, 45)

Mucin/MFGM SARS-CoV-2 (66)

Rotavirus (13)

Norwalk virus (72)

Norovirus (72)

HIV (63)

Poxvirus (159, 160)

Lactadherin/MFGM Rotavirus (68)

BSSL/MFGM HIV-1 (71)

Norwalk virus (72)

the colonization of bacteria and mucosal barrier function is

also enhanced by HMOs. For instance, 2’FL and 3FL modulate

the formation of the intestinal glycocalyx layer, preventing

the adhesion of pathogens to the epithelial cells (115, 132–

136). 2’FL, furthermore, affects the CD14 expression, which
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is the coreceptor of TLR4, enhancing the antagonistic effects

against TLR4-mediated mucosal inflammation (137). As for

SARS-CoV-2, its spike protein can also bind to TLR4 for the

mediation of respiratory mucosal inflammation and lung injury.

Therefore, targeting TLR4 signaling has been considered a

new therapeutic for COVID-19 patients. HMOs as a mixture

or separate form could be used as treatments for COVID-

19 patients, especially for acute lung damage and respiratory

mucosal inflammation (136).

Conclusion

Glycosylated proteins are one of the most important

components of both mature milk and colostrum and they

actively take significant roles in different biological functions

ranging from immunity to antiviral mechanisms. The most

considerable functions of glycoconjugates are attributed to their

glycan parts found in a conjugated form on protein structures.

As the conjugated glycans are similar to free oligosaccharides

regarding their structure and monosaccharides, they can also act

as free ones in distinct biological mechanisms against viruses.

Conjugated glycans, for instance, can shape the gut microbiome

by enhancing the growth of beneficial bacteria, even more

they can inhibit pathogens including different viruses such

as norovirus, adenovirus, HIV, etc. by using unique antiviral

mechanisms. Both human and bovine milk include incredible

glycoprotein content ranging from lactoferrin to lactoperoxidase

which exerts antiviral effects against diverse types of viruses

as well as SARS-CoV-2. To date, the epidemic of COVID-

19 and other potential coming outbreaks have indicated that

searching for novel treatments against pathogens is critical to

deal with them. As for especially human milk glycoproteins

and their milk conjugated glycans, they are considered potential

therapeutics to combat serious outbreaks that human beings

face because of their antiviral properties. The mechanism and

effectiveness of human milk on SARS-CoV-2 will be better

understood by increasing the number of research and clinical

applications of human milk and its components including

HMOs and glycoconjugates. Importantly, glycan-rich milk,

particularly colostrum, which contains a higher concentration of

conjugated glycans than mature milk, may be used as a natural

alternative to conventional drugs to prevent and/or treat viral

diseases such as COVID-19 threatening the health of the general

human population.

Regarding potential studies in the future, plant-based

glycans which are highly complex and heterogeneous could be

also another antiviral agent in addition to milk-based glycans.

Furthermore, plants’ glycoproteins and their highly variable

plant-derived glycans may be used as therapeutic proteins in

medicine. Consequently, the comprehension of the structures

and biological functions of a variety of conjugated glycans

produced from different hosts is a critical requirement to

develop novel glycoprotein-based therapeutics for the treatment

of viral diseases including COVID-19.
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