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The oral cavity is a key biocenosis for many distinct microbial communities

that interact with both the external environment and internal body systems.

The oral microbiota is a vital part of the human microbiome. It has

been developed through mutual interactions among the environment, host

physiological state, and microbial community composition. Indigenious

microbiota of the oral cavity is one of the factors that prevent adhesion and

invasion of pathogens on the mucous membrane, i.e., the development of

the infectious process and thereby participating in the implementation of one

of the mechanisms of local immunity–colonization resistance. The balance

between bacterial symbiosis, microbial virulence, and host resistance ensures

the integrity of the oral cavity. In this review we have tried to address how

nutritional factors influence integrity of the oral indigenous microbiota and its

involvement in colonization resistance.

KEYWORDS
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Introduction

The oral cavity is considered a unique ecological system, creating favorable
conditions for the vital activity of manifold commensal microorganisms that may reside
either as planktonic cells or inhabit the biofilms (1). These microbial communities
contribute to oral and systemic health by maintaining homeostasis and modulating
the immune system (2). The oral cavity becomes colonized with a microbiota, the
composition and characteristics of which reflect the local aspects, including potential
nutrients, receptors for adhesion, oxygen levels, microbial competitors/collaborators,
and local innate and adaptive immune factors. The presence of certain nutrients
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can lead to a defined spatial architecture within the oral biofilms
and contribute to colonization resistance.

Colonization resistance of the oral cavity is a complex,
multifaceted phenomenon and characterizes the ability of the
resident microbial community to oppose the invasion by
exogenous microorganisms. The colonization level, in general,
depends on how well the host oral cavity is suitable for growth
and on the physiological requirements of the microorganisms.
Several principal factors known as “colonization barriers”
control the microbial background in direct or indirect pathways
(3, 4). Qualitative and quantitative changes in microbiome
accompanying the oral cavity’s diseases have been characterized
and studied in sufficient detail over the past decade (5, 6).

Especially prominent is the “mucous barrier,” which
consists of mechanical, humoral, and other factors protecting
the mucous membrane from the colonization of harmful
microorganisms (7). In general, the mucous membranes of
the lips, palate, cheeks, tongue, gums, teeth, and saliva provide
a favorable environment for the growth and reproduction
of a wide range of microorganisms. These surfaces are
typically densely colonized by complex microbial communities
interacting through sophisticated biochemical and biophysical
mechanisms (8). Many published studies mention antagonistic
activity and adhesiveness of the resident microbiome as
the main factors in maintaining intestinal colonization
resistance (9). However, the colonization resistance of the
oral cavity mediated by nutritional factors remains poorly
understood in many aspects. Therefore, the present review
furnishes a brief overview the main mechanisms and factors
responsible for nutrient-related colonization resistance of the
oral microbiota.

Materials and methods

A comprehensive literature search was carried out in
the online version of the Science Citation Index Expanded
(SCI-EXPANDED) from the Web of Science (WoS) database.
WoS was chosen as it covers multidisciplinary areas being
the oldest citation database. No time restrictions were
placed on these searches, and only articles published in
English were retrieved. The date when all searches were
last performed was September 23, 2022. The search strategy
combined three search strings: #1 “oral microbiome” OR “oral
microbiota” OR “oral microbiocenosis” OR “oral microbial
communities”; #2 “colonization resistance” OR “bacterial
interference”; #3 “nutrition” OR “diet” and combining these
by “AND” to obtain only the intersection. Results were
imported into a bibliographic referencing tool (EndNote 20)
and assessed for relevance and quality, removing articles
that have no relation to the review topic. Finally, the query
results were manually checked before excluding duplicates
(Figure 1).

FIGURE 1

Data identification, screening, eligibility, and inclusion.

Results

Our set of queries identified three hundred twenty-
five records; after manual inspection and excluding the
duplicates, 257 remained. Of these, 174 articles were excluded
at the title/abstract level and 52 at the full-text assessment
level. Thirty-one were found to meet inclusion criteria
to describe the nutritional factors influencing microbiota-
mediated colonization resistance of the oral cavity and were used
in the analysis.

The evaluation of the keywords in the included studies
is valuable to provide a detailed picture of the review topic,
reflecting the research hotspots in the current discipline. Here,
the publication keyword analysis to word cloud visualization
(Biblioshiny app from the Bibliometrix-R package) revealed
that the most common keywords of the thirty-one studies were
oral, microbiota, biofilm, formation, saliva, colonization, and
resistance (Figure 2). This emphasizes that most studies have
focused on biofilm formation and colonization resistance in
the oral cavity, as well as saliva’s role in determining the oral
microbiota composition.

Colonization and principal
composition of the oral microbiome

The mean total surface area of the mouth is 214.7 ± 12.9 cm2

(10), and the mean surface area of the oral mucosa is
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FIGURE 2

Word cloud based on the main keywords related to the review topic.

196.96 ± 24.20 cm2 (11). Each of the anatomical surfaces of the
oral cavity, including tooth, gingival sulcus, tongue, hard and
soft palates, tonsils, and saliva, is covered with a conglomerate
of microorganisms (12, 13). In addition, a large number of
microbes are located on the back of the tongue, in the cracks,
crevices, and fissures of the tonsils, and in gingival pockets (14).

Intestinal colonization gets its origin from the oral cavity.
As the oral cavity is in constant contact with the external
environment, it is populated by microorganisms representing a
complex biocenosis. In other words, microorganisms making up
the microbiocenosis of the oral cavity are intrinsically diverse
in their abundance and properties (15). Various microbial
taxonomic groups colonize the oral cavity as a kind of
ecological niche involving biochemical, immunological, and
other interactions with the host. The evolutionary complex and
symbiotic communities of microorganisms are therefore specific
for a particular area of the mucosal surfaces.

Approximately 99% of all bacteria live together as a biofilm,
forming spatially and functionally complex communities (16).
Biofilms act as protective shells, making inhabitants more
resistant to physical, chemical, and biological factors in
comparison with planktonic (free-floating) bacteria (17, 18).
In addition to that the biofilm polymers provide adhesion,
stabilization, and nutrient flows within the biofilm (19).

Microbial populations in the oral cavity can be divided
into resident and transient groups. The resident (indigenous)
microbiome includes relatively constant species characteristic
of a certain oral biotope and the age of the host. An
indigenous microbiome can be divided into core (shared by
all host organisms) and variable (due to physiological and
biochemical differences between individuals) categories. The
transient (exogenous) microbiome consists of non-pathogenic
or opportunistic microorganisms that populate the oral cavity
for a limited period without causing disease (20). In case of
violations or loss of the indigenous microflora, members of the

transient can replace the “vacant” niche of a specific biotope that
subsequently can contribute to the development of pathology.

The Human Oral Microbiome Database (HOMD1) has
been created to systematize the bacteria in the human oral
cavity, which includes both members of normal microflora
and pathogens. HOMD collected 16S rRNA gene sequences
from oral prokaryote species into a curated phylogeny-based
database. The HOMD contains approximately 772 microbial
species, where 70% are culturable, and 57% of which are
officially named. Most of the HOMD-listed bacterial species
belong to transient microflora since they are not capable of
long-term survival under special conditions of the oral cavity.
The 16S rDNA profiling of the healthy cavity categorized the
inhabitant bacteria into six broad phyla, namely, Firmicutes,
Actinobacteria, Proteobacteria, Fusobacteria, Bacteroidetes, and
Spirochaetes constituting 96% of total oral bacteria (21).

Streptococcus is the most abundant genus in the oral cavity
(8). In the HOMD, the Streptococcus genus is represented by 37
species, of which 29 are named, four are not named, and four
are lost. The species of Streptococcus occupy a specific niche
in the oral cavity and thus play a key role in establishing and
shaping the oral microbiota (22). S. gordonii and S. oralis are
among the first microorganisms that colonize the oral cavity,
followed by cryogenic S. sanguinis, S. mutans, and S. sobrinus,
initiating biofilm formation (21). Other pioneer organisms
include Actinomyces spp. Granulicatella adiacens, Abiotrophia
defectiva, Gemella spp., and Rothia (23). Diverse molecular
forces, including hydrogen bonds, hydrophobic interactions,
calcium bridges, van der Waals forces, acid-base interactions,
and electrostatic interactions, contribute to the attachment of
pioneer bacteria to the salivary acquired pellicle (a layer of
proteins and glycoproteins of salivary origin that tightly coat
the tooth surface) (24). The early colonizers are predominantly

1 www.homd.org
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members of the normal microbiota, and just a few are known
to be directly responsible for disease development (20). Species
of Streptococcus initiate numerous cooperative and antagonistic
bacterial interactions within the dental microbial community.
Thus, mainly streptococci determine and shape the composition
of later colonizers in the oral biofilm and greatly impact the
health or disease status of the host (22, 25). Polymicrobial
colonization and biofilm development have been well-described
and depicted by D. Verma et al. (21).

The role of the normal oral microbiota

Normal microbiota performs protective functions due
to indirect antagonism toward pathogenic and opportunistic
microorganisms, particularly by preventing colonization of
mucous membranes and diminishing the penetration of
microbes, microbial toxins, and xenobiotics into the host
organism (26, 27). Additionally, the functions of normal oral
human microbiota include:

• the regulation of the gas composition of the intestine and
other cavities of the host;

• morphokinetic effect;
• the production of enzymes involved in the metabolism of

proteins, carbohydrates, lipids, and nucleic acids;
• production of biologically active compounds (vitamins,

antibiotics, toxins, hormones, etc.); immunogenic role;
• participation in the recirculation of bile acids, cholesterol,

and other macromolecules; mutagenic/antimutagenic role;
• detoxification of exogenous and endogenous substrates and

metabolites;
• source of endogenous infection and,

storage of microbial plasmid and chromosomal
genes (28–30).

Nutritional factors influencing the oral
microbiota

Saliva is the medium by which the host “supplies” its
resident microorganisms with nutrients, including amino
acids, proteins, glycoproteins, peptides, and vitamins. In
addition, a host-derived nutrient, gingival crevicular fluid
(GCF), favors the growth and activity of microorganisms
in the oral cavity. In a smaller proportion, the gingival
crevice, through GCF secretion, contributes with additional
nutrients such as albumin and heme-containing molecules
as a source of vital iron (31). Host hormones, such as sex
steroid hormones, cholesterol, and catecholamines, delivered
through saliva can also be utilized by resident bacteria
(32). Many studies suggest that these hormones have the

potential to modulate the composition of the oral microbiome
(33, 34).

Despite the obvious impact of diet on the oral microbiome,
relatively scant information is available regarding this. This can
partly be explained by the fact that the primary substrates for
oral microbial growth are endogenous nutrients provided by
saliva, tissue excludes, GCF, degenerating host cells, or other
bacterial metabolites (35).

Studies by Hatakka et al. and Jiang et al. have shown no
difference in the growth rates of oral bacteria in the presence
or absence of food, indicating no relationship between diet
and the composition of oral bacterial communities (36, 37). In
contrast, another very recent study by W. G. Wade revealed
differences in salivary metabolomic profiles in relation to diet
type (omnivorous, ovo-lacto-vegetarian, or vegetarians) (38).

Reduced food intake and fasting periods may affect
microbiome-based colonization resistance. The salivary flow
and secretion stasis due to dehydration or decreased oral water
intake retrograde bacterial migration and colonization (39, 40).
Fasting has also been found to be associated with oral cytokine
levels caused by resident and transient microbiome (41).

Oral colonization resistance

The composition of microbial communities in different
biotopes of the oral cavity is determined by environmental
and biological factors, giving rise to synergistic or antagonistic
relationships (Figure 3). Especially antagonistic relationships
between different groups of microbes can be induced by
various factors [such as lack of saliva, its bactericidal
substances, stimulants (e.g., smoking), increased sugar content,
acidic microenvironment] that alter the microbial community
structure subsequently impacting colonization resistance (8).

Colonization resistance (also known as bacterial
interference) refers to a set of mechanisms providing individual
specificity and stability to the microbial community and
preventing the host surfaces colonization by pathogens. The
term “colonization resistance” was coined by D. van der Waaij
(42) who also pointed out that the normal microbiota being
a combination of many microbiocenoses characterized by a
certain composition and occupying a particular biotope in the
human body, plays deciding role in such resistance (43).

In the case of weakened colonization resistance, the fraction
of “core” bacteria resident for the surfaces of the human
body reduces, while the number and spectrum of potentially
pathogenic microorganisms increase. This can lead to their
translocation to internal organs and even to the development of
purulent-inflammatory processes (44, 45).

Germ-free animals are the primary models showing the
pivotal role of resident microflora in colonization resistance and
overall health. For example, P. D. Marsh has shown that the
absence of resident microbiome has a negative impact on its
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FIGURE 3

Factors leading to the formation of synergistic and antagonistic relationships between oral microorganisms.

host, leading to thinning of the intestinal walls, ill-developed
villi, poor nutrient absorption, vitamin deficiencies, caecum
enlargement, etc., (46). Later, further experimental validations
of the role of normal microflora in preventing infections for
different microbial models have reported (47–49).

According to Marsh and Percival (50) the mechanisms
mediating colonization resistance can be divided into (a)
competition for nutrients, (b) competition for attachment
sites, (c)production of antagonistic compounds, and (d)
creation of adverse environmental conditions for exogenous
microorganisms (Figure 4). Here, we would like to update and
address the abovementioned factors in more detail.

Nutrient-related factors of colonization
resistance

Temperature, pH, atmospheric conditions, salinity, redox
potential, sheer and mechanical forces, chemical exposure from
hygiene practices, and water of saliva affect the formation of
biofilms in the oral cavity (51). However, overall microbial
biomass and its composition become considerably controlled
by competition for nutritional substances that can be utilized
at a low redox potential conditions and in the presence of
metabolic inhibitors synthesized by oral microorganisms (52).
Salivary amino acids, peptides, GCF, and glycoproteins (such
as mucin) are the main limiting nutrient sources for bacteria
inhabiting dental plaques. Saliva is the primary nutrient source
for bacteria that reside in supragingival biofilm, while GCF
provides nutrients for bacteria of the subgingival biofilms (53).

The exact composition of saliva, and therefore the
availability of particular nutrients, displays significant
interindividual differences as well as high temporary
variability (54). In general, resident bacteria outcompete
periodontopathogens in the uptake of these nutrients (55–57).
However, periodontitis-associated microorganisms destruct
tissue through degradation of the extracellular matrix, which

leads to additional release of specific nutrients (heme-
containing compounds, sources of amino acids, and iron).
These nutrients are carried into the gingival crevice through
GCF, which favors the atypical growth of asaccharolytic and
proteolytic microorganisms with iron-acquisition capacity in
the subgingival region (15).

“Food sharing” through bacterial metabolic products also
strongly shapes the microbial composition, by encouraging the
growth of some species while averting others. For instance,
lactic acid, produced by Streptococcus and Actinomyces in
the mouth as a result of carbohydrate fermentation can be
utilized by Veillonella, allowing for menadione production that
is, in turn, important for the growth of Porphyromonas and
Prevotella. Fusobacterium produces fatty acids that are used by
Treponema. Porphyromonas cal also cooperate with Treponema
to generate end metabolites that are utilized by Mogibacterium
timidum (58).

As shown by Van Hoogmoed et al., some conventional oral
commensals, such as S. sanguinis, S. cristatus, S. salivarius, S
mitis, and A. naeslundii, decrease the ability of a pathogen
Porphyromonas gingivalis to adhere to the substrate and
retrieve essential nutrients (59). Under optimal conditions,
L. lactis, a member of the normal oral microbiota, produces
nisin, a bacteriocin that mitigates pathogen-mediated oral
tumorigenesis (36, 60). Numerous mutualistic nutritional
behaviors have also been observed for bacteria growing in saliva
as their sole nutrient source (37, 61).

One of the emerging therapeutic approaches could be
the introduction of probiotic bacteria which may prevent
pathogen colonization in the oral cavity by limiting their
adhesion and producing antimicrobials that selectively target
disease-associated bacteria (62, 63). For instance, Streptococcus
salivarius displayed properties compatible with their potential
use as probiotics antagonizing Streptococcus pyogenes (64–66).
However, the main disadvantage here is that the presence of
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FIGURE 4

The mechanisms that underpin the oral colonization resistance: (A) Competition for essential nutrients and co-factors for microbial growth, (B)
competition for binding sites for microbial attachment on mucosal and dental surfaces, (C) production of antagonistic compounds by the
resident oral microbiota, and (D) creation of adverse environmental conditions that prevent the growth of exogenous microorganisms.

probiotic bacteria can be only transient since they are not
indigenous to the oral cavity. Therefore, one more attractive
therapeutic strategy could be the nutritional stimulation of
indigenous bacteria, promoting oral health.

Indeed, prebiotic substances often induce desirable
microbial composition and activity changes, thus delivering
local health benefits (67–69). For example, Slomka et al. (69)
observed that potential oral prebiotic compounds, such as
beta-methyl-D-galactoside and N-acetyl-D-mannosamine
selectively stimulate beneficial commensal bacteria of the
resident oral microbiome while suppressing the growth of
pathogenic bacteria.

Colonization resistance affects the oral ecology in health
and disease by preventing or modulating the prevalence of
specific microbial groups. Many clinical studies revealed that
nutritional compounds are the key factors that alter the
oral microbial composition by colonizing microbial biofilms,
co-aggregating, and competing with pathogenic bacteria,
subsequently reducing/replacing their numbers (Table 1).

Other types of colonization resistance
Competition for microbial attachment sites on
mucosal and dental surfaces

A large number of bacterial species appear to exhibit
specific tropism in relation to various anatomical surfaces of
the oral cavity. By examining 40 bacterial species, Mager et al.
(80) have shown that bacteria that inhabit numerous oral
cavity surfaces use very many different receptors and adhesion
molecules that define the formation of biofilms (29). Resident
oral bacteria form a robust and tight biofilm on the surface

of mucous membranes, hindering the adhesion of foreign
microorganisms. The most prominent mechanism inhibiting
biofilm formation and inducing detachment of extrinsic bacteria
from the native biofilm is known as biosurfactant action. Several
in vitro studies indicated that many bacterial species, especially
Streptococcus, rely predominantly on this method to prevent
foreign colonization of the oral cavity (59, 81, 82). This and other
attachment-related strategies are briefly summarized in Table 2.

Production of antagonistic compounds (inhibitory
metabolites)

End products of metabolism of resident microflora are also
used for effective protection against extraneous colonization.
The antagonism of microorganisms that make up the normal
microbiota concerning potentially pathogenic bacteria is due to
the production of bacteriocins, lysozyme, and other substances
(Table 3).

Various bacteriophages represent very abundant and
interesting group of oral antimicrobial agents. Oral phages
are able to invade many other bacteria besides their putative
bacterial hosts. Therefore, phages strongly shape the ecology of
oral bacterial communities, accelerate their molecular diversity
and help to acquire new gene functions (115–117).

In addition to the metabolic antimicrobials of the
microbiota listed in the Table 2, various organic acids
should be mentioned, such as short-chain fatty acids (SCFAs),
that may act as inhibitory factors (119, 120). Though SCFAs
are mainly produced in the intestines, they also contribute to
preventing colonization by pathogenic microorganisms in the
oral cavity (55).
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TABLE 1 Clinical studies to assess the significance of colonization resistance of the oral cavity.

Study type Patients Evolved microorganisms Results Ref.

Assessment of the microbial prevalence in the oral
flora of patients with advanced cancer

Patients with advanced cancer Yeasts, coliforms, and
coagulase-positive staphylococci

A loss of colonization resistance of the oral mucosa during
advanced cancer

(70)

The development of new non-invasive differential
diagnostic criteria for severity of bronchitis

Children with acute bronchitis Oral streptococci, Candida
albicans

Children with bronchitis had significantly lower
colonization index and anti-adhesive saliva activity than the
control group

(71)

The role of colonization resistance of the oral mucosa
in the influence of individual-typological characteristics

Individuals susceptible to caries and inflammatory
periodontal diseases

Oral streptococci Reducing the oral colonization resistance diagnosed in
emotionally unstable introverts correlated with their low
resistance to periodontal diseases

(72)

The colonization resistance state of the oral mucosa
of patients and their dependence on the intensity
of the teeth carious

Young patients with different body mass indices Oral streptococci In patients with 1st and 2nd degree obesity, in 70% of
patients, suppression of oral colonization resistance was
observed, compared with patients with average body mass
index

(73)

The early diagnosis of the oral cavity’s microecological
disorders that assess colonization resistance

Patients with caries and catarrhal gingivitis Oral streptococci The development of dental caries and catarrhal gingivitis is
accompanied by a decrease in the level of colonization
resistance of the oral cavity

(74)

The study of S. salivarius to produce a variety of
bacteriocin-like inhibitory substances

Healthy patients Streptococcus salivarius Prevention of streptococcal pharyngitis by anti-S. pyogenes
inhibitory substances produced by S. salivarius

(66)

Application of probiotics Bifidumbacterin in the therapy
of periodontal inflammations

Patients with gingivitis and different degrees of
periodontitis

Bifidobacterium bifidum Probiotics had a positive effect on the normalization of oral
colonization resistance

(75)

Bacillus subtilis, as an effective probiotic for prevention
of periodontitis

Patients with periodontitis Bacillus subtilis Mouth rinsing with B. subtilis significantly reduced
periodontal pathogens

(76)

Reducing the prevalence of oral Candida by
probiotic-containing cheese

Elderly people Lactobacillus rhamnosus, L.
rhamnosus, Propionibacterium
freudenreichii ssp. shermanii

The probiotic intervention reduced the risk of high
Candida counts by 75%, and the risk of hyposalivation by
56%

(62)

Assessment of the probiotics to treat gingivitis and
evaluation of its influence on plaque

Patients with moderate to severe gingivitis Lactobacillus reuteri L. reuteri was efficacious in reducing gingivitis and plaque
through colonization

(77)

Examination of possible effects of Bifidobacterium in
yogurt on caries-associated microorganisms

Healthy young adults Bifidobacterium Probiotic bifidobacteria may reduce the levels of selected
caries-associated microorganisms in saliva

(78)

Assessment of the beneficial effects L. rhamnosus in the
oral cavity for long-term caries prevention

Children with the risk of caries Lactobacillus rhamnosus L. rhamnosus was found to reduce the risk of caries
significantly, showing antagonism to Streptococcus mutans

(79)
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TABLE 2 The mechanisms involved in the competition for attachment sites of colonization resistance.

Mechanisms Examples Ref.

Interruption of biofilm formation S. cristatus inhibits the expression of FimA, a gene encoding the major protein subunit of
P. gingivalis fimbriae

(83–86)

S. intermedius produces arginine deaminase that can repress the expression of FimA and
Mfa1 (minor fimbria) in P. gingivalis

(87)

Detachment of microorganisms from the biofilm The transcriptional regulator Nrg1p controls Candida albicans biofilm dispersion (88)

Modification of the protein composition of the binding site, which is necessary for adhesion
of S. mutans

(89)

Production of biosurfactants that prevent adhesion A biosurfactant generated by S. mitis decreases the adhesion of S. mutans and several
periodontopathogens.

(90)

TABLE 3 Production of inhibitory factors by the resident oral microflora that contribute to “colonization resistance”.

Antagonistic agent Produced by Against Ref.

Mutacin, nisin, etc., (lantibiotics and
non-lantibiotics)

S. mutans, Lactococcus lactis Gram-positive bacteria, in particular, other streptococci (91–95)

Sanguicin S. sanguinis S. agalactiae and S. uberis (96)

Salivaricin S. salivarius a range of streptococci (96–98)

Reuterin Lactobacillus reuteri many members of Gram-positive and Gram-negative bacteria (99)

A bacteriocin Lactobacillus paracasei P. gingivalis, Prevotella intermedia, Tannerella forsythensis, S.
salivarius, and S. sanguinis

(100, 101)

Nigrescin Prevotella nigrescens P. gingivalis, T. forsythia, and Actinomyces species (102)

A bacteriocin Fusobacterium nucleatum a wide range of Gram-negative and Gram-positive bacteria (103, 104)

Hydrogen peroxide S. gordonii S. mutans (92, 105)

S. sanguinis a range of Gram-positive species (106–112)

S. saprophyticus, S. infantis, and S. sanguinis non-oral Escherichia coli (113)

S. oligofermentans S. mutans (114)

Lytic phages numerous species numerous species (115–117)

Nitrite S. parasanguinis, S. sanguinis, S. gordonii P. aeruginosa (118)

Creation of microenvironments that inhibit the growth
of exogenous bacterial species

Here the competition is enabled due to altered
environmental conditions, such as pH, oxygen pressure, redox
potential, etc., in oral biofilms. The members of Lactobacillus
and Streptococcus are the powerful acid producers, making
the local pH drop as low as 4.5, thus dramatically suppressing
the growth of all acid-sensitive bacteria (121). Suppression of
S. sanguinis by mixture of organic acids produced by S. mutans
has been mentioned in many studies as well (112, 122, 123).

The factors affecting/influencing
colonization patterns

In healthy people, the microbial composition of the oral
cavity depends on the physiological and ecological aspects
of the host, such as age, nutrition preferences, oral hygiene,
anatomical features of the oral cavity, hormonal status, general
somatic state, etc., (124). The richness and composition of
the oral microbiome are relatively stable due to moisture

availability, the constant presence of antimicrobial substances
(nisin, diplococcin, acidophilus, lactocidin, lactolin lysozyme,
amylases, immunoglobulins A, G, M), organic acids (lactic,
acetic, ketoglutaric and succinic) and the state of general cellular
and humoral immunity (12).

As described in the previous parts, the colonization
resistance is determined by factors of microbial, exogenous, and
host origin (125, 126).

Microbial factors
Each human individual is characterized by a specific

genetically determined spectrum of microorganisms. As we
already saw, the normal microflora plays a vital role in
the antimicrobial defense system of the oral cavity. The
term “normal” indicates a microbial population that colonizes
various ecological niches of the healthy oral cavity and takes
part in the metabolism of nutrition, protects against highly
virulent bacteria by blocking receptors of epithelial cells
from adhesion of pathogens, stimulates the immune response,
and produces biologically active substances which regulate
metabolic processes (127).
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Exogenous factors
A person’s normal microflora should also be always

considered in the context of the whole organism and its
environment. The oral cavity is the very beginning of the
digestive tract and serves as the “primary portal” for chemical
substances and foreign microorganisms. Therefore, numerous
external factors affecting the body also affect the microflora.
The most pronounced and well-characterized phenomena
depend on colonization resistance from smoking status, alcohol
consumption, diet (quality and quantity), socioeconomic status,
and antibiotic use (125). Smoking is a major environmental
factor associated with the pathophysiology of oral diseases.
Toxic components in cigarette impact oral microbiota directly
or indirectly through oxygen deprivation, immunosuppression,
biofilm formation, or other potential mechanisms, leading to
loss of colonization resistance (128). Despite different sampling
sites, numerous studies have shown the predominance of
Fusobacterium nucleatum and F. naviforme in oral from smokers
compared with non-smokers (129). Alcohol consumption may
also affect oral microbiota composition affecting functional
microbial pathways. Thomas et al. observed the reduced
bacterial richness in the oral biofilm of alcohol drinkers (130).
Liao et al. found that the genus Prevotella and Moryella
were significantly enriched in drinkers; meanwhile, the genus
Lautropia, Haemophilus, and Porphyromonas were depleted
significantly (131). Studies indicate that socioeconomic status
may alter oral microbiota community structure and higher
diversity (132, 133). The oral microbiota is a major reservoir
of antibiotic-resistant bacteria; many studies have demonstrated
that using amoxicillin, erythromycin, and tetracycline changes
oral microbiota composition and enriches bacteria resistant to
antibiotics (134, 135).

Host factors
Host mechanisms involved in the colonization resistance

phenomenon include mucosal desquamation, the antimicrobial
effect of secrets, the composition and quantity of mucin, oxygen
tension along with the thickness of the biofilm, the pH of the
medium, the rate of renewal, maturation and metabolism of
mucosal epithelium, innate, and adaptive immune mechanisms,
etc., (136). The immune factors, in turn, can involve macrophage
activity, lysozyme, lactoferrin, other bactericidal substances of
leukocytes, as well as a variety of immunoglobulins, primarily
IgA, which prevent microbial adhesion and thus promote
the removal of extraneous microorganisms to the external
environment (137). The antibacterial potential of saliva on the
one side and the number of microorganisms in the oral cavity
on the other side exist in dynamic balance. Any infringement
of the former leads to disturbances of the normal microflora
and the emergence of pathogenic microorganisms by developing
various types of pathology in the oral cavity. However,
the main functional properties of the host antimicrobial
system of saliva not only include suppression of microflora

but also effectively control its qualitative and quantitative
composition at a level sufficient to maintain microbiocenosis
(31, 138).

Global health relevance

Dental infection and antibiotic resistance remain important
global health concerns with significant morbidities. There are
convincing scientific pieces of evidence that impaired oral health
potentiates the severity of numerous systemic diseases, such
as endocarditis, diabetes mellitus, osteoporosis, and tumors
(139–142). Severe microbial oral infection and subsequent
inflammation, along with meningitis and endocarditis, are
reported to be associated with cerebral infractions among male
patients (143).

As mentioned above, microbial populations in the oral
cavity are of two major types: the resident and transient
microbiome; their delicate balance is essential for normal
oral functions. Poor oral hygiene, smoking or chewing
tobacco, inadequate nutrition, and overuse of antibiotics,
not only can disrupt such homeostatic balance between
oral resident and transient microbiome, but can also
induce antimicrobial resistance (144, 145). Since normal
oral microbiota exerts defensive functions against opportunistic
harmful microorganisms, developing an approach to restore
normal oral microbiota in infectious and inflammatory
diseases would likely reduce the oral burden of diseases.
The administration of healthy fecal microbiota to restore
colonization resistance and displace multi-drug resistant
(MDR) bacteria is already a commonly used therapeutic
practice (146–148). Whether a similar approach could be
employed to restore normal oral microbiota in oral diseases
is an area that requires further experimental, theoretical and
ethical validation.

A better understanding of microbiota-mediated
colonization resistance of the oral cavity would promote
rational dental care, and minimize oral-infection related
chronic debilitating pathologies, which is also a global health
concern. As frequently mentioned, the mouth is the gateway
to total body wellness; consequently, the oral microbiome
is likely to influence the overall health of an individual.
Therapeutic manipulation of the oral microbiome in a patient,
by targeting harmful species, to maintain healthier oral status
in a community will further assist in the maintenance of good
health and well-being, in general.

Conclusion

The abundance and composition of the oral microbial
communities are characterized by the constancy and integrity
of the relationships along with the antagonistic and stimulatory
effects between microorganisms and their hosts. Colonization
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resistance is one of the phenomena of local immunity,
which depends on a combination of factors that prevent
the adhesion and reproduction of exogenous bacteria on
dental and mucous surfaces. A certain role in this belongs to
resident microflora, which is a potent inhibitor of pathogens
and synergist for commensals of the same ecological niche.
The antagonistic effect of normal oral microflora is due to
the significant adhesive and colonizing ability of resident
microbial species, as well as the production of specific
substances that inhibit the growth of transient pathogens.
Nutritional factors may also modulate microbiota-mediated
colonization resistance. So far, the available evidence to assess
the real impact of different nutrients on the colonization
resistance of the oral microbiome is still insufficient, and more
studies are needed.
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