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Aims: Epilepsy is a neurological disease occurring worldwide. Alterations

in the gut microbial composition may be involved in the development of

Epilepsy. The study aimed to investigate the effects of cannabidiol (CBD) on

gut microbiota and the metabolic profile of epileptic rats.

Materials and methods and results: A temporal lobe epilepsy rat model

was established using Li-pilocarpine. CBD increased the incubation period

and reduced the epileptic state in rats. Compared to epileptic rats,

the M1/M2 ratio of microglia in the CBD group was significantly

decreased. The expression of IL-1β, IL-6, and TNF-α in the CBD group

decreased, while IL-10, IL-4, and TGF-β1 increased. 16S rDNA sequencing

revealed that the ANOSIM index differed significantly between the

groups. At the genus level, Helicobacter, Prevotellaceae_UCG-001, and

Ruminococcaceae_UCG-005 were significantly reduced in the model group.

CBD intervention attenuated the intervention effects of Li-pilocarpine.

Roseburia, Eubacterium_xylanophilum_group, and Ruminococcus_2 were

strongly positively correlated with proinflammatory cytokine levels. CBD

reversed dysregulated metabolites, including glycerophosphocholine and 4-

ethylbenzoic acid.

Conclusion: CBD could alleviate the dysbiosis of gut microbiota and

metabolic disorders of epileptic rats. CBD attenuated Epilepsy in rats might

be related to gut microbial abundance and metabolite levels.

Significance and impact of study: The study may provide a reliable scientific

clue to explore the regulatory pathway of CBD in alleviating Epilepsy.
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Introduction

Epilepsy is a chronic nervous system disease that affects at
least 70 million people worldwide (1). Temporal lobe epilepsy
(TLE) is the most common type of focal Epilepsy worldwide. In
the TLE model, inflammation is one of the most upregulated
biological processes in Epilepsy (2). Inflammatory factors
released by immune cells directly or indirectly affect neuronal
excitability, thereby regulating the threshold of epileptic seizures
(3). Neuroinflammation is considered the main pathological
finding of Epilepsy. Microglia are highly adaptable glial cells
in the central nervous system (CNS) and play an important
role in maintaining CNS homeostasis (4). Epilepsy triggers the
rapid activation of nearby microglia. The excess inflammatory
mediators produced by activated microglia may promote
the inflammatory immune cascade (5, 6). New evidence has
shown that neuroinflammation can affect hyperexcitability and
promote Epilepsy (7). Meanwhile, M2 microglia polarization
could alleviate seizures via suppressing neuronal apoptosis
and the hyperactivation of M1 microglia (8–10). Therefore,
neuroinflammation and M2 microglia polarization may
be an important pathophysiological mechanism in the
development of TLE.

Cannabidiol (CBD) is the main active ingredient in
cannabis. Unlike tetrahydrocannabinol (THC), CBD does not
exhibit excitation-inducing properties. CBD has antioxidant and
anti-inflammatory activities and could play a neuroprotective
role by modulating the biological targets of the brain in
neurodegenerative diseases (11). Clinical studies have reported
that CBD has a good therapeutic effect in relieving pain and
treating Epilepsy (12). Some enzymes, ion channels, receptors,
and transporters, including G protein-coupled receptor (GPR),
are molecular targets for CBD therapy (13). However, how
CBD regulates neuroinflammation in the brain and alleviates
the development of Epilepsy and its internal regulatory
pathways remain unclear.

Gut microbiota can regulate gut permeability, alter local
or peripheral immune responses, and produce essential
metabolites and neurotransmitters (14). Moreover, gut
microbiota can achieve "gut-brain" communication through
endocrine, immune and metabolic pathways (15). There is
evidence that the composition of gut microbiota changes
during Epilepsy (16), and antiepileptic drugs can affect gut
microbiota (17). Recent studies have shown that the anti-
inflammatory properties of CBD may be involved in resisting
gut inflammation, leakage of the gut vascular barrier caused
by dysregulation of the gut microbiome, and subsequent
neuroinflammation (18). However, the effects of CBD on gut
microbiota during Epilepsy treatment have been rarely reported.

We speculated that CBD might inhibit the overexpression of
inflammatory factors in Epilepsy by reducing the activation of
microglia. In addition, we will explore whether CBD mediates
changes in the composition and function of gut microbiota in
epileptic rats. We hope that this study provides preliminary

reliable scientific evidence in support of further investigations to
explore the regulatory pathway of CBD in alleviating Epilepsy.

Materials and methods

Animal

Fifty Sprague-Dawley male rats were purchased from
Hunan SJA Laboratory Animal Co., Ltd., Rats were adaptively
fed for 5 days (d) under specific pathogen-free conditions
with a controlled 12 h light/dark cycle, temperature (20–
25◦C), humidity (50–60%), and free access to water and
diet. The rats were randomly divided into the following
five groups: a control group (control group) (n = 10),
an epilepsy model group (n = 10), a low-CBD epilepsy
model group (Model + 20 mg/kg CBD group) (n = 10),
a high-CBD epilepsy model group (Model + 100 mg/kg
CBD group) (n = 10), and a Carbamazepine (CBZ) epilepsy
model group (Model + 75 mg/kg CBZ group) (n = 10).
CBD and CBZ were purchased from Sigma-Aldrich, St. Louis,
MO, USA. We chose a dose of 20 mg/kg based on a
previous study demonstrating that this was within the range
of anti-inflammatory therapy in rodents and humans (19).
A second study also demonstrated that 100 mg/kg of CBD
exerted a significant antiepileptic effect in rodent models of
Epilepsy (20). CBZ could relieve seizures with CBZ 75 mg/kg
injected (21).

Model treatment: The rats were intraperitoneally injected
with 127 mg/kg lithium chloride the day before modeling (day
6). After 18–24 h, freshly prepared pilocarpine (1538902, Sigma-
Aldrich, St. Louis, MO, USA) was intraperitoneally injected
at a ratio of 25 mg/kg. The control group was injected with
the same volume of solvent. The rats were subcutaneously
injected with 0.1 mg atropine sulfate monohydrate 30 min
before the injection of pilocarpine. Seizure severity was
graded according to the Racine Scale (22). Rats with
recurrent epileptic lasting 30 min were considered to have
status epilepticus (SE). Rats with SE were intraperitoneally
injected with 10 mg/kg of Diazepam to terminate the attack
(23, 24).

The low-CBD group was administered 20 mg/kg CBD by
gavage half an hour before modeling. The high-CBD group was
administered 100 mg/kg CBD. The CBZ group was injected
at 75 mg/kg CBZ half an hour before modeling. The control
and model groups were administered the same amount of
carrier solution (2% Tween 80 + 98% saline). The rats were
treated continuously for 7 days. Under the experimental
animal ethics protocol, all rats were intraperitoneally
injected with chloral hydrate for euthanasia. Brain tissue
and feces were collected. The experiments on rats in this
study were approved by the Animal Ethical and Welfare
Committee, The Second Xiangya Hospital, Central South
University (No. 2021523).
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Hematoxylin and eosin staining

Rat brain tissue was collected and fixed with 4%
paraformaldehyde for 24 h. After treatment with xylene
and graded alcohol, samples were stained with hematoxylin for
10 min. Next, the samples were incubated with eosin staining
solution for 5 min. Samples were dehydrated through graded
alcohol. Neutral resin was used for sealing. A light microscope
was used for observation, and images were obtained.

Immunofluorescence

Rat brains were sectioned and dewaxed. The slices were
then dipped in ethylene diamine tetraacetic acid (EDTA) buffer
(pH 9.0) for thermal repair. 3% H2O2 was used to inactivate
endogenous enzymes, and phosphate-buffered saline (PBS) was
used for flushing. Primary antibody microglia/macrophage-
specific protein IBA1 (MA5-27726, Invitrogen, Carlsbad, CA,
USA) was added and diluted at a ratio of 1:100, incubated
overnight at 4◦C, and washed with PBS. An appropriate amount
of anti-mouse-IgG-labeled fluorescent antibody was added,
incubated at 37◦C for 90 min, and rinsed with PBS. The DAPI
working solution was stained at 37◦C for 10 min. Buffered
glycerin was used to seal the tablets, which were then observed
under a fluorescence microscope.

Flow cytometry

Brain tissue was trypsinized to obtain cells. Samples, about
1 × 106 cells per well, were placed in a 1.5 ml centrifuge tube,
and the cells were resuspended in 200 µl PBS. The 5 µl of CD45
(12-0461-82, eBioscience, USA) and CD86 (374215, BioLegend,
San Diego, CA, USA), or CD45 and CD163 (326511, BioLegend,
San Diego, CA, USA) were added to the sample. The mixture
was then incubated in the dark for 30 min. The cells were washed
twice with 1 ml of PBS. Then cells were resuspended in 200 µl
PBS and filtered through a nylon mesh. Flow cytometry was
used for detection.

Quantitative real-time PCR

Total RNA was extracted from the temporal lobe cortex
using the TRIzolTM method. The TRIzol Reagent was
purchased from ThermoFisher scientific. RNA concentration
was measured using an ultraviolet spectrophotometer.
According to the instructions of the Hifiscript cDNA
Synthesis Kit (CW2569M, CWBIO, Beijing, China), a 20 µl
reaction system was used for reverse transcription. PCR
amplification was performed according to the UltraSYBR
Mixture (CW2601, CWBIO, Beijing, China) manual, and

the reaction volume was 30 µl. The SYBR method was used
for qPCR detection, and the primers were synthesized
by Sangon Biotech. Specific primer sequences are as
follows: Rat-β-actin, F-ACATCCGTAAAGACCTCTATGCC,
R-TACTCCTGCTTGCTGATCCAC, product length 223bp;
Rat-IL-1β, F-CAGCAGCATCTCGACAAGAG, R-AAAGAA
GGTGCTTGGGTCCT, product length 123bp; Rat-IL-6,
F-TCACTATGAGGTCTACTCGG, R-CATATTGCCAGTTCT
TCGTA, product length 141bp; Rat-TNF-α, F-CCCCT
CTATTTATAATTGCACCT, R-CTGGTAGTTTAGCTCCGT
TT, product length 167bp; Rat-IL-10, F-AATAAGCTCCAA
GACAAAGGT, R-TCACGTAGGCTTCTATGCAG, product
length 79bp; Rat-IL-4, F-ATGCACCGAGATGTTTGTACC,
R-GACCGCTGACACCTCTACAGA, product length 185bp;
Rat-TGF-β1, F-ACTACGCCAAAGAAGTCACC, R-CACTGC
TTCCCGAATGTCT, product length 125 bp. Data were
normalized relative to the control group, and β-actin was used
as an internal reference. The 2−11 Ct reflects the ratio of
each sample’s target gene expression level relative to that of
the control group.

Western blotting

The detection of temporal lobe cortex proteins
was undertaken as previously described (25). Radio
Immunoprecipitation Assay (RIPA) lysate (P0013B, Beyotime,
Shanghai, China) was used to extract total protein from
temporal lobe cortex tissue. After lysed for 10 min on ice,
the tissue homogenate was centrifuged at 12,000 rpm, 4◦C
for 10 min. The supernatant was boiled in water for 5 min to
denature the protein. Denatured proteins were separated on
10% SDS-polyacrylamide gels and transferred to nitrocellulose
(NC) membranes. After blocking with non-fat milk, the
membranes were incubated with the primary antibody
overnight at 4◦C. The secondary antibody was incubated for
90 min. Images were obtained using a chemiluminescence
imaging system. The antibodies used in this study were as
follows: IL-1β (16806-1-AP,1:1000, Proteintech, Chicago, IL,
USA), IL-6 (M620,1:1000, Invitrogen, Carlsbad, CA, USA),
TNF-α (17590-1-AP,1:500, Proteintech, Chicago, IL, USA),
IL-10 (20850-1-AP,1:1000, Proteintech, Chicago, IL, USA), IL-4
(66142-1-Ig,1:1000, Proteintech, Chicago, IL, USA), TGF-β1
(21898-1-AP,1:1000, Proteintech, Chicago, IL, USA), β-actin
(60008-1-Ig,1:5000, Proteintech, Chicago, IL, USA), HRP goat
anti-mouse IgG (SA00001-1,1:5000, Proteintech, Chicago,
IL, USA), and HRP goat anti-rabbit IgG (SA00001-2,1:6000,
Proteintech, Chicago, IL, USA).

16S rDNA sequencing

16S rDNA sequencing was performed on fecal samples
from 20 rats, with five rats in each group. A NovaSeq
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PE250 instrument (Illumina, San Diego, CA, USA) was used
for 16S amplicon sequencing to obtain raw data. DADA2
performed low-quality filtering operations, such as adapters,
primer removal, de-noising, merging paired-end sequences, and
removing chimeras to obtain valid data. The quality control
standard was set as truncQ = 2, F maxEE = 5, R maxEE = 2. The
sequencing depth was 50,000 reads, and one read was 250 bp.
In order to obtain species classification information, according
to the silva-132-99 database, the amplification primer Bacterial
V3/V4 (341F + 805R) in the V3–V4 region was selected,
and the primer sequence was: CCTACGGGNGGCWGCAG
GACTACHVGGGTATCTAATCC. Clusters that reached 99%
features of the reference genome Silva132 were grouped into
the same taxon. QIIME 2 (Qiime2-2020.2) was used to calculate
the α-diversity indices of the samples. The R Phyloseq/Vegan
package, Deseq2 package, and Jvenn1 online software were used
for visualization.

Untargeted metabolomics analysis

For investigating the effects of CBD on fecal metabolite
levels in epileptic rats, 20 fecal samples were analyzed using
untargeted metabolomics analysis. The rats were divided into
control, model, low-CBD, and high-CBD model groups, with
five rats in each group. Samples were quickly pounded using
a plastic hammer. A fecal sample (approximately 50 mg) was
collected from each rat and weighed. Nine volumes of the extract
containing an internal standard of 13C stable isotope were added
to each sample. The sample was stored on ice for 15 min to lyse
cells fully. The mixture was centrifuged at 16,000 g at 4◦C for
10 min. The supernatant was transferred to a new centrifuge
tube, and nitrogen was used to dry the samples. After rescaling,
the supernatant of the extract was used for the injection analysis.
A TripleTOF 5600 + MS system (AB Sciex, Framingham, MA,
USA) and an Acquity UPLC HSS T3 column (Waters) were used
for LC-MS analysis.

Data analyses

Statistical software SPSS 23.0 and GraphPad Prism 8.0.1
were used to analyze the data in this study. Data are presented
as the mean ± standard deviation. A Kruskal–Wallis test, one-
way ANOVA, and two-way ANOVA were used to compare
groups. Metabolomics data analysis was completed online using
MetaboAnalyst5.0.2 Spearman’s rank test was used to analyze
the correlation between different indicators, and statistical
significance was set at P < 0.05.

1 http://www.bioinformatics.com.cn/static/others/jvenn/example.
html

2 https://www.metaboanalyst.ca/

Results

Cannabidiol alleviates epilepsy in rats

After modeling, we found that the rats in the model group
had the earliest seizures, at 15.5 min on average, followed by
the low-CBD group at 27.3 min on average, and the slowest
in the high-CBD group at 38.0 min on average (Figure 1A).
Statistics of epileptic rats’ seizures within 80 min demonstrated.
The model group had grade 4–5 seizures within 30 min,
then continued to have grade 3–4 seizures. The rats required
anesthesia to stop the seizures forcibly. The low-CBD group
had grades 3–4 seizures within 40 min, occasional grades 2–3
seizures within 50–70 min, and occasional grades 1–2 seizures
within 70–80 min, and there was no need to terminate the
seizures forcibly. The high-CBD group had grades 3–4 within
60 min, and 1–2 seizures occasionally occurred within 60–
80 min, without the need for forced termination of seizures
(Figure 1B). Compared with the CBZ group, the high-CBD
group had no significant difference in latency and seizure
statistics within 80 min. H&E staining was performed to analyze
the pathological morphology of temporal lobe cortex and
hippocampus (Figure 1C). Compared with the control group,
the model group showed significant histopathological changes,
including neuronal atrophy and pyknosis. The morphological
damage of brain tissue was improved in the CBD group and
the CBZ group. From this, we believed that CBD could relieve
Epilepsy in rats.

Cannabidiol promotes M2-type
polarization in epileptic rats

To explore the effect of CBD on epileptic rats, we
applied the CBD treatment on epileptic rats. The IF results
of IBA1 demonstrated that the low-and high-CBD groups
were significantly lower than the model group (Figure 2A).
FCM double staining was used to detect the expression
of CD45 + CD86 (Figures 2B,C) and CD45 + CD163
(Figures 2D,E) to identify the content of M1 type and M2
type microglia cells, respectively. M1-type microglia cells were
significantly decreased in the low-CBD and high-CBD groups
compared to the Model group. However, the expression of M2-
type cells was markedly increased. The ratio of M1/M2 was
significantly decreased in the low-CBD and high-CBD groups
compared with the Model group (Figure 2F).

Cannabidiol reduces
neuroinflammation in epileptic rats

We subsequently determined the relative levels of
proinflammatory factors in the brain tissues of epileptic
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FIGURE 1

Cannabidiol (CBD) alleviates Epilepsy in rats. (A) The latency period of epileptic rat. (B) The Racine score within 1 h of modeling. (C) H&E
staining results of the temporal lobe cortex and hippocampus. *Represents significant comparison with the Model group, P < 0.05. The darker
the red, the higher the Racine score.

rats. The expression levels of IL-1β, IL-6, and TNF-α in the
model group were significantly higher than in the control group
(Figures 3A–C). Thus, the levels of proinflammatory factors
in the brains of epileptic rats were markedly increased. The
low- and high-CBD groups were significantly lower than the
model group, and the result from Western Blotting further
demonstrated this (Figures 3D–F). The expression of IL-1β,
IL-6, and TNF-α in the low-CBD and high-CBD groups was
significantly lower than that in the model group. Moreover, the
gene and protein expression of IL-1β, IL-6, and TNF-α were

not significantly different in the CBZ group compared with the
high-CBD group (Supplementary Figure 1).

The results of qRT-PCR (Figures 4A–C) and WB
(Figures 4D–F) demonstrated the levels of anti-inflammatory
factors, including IL-10, IL-4, and TGF-β1, in the
brain of rats altered among the four groups. The CBD
treatment group was significantly higher than the model
group. The high-CBD group was higher than the low-
CBD group. IL-10, IL-4, and TGF-β1 were lower in
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FIGURE 2

Effects of cannabidiol (CBD) on microglia polarization in epileptic rats. (A) IBA1 expression was detected by immunofluorescence (IF). (B,C)
Analysis of M1 type microglia. CD45 + CD86 + double positive cells are expressed as M1 type microglia. (D,E) Analysis of M2 type microglia.
CD45 + CD163 + double positive cells are expressed as M2 type microglia. (F) Statistical graph of M1/M2. *Represents significant comparison
with the control group, and #represents significant comparison with the Model group, P < 0.05.
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FIGURE 3

Effects of cannabidiol (CBD) on the expression of IL-1β, IL-6, and TNF-α in the temporal lobe cortex of epileptic rats. (A-C) IL-1β, IL-6, and TNF-α

were detected by qRT-PCR. (D-F) IL-1β, IL-6, and TNF-α were detected by western blotting (WB). *Represents significant comparison with the
control group, #represents significant comparison with the Model group, P < 0.05.

the CBZ than in the high-CBD groups (Supplementary
Figure 1).

Cannabidiol partially regulates gut
microbiota in epileptic rats

16S rDNA sequencing was performed on rat fecal samples.
A Venn diagram was used to visualize the four groups
of common and unique amplicon sequence variants (ASVs)
(Figure 5A). ASVs were used to identify species characteristics.
89 ASVs were common among the four groups. There were
64 unique ASVs in the control group, 84 in the model

group, 91 in the low-CBD group, and 155 unique ASVs in
the high-CBD group. There were no significant differences
among all groups’ Chao1, Shannon, and Simpson indices.
The results suggested no significant difference in the α-
diversity of the gut microbiota of rats receiving different
treatments (Figure 5B). However, ANOSIM analysis showed
that the R-value was 0.33 and the P-value was 0.001
(Figure 5C), demonstrating that the intergroup difference
exceeded the intragroup difference, and the grouping was
meaningful. A Heat Map was used to visualize the classification
information and relative abundance of the top 20 ASVs
(Figure 5D).
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FIGURE 4

Effects of cannabidiol (CBD) on the expression of IL-10, IL-4, and TGF-β1 in the temporal lobe cortex of epileptic rats. (A-C) IL-10, IL-4, and
TGF-β1 were detected by qRT-PCR. (D-F) IL-10, IL-4, and TGF-β1 were detected by western blotting (WB). *Represents significant comparison
with the control group, #represents significant comparison with the Model group, P < 0.05.

We conducted a different analysis of gut microbiota
at different levels to further clarify the influence of CBD
on the abundance of specific microbiota in epileptic rats.
At the genus level (Figures 6A–F), the abundance of
Helicobacter, Roseburia, Eubacterium_xylanophilum_group,
Prevotellaceae_UCG-001, Ruminococcaceae_UCG-005, and
Ruminococcus_2 were significantly different in the model group
compared with the control group. However, the abundance
of gut microbiota in epileptic rats was altered after the
CBD intervention. Spearman’s rank correlation coefficient
showed a significant correlation between the abundance of gut
microbiota and inflammatory factors (Figure 6G). Furthermore,
the abundances of Prevotellaceae_UCG-001 were negatively
correlated with proinflammatory and anti-inflammatory factors.

The abundances of Helicobacter and Ruminococcaceae_UCG-
005 were negatively correlated with proinflammatory
factors, and Roseburia, Eubacterium_xylanophilum_group,
and Ruminococcus_2 were positively correlated with
proinflammatory factors. Consequently, we conclude that
the structure of gut microbiota of epileptic rats is dysregulated,
and CBD could promote gut microbiota remodeling or
rebalance to some extent.

Cannabidiol partially mediates gut
microbiota metabolism in epileptic rats

Finally, to explore whether CBD has an effect on the
metabolism of rats with Epilepsy, we performed an untargeted
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FIGURE 5

Effects of cannabidiol (CBD) on the gut microbiota structure in epileptic rats. (A) Venn diagram. (B) α-diversity analysis. (C) ANOSIM analysis.
(D) The Heat Map visualization of the abundance and classification information of the top 20 ASVs. A color change from blue to red represents
higher abundance.

metabolomics analysis of fecal samples from rats. A Heat
Map was used to visualize the top 100 differential metabolites
(Figure 7). It was clear that the abundance of metabolites
differed among the four groups.

The results of partial least squares discriminant analysis
(pLSDA) (Figure 8A) and sparse partial least squares
discriminant analysis (spLSDA) (Figure 8B) showed that
the sample points of the control and model groups were far
from each other. In the pLSDA, the sample points of the low-
CBD and high-CBD groups were far from those of the model
group. In the spLSDA, the low-CBD and high-CBD sample
points were far apart. The results demonstrated that the four
groups of samples were separated. A bubble diagram was used
to visualize the different metabolic pathways enriched in the
top 25 (Figure 8C). Among these, the functional pathways of

metabolism and genetic information processing at the L1 level
were altered. The D-glutamine and D-glutamate metabolism;
valine, leucine, and isoleucine biosynthesis; aminoacyl-
tRNA biosynthesis; arginine biosynthesis; phenylalanine,
tyrosine, and tryptophan biosynthesis; and phenylalanine
metabolism were significantly different at the L3 level. We
then analyzed the levels of metabolites (Figures 9A–H).
Glycerophosphocholine (Figure 9B) was lower in the model
and low-CBD groups compared with the control group but
increased significantly in the high-CBD group. The levels of
several metabolites, including 4-ethylbenzoic acid (Figure 9C),
glycochenodeoxycholate (Figure 9E), indole-3-methyl acetate
(Figure 9F), inosine (Figure 9G) and methylthioadenosine
(Figure 9H) were significantly increased in the model group
compared with those in the control group, while the levels
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FIGURE 6

Effects of cannabidiol (CBD) on the changes of the abundance of gut microbiota in rats with Epilepsy. (A-F) At the genus level, the abundance of
Helicobacter, Roseburia, [Eubacterium]_xylanophilum_group, Prevotellaceae_UCG-001, Ruminococcaceae_UCG-005, and Ruminococcus_2.
*Represents significant comparison with the control group, #represents significant comparison with the Model group, P < 0.05. (G) Correlation
analysis of gut bacteria and cytokines. Blue represents negative correlation, and red represents positive correlation; The larger the absolute
value of R, the stronger the correlation; *indicates significant correlation.

of metabolites in the CBD treatment group were significantly
lower compared to those in the model group.

The abundance of Helicobacter, Roseburia,
[Eubacterium]_xylanophilum_group, and Ruminococcus_2
was significantly associated with multiple metabolites at

the genus level (Figure 9I). Among them, the levels of
the metabolites glycerophosphocholine, butyrylcarnitine
(C4), glycochenodeoxycholate, indole-3-methyl acetate, and
methylthioadenosine were correlated with different bacterial
communities.
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FIGURE 7

Differential metabolites abundance analysis. A change from blue to red indicates an increase in the levels of metabolite.

Discussion

Cannabidiol (CBD), a major non-psychoactive compound
derived from cannabis, can potentially treat neuropsychiatric
diseases (26). In this study, CBD treatment alleviated
neuroinflammation in brain tissues of epileptic rats, reduced
M1/M2 and played a neuroprotective role. In addition, we

found that CBD may play a role in treating epileptic rats by
regulating the gut microbiota and related metabolism.

The role of CBD in alleviating Epilepsy is well-known
(27). Mori et al. found that CBD plays a neuroprotective
role by reducing glial cell responses (28). This finding is
consistent with the results of our study, where the number
of microglial cells and proinflammatory M1 type positive cells
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FIGURE 8

Effects of cannabidiol (CBD) on fecal metabolism in epileptic rats. (A) partial least squares discriminant analysis (pLSDA) analysis. (B) sparse
partial least squares discriminant analysis (spLSDA) analysis. (C) Enrichment of the differential metabolic pathways. A color change from yellow
to red represents the lower of the P value.

decreased, and the number of anti-inflammatory M2 type
positive cells increased in epileptic rats treated with CBD.
This suggests that CBD promotes microglial polarization into
the M2 type. Furthermore, the expression of proinflammatory
factors, including IL-6 and TNF-α, can be reduced to alleviate
neuronal injury and play a neuroprotective role (29). We also
found that the levels of IL-1β, IL-6, and TNF-α decreased,

and levels of anti-inflammatory cytokines IL-10, TGF-β1,
and IL-4 [regulatory factor with adaptive immunity (30)]
increased. These confirmed the effectiveness of CBD in anti-
neuroinflammation in rats with Epilepsy.

The gut microbiota plays an important role in maintaining
the stability of the gut barrier and resisting pathogen invasion
(31). Several studies have found that gut microbiota plays
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FIGURE 9

Effects of cannabidiol (CBD) on the changes of the levels of metabolites in rats with Epilepsy. (A-H) Relative abundance of deoxyadenosing,
glycerophosphocholine, 4-ethylbenzoic acid, butyrylcarnitine (C4), glycochenodeoxycholate, indole-3-methyl acetate, inosine, and
methylthioadenosine. *Indicates a significant difference compared with the control group and #indicates a significant difference compared
with the model group, P < 0.05. (I) The relationship between the gut bacteria and the different metabolites. Blue represents negative correlation
and red represents positive correlation. The larger the absolute value of R, the stronger the correlation; *indicates significant correlation.

an important role in the pathophysiology of nervous system
diseases, including spinal cord injury (SCI) (32), neuromyelitis
Optica (NMO) (33), Alzheimer’s disease (AD) (34), and
multiple sclerosis (MS) (35). şafak et al. demonstrated that
dysregulation of gut microbiota could affect the development

of Epilepsy (36). In our study, the abundance of Helicobacter,
Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005
was significantly decreased in epileptic rats, whereas the
abundance of Roseburia, [Eubacterium]_xylanophilum_group,
and Ruminococcus_2 was significantly increased. Exposure to
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various compounds, including drugs for Epilepsy, can positively
or negatively alter the gut microbiota and reduce or exacerbate
seizures (37). Although some antiepileptic drugs affect the
growth and metabolism of gut bacteria, for example, lamotrigine
suppresses ribosome biogenesis in E. coli, and thus may restrain
its growth (38), there is little evidence of direct interaction
between antiepileptic drugs and the gut microbiome. In our
study, we found that the composition of the gut microbiota of
epileptic rats was disordered. CBD treatment was beneficial for
the restoration of at least part of the gut bacterial abundance in
epileptic rats, such as Prevotellaceae_UCG-001. To the best of
our knowledge, Prevotellaceae UCG-001 is an SCFA-producing
bacterium that plays an anti-inflammatory role in immune
cells and inhibits the growth of invasive pathogens (39). This
is an encouraging finding, suggesting that CBD may improve
Epilepsy through beneficial gut bacteria.

Moreover, study has found that the gut microbiome
can affect the occurrence and development of epilepsy by
regulating the polarization of microglia (40). Activation of
the M2 phenotype could suppress subsequent inflammation
in epilepsy (40). Combined with the above analysis, microglia
M2 polarization might be involved in the process of gut
microbiome affecting epileptic seizures. Recent study has found
that modulating the microbiome can affect the expression of
IL-1β, IL-6, and TNF-α (41). Transplantation of a disturbed
gut microbiome exacerbates inflammatory damage, including
stimulating the expression of pro-inflammatory factors IL-
1β, IL-6, and TNF-α, and reducing the levels of anti-
inflammatory IL-10, IL-4, and TGF-β (42). From this, we could
speculate that the gut microbiome might affect epileptic seizures
by regulating the expression of inflammatory factors while
regulating M2 polarization.

Gut microbiota produces a variety of substances that
alter the excitation-inhibitory balance of the nervous system,
including metabolites that act as neuromodulators (37).
Correlation analysis showed that glycochenodeoxycholate levels
were significantly correlated with different gut microbiota.
Glycochenodeoxycholate is an important component of bile
acids and is involved in steatosis and poor glucose tolerance (43).
Gut microbiota can produce bioactive metabolites that directly
or indirectly affect host physiology and metabolic balance (44).
Dysfunctional glutamate metabolism in astrocytes can directly
lead to neuronal over-excitation, which plays an important
role in the pathogenesis of Epilepsy (45). Administration of
valine, leucine, isoleucine, and branched-chain amino acids
to epileptic rats increases the average latency period of
epileptic seizures (46). In addition, mitochondrial aminoacyl-
tRNA synthetases (AaRSs) provide amino acids homologous
to tRNAs and regulate a variety of cellular processes. One
study showed that mutations in human mitochondrial AaRSs
cause epilepsy in infants (47). Acute supplementation of
branched-chain amino acids (valine, leucine, and isoleucine)
reduced seizures, whereas long-term oral supplementation with

branched-chain amino acids led to worsening seizures (48).
We also found a statistical difference in different groups’
enrichment of D-glutamine and D-glutamate metabolism,
valine, leucine, isoleucine biosynthesis, and aminoacyl-tRNA
biosynthesis. Hence, we hypothesized that CBD might be
involved in regulating the metabolic function of the gut
microbiota of epileptic rats. Furthermore, the composition of
the gut microbiome and the levels of IL-10, IL-4, and TNF-α
were altered in mice after drug intervention, and regulation of
SCFAs, microbial metabolites, could affect the expression of IL-6
(49). Combined with the above analysis, we could speculate that
the gut microbiome is involved in the process of CBD alleviating
epilepsy, which might be mediated by microbial metabolites
regulating inflammatory factors.

There were some limitations to our study. Although there
are some network and neurochemical similarities between
human TLE and Li-pilocarpine models, including increased
neurotrophins and cognitive and memory disorders (50, 51),
because these models have not been fully validated clinically,
they cannot predict clinical responses to all treatment strategies.
In addition, owing to the inherent limitations of the Li-
pilocarpine model, the frequency and severity of induced
spontaneous seizures vary, which may lead to unavoidable
systematic errors. Therefore, in the selection of samples and
sample size, the CBD group alone could be set, relevant clinical
samples could be supplemented, and the number of samples
could be increased. Furthermore, animal behavioral tests,
untargeted metabolic analysis of blood, and targeted analysis
of related metabolites could be supplemented to obtain more
comprehensive data. In the future, we intend to combine clinical
samples and fecal microbiota transplantation (FMT) to further
study the mechanism of CBD and gut microbiota in Epilepsy.

Conclusion

In conclusion, CBD could effectively inhibit
neuroinflammation in epileptic rats. Furthermore, CBD
might have a tendency to promote gut microbiota remodeling
and altered the metabolic pathways in the gut of epileptic rats.
It is not yet clear whether CBD manipulates the gut microbiota
to improve the symptoms of Epilepsy. We hypothesized that
the improvement of CBD in Epilepsy might be through changes
induced in the gut microbiota and will continue to explore this
area in further research.
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