AUTHOR=Abdullah , Ahmad Naveed , Tian Wenni , Zengliu Song , Zou Yucheng , Farooq Shahzad , Huang Qingrong , Xiao Jie TITLE=Recent advances in the extraction, chemical composition, therapeutic potential, and delivery of cardamom phytochemicals JOURNAL=Frontiers in Nutrition VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2022.1024820 DOI=10.3389/fnut.2022.1024820 ISSN=2296-861X ABSTRACT=
Dietary phytochemicals including plant-derived alkaloids, carotenoids, organosulfur compounds, phenolics, and phytosterols, are health-promoting bioactive compounds that help in the prevention and mitigation of chronic diseases and microbial infections beyond basic nutrition supply. This article covers recent advances in the extraction, chemical composition, therapeutic potential (nutraceutical and antimicrobial), and delivery of black and green cardamom-derived phytochemicals. In recent years, advance extraction techniques (e.g., enzyme- assisted-, instant controlled pressure drop-, microwave- assisted-, pressurized liquid-, sub- critical-, supercritical fluid-, and ultrasound-assisted extractions) have been applied to obtain phytochemicals from cardamom. The bioactive constituents identification techniques, specifically GC-MS analysis revealed that 1,8-cineole and α-terpinyl acetate were the principle bioactive components in black and green cardamom. Regarding therapeutic potential, research findings have indicated desirable health properties of cardamom phytochemicals, including antioxidant-, anti-hypercholesterolemic, anti-platelet aggregation, anti-hypertensive, and gastro-protective effects. Moreover, antimicrobial investigations revealed that cardamom phytochemicals effectively inhibited growth of pathogenic microorganisms (bacteria and fungi), biofilm formation inhibition (Gram-negative and Gram-positive bacteria) and bacterial quorum sensing inhibition. Encapsulation and delivery vehicles, including microcapsules, nanoparticles, nanostructured lipid carriers, and nanoliposomes were effective strategies to enhance their stability, bioavailability and bioefficacy. In conclusion, cardamom phytochemicals had promising therapeutic potentials (antioxidant and antimicrobial) due to polyphenols, thus could be used as functional additive to increase shelf life, inhibit oxidative rancidity and confer pleasant aroma to commercial edibles as well as mitigate oxidative stress and lifestyle related chronic diseases (e.g., cardiovascular and gastrointestinal diseases). A future perspective concerning the fabrication of functional foods, nutraceuticals and antibiotics to promote cardamom phytochemicals applications as biotherapeutic agents at large-scale requires thorough investigations, e.g., optimum dose and physical form of supplementation to obtain maximum health benefits.