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Artemisia argyi leaf is a well-known species in traditional Chinese medicine,

and its essential oil (AAEO) has been identified to exert various physiological

activities. The aim of this study was to investigate the effects of AAEO on

lipid metabolism and the potential microbial role in high-fat diet (HFD)-fed

mice. A total of 50 male mice were assigned to five groups for feeding with

a control diet (Con), a high-fat diet (HFD), and the HFD plus the low (LEO),

medium (MEO), and high (HEO) doses of AAEO. The results demonstrated

that dietary HFD markedly increased the body weight gain compared with the

control mice (p < 0.05), while mice in the HEO group showed a lower body

weight compared to the HFD group (p < 0.05). The weight of fatty tissues and

serum lipid indexes (TBA, HDL, and LDL levels) were increased in response to

dietary HFD, while there was no significant difference in AAEO-treated mice

(p < 0.05). The jejunal villus height was dramatically decreased in HFD-fed

mice compared with the control mice, while HEO resulted in a dramatically

higher villus height than that in the HFD group (p < 0.05). Microbial α-

diversity was not changed in this study, but β-diversity indicated that microbial

compositions differed in control, HFD, and EO subjects. At the genus level,

the relative abundance of Bacteroides was greater (p < 0.05) in the feces of

the Con group when compared to the HFD and EO groups. On the contrary,

the abundance of Muribaculum was lower in the Con group compared to

the HFD and EO groups (p < 0.05). Although the Muribaculum in the EO

group was lower than that in the HFD group, there was no statistically notable

difference between the HFD and EO groups (p > 0.05). Simultaneously, the

relative abundance of Alistipes (p < 0.05) and Rikenella (p < 0.05) was also

dramatically higher in the Con group than in the HFD and EO groups. The

abundance of norank_f__norank_o__Clostridia_UCG-014 was lower in the
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HFD or EO group than in the Con group (p < 0.05). In conclusion, the results

suggested that HEO could affect body weight and lipid metabolism without

gut microbes in ICR mice, and it was beneficial for the structure of the jejunal

epithelial tissue.

KEYWORDS

Artemisia argyi, high fat, lipid, gut, microbiota

Introduction

Obesity is a nutritional disorder caused by an imbalance
between energy intake and expenditure (1). As economic
development increased in developing countries, obesity and
metabolic syndrome became more prevalent, primarily due
to accelerated urbanization and nutritional changes; declining
physical activity and genetics also played a role (2, 3). The
prevalence of childhood obesity has increased by approximately
5% per decade over the past 50 years, not only among adults but
also children (4). As fat accumulated in the body, dyslipidemia
and metabolic syndrome would develop. An elevated level of
lipids was associated with an increased risk of atherosclerosis
and cardiovascular diseases (5). Atherosclerosis was closely
associated with lipids and lipid-containing substances in the
blood, of which cholesterol played the most important role (6).
In humans, losing weight was a major way to reduce the risk
of diabetes (7). It has been demonstrated that some anti-obesity
drugs, such as orlistat and lorcaserin, as well as sustained-release
tablets of phentermine/topiramate and naltrexone/bupropion
are effective at reducing weight (8, 9). However, anti-obesity
drugs may also cause gastrointestinal problems, weakness,
mental disorders, and cardiovascular diseases, among others
(10). Therefore, many experts predicted that natural products
will provide hypolipidemic active factors that will intervene in
obesity and its complications, as well as direct drug treatment.

There was a need for effective weight loss strategies and
effective methods to prevent weight gain due to the current
global obesity epidemic. A variety of gut microbial metabolites
were necessary for gut microbiota to regulate host lipid
metabolism, including short-chain fatty acids, secondary bile
acids, and trimethylamine (11). Animal health depended on
gut microbiota which were involved in digestion, metabolism,
immunity, and defense against pathogens (12, 13). A better
understanding of the interactions between host and gut
microbes was crucial to study the complex relationship between
host and microbiota. With the development of gene sequencing
technology, we can explore the impact of changes in animal
diet on the structure and function of intestinal microorganisms
(14, 15). The molecules involved in this interaction could be
measured, especially the microbiota-produced metabolites that
were available to the host.

Looking for effective traditional Chinese medicine extracts
is critical for obesity prevention, and it is still unclear
how they impact the gut microenvironment. The leaves of
Artemisia argyi were part of the Compositae family and were
herbaceous perennial plants (16). It is well known that A. argyi
leaves were the original source of Moxa floss (made from
ground A. argyi leaves) in Moxibustion. The technique was
widely known for its ability to diminish inflammation, relieve
pain, promote blood circulation, and remove obstructions in
channels through acupuncture and moxibustion therapy (17).
A. argyi was beneficial for improving egg quality and increasing
polyunsaturated fatty acids in egg yolk (18). Additionally,
A. argyi leaf was used for preparing medical products, such
as capsules and aerosols containing Moxa essential oil (16).
Several studies had shown that A. argyi leaves were the main
source of essential oil; it has antihistamine, phlegm-eliminating
properties, cough-relieving properties, antifungal, and antiviral
properties (19–21). Additionally, an analysis of the chemical
composition, extraction yield, and quality evaluation of the
essential oils extracted from A. argyi leaves (AAEO) has
been conducted (22–24). Although AAEO was a geo-authentic
medicine, there was relatively little research on it. The objective
of this study was to investigate the effect of AAEO on lipid
metabolism, body fat distribution, and gut microbes in a diet-
induced obesity mouse model. Moreover, we also examined
whether AAEO levels at different concentrations improved lipid
metabolism. A systematic study was conducted using ICR mice
to determine the effect of AAEO levels on fat metabolism and
whether the effects were harmful or beneficial to the structure of
the gastrointestinal tract.

Materials and methods

Animals and treatments

Animal experiments were conducted in accordance with the
Hunan Agricultural University Institutional Animal Care and
Use Committee (202105). Six-week-old male ICR mice were
purchased from SLAC Laboratory Animal Central (Changsha,
China). The mice were housed in a controlled environment after
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a 1-week adaptation period. AAEO was purchased from Jiangxi
Hairui Natural Plant Co., Ltd., Jian, China.

A total of 50 male mice (29.40 ± 1.23 g) were divided into
5 groups at random, with 10 repetitions in each group. Mice
were fed the control diet (Con), the high-fat diet (HFD), and the
HFD-fed mice with the low (LEO), medium (MEO), and high
(HEO) doses of AAEO. AAEO was dissolved in 4% Tween 80. In
the LEO, MEO, and HEO groups, mice received 0.20, 0.40, and
0.80 ml/kg AAEO, respectively. The Con and HFD groups were
given the same amount of physiological saline by oral gavage.

Fecal samples were obtained and kept at −80◦C for
examination. The mice were sacrificed under anesthesia. Finally,
blood, subcutaneous adipose tissue (SAT), abdominal adipose
tissue (AAT), epididymal adipose tissue (EAT), perirenal
adipose tissue (PEAT), brown adipose tissue (BAT), liver, and
jejunal tissue were collected for further examination.

Analyzing blood samples for
biochemical parameters

Serum extracted from blood samples using 3,000 rpm
for 10 min at 4◦C. Biochemical parameters of serum were
tested using an automatic biochemistry analyzer (25), the index
included total bile acid (TBA), glucose (Glu), total cholesterol
(TC), triglycerides (TG), low-density lipoprotein (LDL), and
high-density lipoprotein (HDL).

Histological analysis

The jejunal tissue was removed and fixed in a 4%
paraformaldehyde solution, then the fixed tissue was paraffin-
embedded, and the jejunal tissue block was cut approximately
4-µm thick using a microtome and stained with hematoxylin
and eosin (H&E) (26). The villus height was the distance from
the villus tip to the crypt mouth, and crypt depth was the
distance from the crypt mouth to the base of the crypt (27, 28).

DNA extraction and microbiota analysis

As previously reported, DNA extraction and 16S ribosomal
RNA amplification were carried out (29). Fecal samples
were extracted for DNA with an E.Z.N.A.

R©

soil DNA kit
(Omega Biotek, Norcross, GA, USA) on the basis of the
standard protocol. Using universal primers targeting the V3-
V4 region 338F/806R, 16S rRNA from bacteria was amplified
and sampled for sequencing using an Illumina Miseq PE300
platform (Illumina, SD, USA) (30). Sequence reads from
the original sequence were uploaded to NCBI’s Sequence
Read Archive. The 16S rRNA amplicon sequences have been
deposited in the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA)1 under accession number
PRJNA861869.

Statistical analyses

Statistical analyses between the means of each group were
analyzed using one-way ANOVA (one-way analysis of variance)
followed by Duncan comparison range tests through SPSS 22.0.
The statistical significance level was set at p < 0.05.

Results

Body weight and organ index

As described in Figure 1A, the HFD group mice markedly
raised the body weight compared to the Con group (p < 0.05).
An 8-week treatment with HEO markedly decreased body
weight compared to the HFD group (p < 0.05), but medium
and low doses of AAEO did not affect body weight in ICR mice
(p > 0.05). As described in Figure 1B, the low, medium, and
high doses of AAEO did not markedly change SAT, AAT, EAT,
PEAT, and BAT weight in ICR mice (p > 0.05). Although HFD
markedly promoted liver weight compared to the control group
(p < 0.05), the addition of high, medium, and low doses of
AAEO did not dramatically affect liver weight in the HFD group
(p > 0.05).

Indicator of serum lipid metabolism

As demonstrated in Figure 2, the HFD, LEO, MEO, and
HEO raised serum TBA levels compared to the Con (p < 0.05).
However, the addition of low, medium, and high doses of
AAEO did not dramatically affect TBA level compared to the
HFD group (p > 0.05). In addition, the HFD, LEO, MEO, and
HEO declined in TG level compared to the Con (p < 0.05).
However, the addition of low, medium, and high doses of AAEO
did not dramatically affect TG levels compared to the HFD
group (p > 0.05). There was no remarkable difference in Glu
concentration in Con, HFD, and AAEO groups (p > 0.05).
Although LEO- and MEO-fed ICR mice had no remarkable
difference in TC level from the HFD group (p > 0.05), the HEO
markedly enhanced the level of TC in blood compared with
the HFD group (p < 0.05). All the AAEO treatments markedly
raised the level of TC in blood compared with the Con group
(p < 0.05). Meanwhile, the HFD, LEO, MEO, and HEO raised
HDL levels compared to the Con (p < 0.05). However, the
addition of low, medium, and high doses of AAEO showed no

1 https://dataview.ncbi.nlm.nih.gov/object/PRJNA861869
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FIGURE 1

Effects of Artemisia argyi leaves (AAEO) on (A) body weight and (B) organ index in mice.

remarkable effect on HDL levels compared to the HFD group
(p > 0.05). The HFD markedly raised LDL levels in ICR mice
with or without AAEO supplementation (p < 0.05), and there
was no remarkable effect on blood LDL levels between high,
medium, and low doses of AAEO (p > 0.05).

Histomorphological analysis of
jejunum

Figure 3A shows the morphology of jejunal tissue under
Con, HFD, and HEO treatments in ICR mice. In this study,

jejunal villus height notably declined with the high-fat group
compared to the Con diet-fed to ICR mice as described in
Figure 3B (p < 0.05), but a high dose of AAEO induced a
notably higher jejunal villus height than HFD in mice (p< 0.05).
In ICR mice, the HFD fed to mice did not notably increase crypt
depth in the jejunum compared to the Con group (p > 0.05),
and there was no noteworthy change between the HEO, Con,
and HFD groups (p > 0.05). With the high-fat diet fed to mice,
the VH/CD declined in ICR mice compared to the Con diet
(p< 0.05), and the VH/CD of the HFD group was notably lower
than that of the AAEO group (p < 0.05). No matter the control
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FIGURE 2

Effects of AAEO on serum lipid levels in mice.

FIGURE 3

Effects of AAEO on the morphology of jejunal epithelial tissue in mice. (A) Light microscopy cross-section of the jejunal tissue. (B) The structure
of the jejunal epithelial tissue.
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FIGURE 4

Effects of AAEO on (A) α diversity and (B) β diversity in the fecal microbiota of mice.

group, high-fat group, or AAEO group, there was no noteworthy
effect on the jejunal villus width of ICR mice (p > 0.05).

Bacterial diversity in feces

Based on three dietary treatments, Figure 4A shows the
differences in fecal bacterial diversity among ICR mice. The
study demonstrated that the EO fed to mice remarkably
decreased the ACE index of OTU levels compared with the
Con diet (p < 0.05). The three treatments did not affect fecal
Shannon index of OTU levels in ICR mice (p > 0.05). Although
the addition of EO in the diet had no marked effect on the HFD
group on Chao index, while EO group remarkably decreased the
Chao index compared with the Con group (p < 0.05). There
was no notable change on the Simpson index of OTU level
between the three different dietary treatments (p > 0.05). As
demonstrated in Figure 4B, the male mice affected by the three
dietary treatments produced significant segregation of PLS-DA
on an OTU level.

Fecal microbial composition

Figure 5 shows how the three treatments affected mice’s fecal
microbiota at the phylum level (>1%). Bacteroidota, Firmicutes,
Actinobacteriota, and Proteobacteria were the main phyla in the
feces of mice, accounting for more than 98% of the total number
of fecal bacteria. At the dominant phylum level, no differences
were found in fecal bacteria from mice (p > 0.05). As described
in Figure 6, norank_f__Muribaculaceae, Lactobacillus,
Bacteroides, Faecalibaculum, and norank_f__Erysipelotrichaceae
were major bacteria in the Con, HFD, and EO groups at the
genus level. There were marked changes in 5 of the top 40

genera throughout the whole stage. The relative abundance
of Bacteroides was greater (p < 0.05) in the feces from the
Con diet when compared to the HFD and EO diets. On the
contrary, the abundance of Muribaculum was lower in the
Con diet than in the HFD and EO diets (p < 0.05). In the
meantime, the relative abundance of Alistipes (p < 0.05)
and Rikenella (p < 0.05) were also notably higher in the
Con diet than in the HFD and EO diets. The abundance of
norank_f__norank_o__Clostridia_UCG-014 was lower in the
HFD or EO diet than in the Con diet (p < 0.05). Although the
abundance of Muribaculum in the EO diet was lower than that
in the HFD diet, there was no notable difference (p > 0.05).

Discussion

At present, the research in traditional Chinese medicine
(TCM) focuses more on polysaccharides and flavonoids
(31, 32). Researchers have demonstrated that a variety of
dietary components can be used to treat obesity, including
polysaccharides, polyphenols, terpenes, and alkaloids (33, 34).
In addition, dietary amino acids and uridine can also affect
body fat catabolism (35–37). The anti-obesity mechanisms
usually included appetite suppression, fat absorption reduction,
lipolysis enhancement, lipolysis reduction, and modification of
the gut microbiota (38, 39). The leaf of A. argyi was widely
used in TCM for its antimicrobial properties, relief from itching,
and improvement of blood circulation. Compositae plants had
a strong aromatic smell that attracted researchers to investigate
their volatile composition (16). This study examined the effects
of AAEO on fat deposition, blood lipid metabolism, fecal
microbiota, and epithelial structure of jejunum in ICR mice.
The HFD remarkably raised the final weight of the mice than
their basal diet, while HEO restored the mice’s weight to the
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FIGURE 5

Effects of AAEO on phylum-level bacteria in the fecal microbiota of mice.

level of their basal diet. It showed that AAEO had a certain
alleviating effect on obesity in mice. According to the results of
fat deposition in this experiment, AAEO did not affect the fat
weight of ICR mice, but AAEO did affect the weight of the liver,
and the mechanism needed further experiments to clarify.

The blood biochemical indexes of the host not only provide
information about the health and immune function of the
body but also reveal their biological characteristics (40). There
was a correlation between hypertrophymia and TC levels in
the blood. Compared with LDL, HDL is more likely to cause
hypertrophymia (41). In this experiment, AAEO did not change
the concentrations of TBA, Glu, TG, HDL, and LDL in the
blood of HFD mice; the high concentration of AAEO only
raised the concentration of TC in the blood of HFD fed to
mice. This indicated that AAEO had little effect on blood lipid
metabolism in ICR mice.

Physical, chemical, microbiological, and immunological
barriers make up the gut barrier (42). Dietary nutrients can
modulate the small intestinal tissue morphology and digestive
function of animals, and the gut barrier function is very critical
to the host (43, 44). Nutrients were absorbed primarily through
the small intestine. In evaluating small intestine digestion and
absorption, villi height and crypt depth were key indicators.
Deeper crypts reflected faster cell formation, whereas shallower
crypts indicated accelerated maturation and improved secretion.
It was possible to determine the functioning state of the
gut by measuring the villus height and crypt depth (45). In
recent years, physical barriers have been extensively examined
in HFD resulting in increased intestinal permeability, which
greatly increased the translocation of endotoxins from the gut
to the blood circulation (46, 47). Throughout the intestine,
tightly connected epithelial cells form a dynamic permeability
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FIGURE 6

Effects of AAEO on (A) genus-level bacteria distribution and (B) significantly different bacteria at the genus level in the fecal microbiota of mice.

barrier that prevents potentially harmful substances and allows
nutrients into the blood circulation (42). In this study, HFD
reduced villus length and increased crypt depth in mice,
suggesting a disruption of the physical barrier of the jejunum.
Meanwhile, HFD decreased the VH/CD in the jejunum of mice,
but AAEO restored it, so the effect of AAEO on jejunal function
may be positive.

The study of fecal microbiota is very necessary for the
growth and health of animals (25, 30). Blood lipids are closely
associated with gut microbiota, and normal gut microbiota may
regulate blood lipid levels (48). Therefore, the main phylum-
level flora of the mouse gut in this study was not affected by
AAEO, corresponding to the same unaffected blood lipids in
the experiment. To achieve nutrient absorption and deposition,
the intestinal structures and microbiota must remain intact in
order to induct chemicals and maintain digestive functions.
The intestinal bacterial community was considered to have an
important role in preserving intestinal function (49, 50). There
were more than 100 trillion microorganisms in the ecosystem,
most of which were bacteria (51). Microbiota composition
and activity in the intestine were affected by many factors,
including age, environment, and diet, with diet being the most
crucial of these (52–54). Gut microbiota colonization and gut
microbiota-mediated immunity are both influenced by diet (55).
We explored the effect of AAEO on the bacteria community
in feces. Based on the findings of the current study, HFD
mice had lower bacterial diversity than ICR mice on a basal
diet. Due to the high variability between and within species
in the gut microbiome, it was difficult to define a healthy
gut microorganism in terms of specifications (56, 57). Despite
this, gut microbes and metabolites may be relatively stable (57,
58). According to previous studies, the ratio of Firmicutes to
Bacteroides was increased in obese host (59) and correlated
with host energy intake (60, 61). We found that 5 of the

top 40 genera were notably altered over the course of the
entire stage. The relative abundance of Bacteroides, Alistipes,
Rikenella, and norank_f__norank_o__Clostridia_UCG-014 was
lower in the HFD fed to ICR male mice in comparison with
the control diet given to the mice. However, the addition of
AAEO had no effect on these four bacteria. Simultaneously, the
abundance of Muribaculum was higher after feeding HFD than
after feeding the control diet, but adding AAEO on the basis of
HFD had no effect on Muribaculum. This proved that AAEO
had little effect on the main microbiota of mouse feces. So,
we inferred that AAEO will not broadly regulate the intestinal
microbial community.

Conclusion

This study demonstrated that HFD could alter lipid
metabolism and gut microbiota in ICR mice. Simultaneously,
the gut barrier was weakened by HFD, which may impair
the ability of nutrient absorption and digestion for the host.
Although AAEO did not affect lipid deposition in mice,
AAEO improved intestinal tissue morphology in mice. This
study, which comprehensively investigated lipid metabolism,
intestinal barrier, and the microbial response of AAEO in mice,
indicated that AAEO was mainly beneficial to the intestinal
barrier of mice.
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