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A large number of studies have proved that biological metabolic phenotypes

exist objectively and are gradually recognized by humans. Gut microbes

affect the host’s metabolic phenotype. They directly or indirectly participate

in host metabolism, physiology and immunity through changes in population

structure, metabolite differences, signal transduction and gene expression.

Obtaining comprehensive information and specific identification factors

associated with gut microbiota and host metabolic phenotypes has become

the focus of research in the field of gut microbes, and it has become

possible to find new and effective ways to prevent or treat host metabolic

diseases. In the future, precise treatment of gut microbes will become one

of the new therapeutic strategies. This article reviews the content of gut

microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic

phenotypes, including metabolic intermediates, mechanisms of action, latest

research findings and treatment strategies, which will help to understand the

relationship between gut microbes and host metabolic phenotypes and the

current research status.

KEYWORDS
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Introduction

Biological metabolic phenotype is based on the analysis of cell types, biological
fluids and biological tissues, and uses a variety of parameters to approximately describe
the organism in a specific physiological state (1). Johnson et al. (2) included genetic,
environmental and gut microbial information into the biological metabolic phenotype
for the first time in 2012. This new concept can describe the biological metabolic
phenotype more accurately. The so-called biological metabolic phenotype is mainly
determined by the organism’s genome, intestinal flora, its environment (including stress,
diet, and lifestyle) and its intake of foreign substances (including drugs, cosmetics,
environmental pollution, and food) (2). It is commonly described by four indexes,
including the presence or absence of metabolites, the concentration of metabolites, the
ratio between metabolites, and the overall information of metabolites (1).
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Gut microbes are one of the important factors that
determine the biological metabolic phenotype. Their
metabolites and components directly affect the host’s nutrient
absorption and development, and affect the host’s health by
promoting the development of the host’s epithelial tissue and
the immune system (3). In turn, the host’s living environment,
nutrient levels, developmental stage and health status influence
the composition of the gut microbiome.

The types, concentrations, ratios and overall information
of metabolites vary with the composition of gut microbes.
Different microbial metabolites play different metabolic
roles, and thus make the host present different metabolic
phenotypes. For example, Faecalibacterium prausnitzii and
Eubacterium rectale produce butyrate; Probiotics such as
Lactobacillus and Bifidobacterium, and 7α-dehydroxybacteria
such as Clostridium, exhibit bile acid resistance associated with
glycolytic activation; Gram-positive bacteria are more sensitive
to bile acids than Gram-negative bacteria; Bile acids directly and
rapidly affect the metabolism of bacteria, including membrane
damage, disruption of amino acid, nucleotide and carbohydrate
metabolism, and short-term exposure to bile acids significantly
affects host metabolism by altering bacterial community
structure (4). Some studies have changed the relative abundance
of Escherichia, Romboutsia, Intestinibacter, and Clostridium in
the gut through the intervention of external drugs (metformin),
which leads the alterations of the concentrations of metabolites
such as carbohydrates, amino acids, and fatty acids in the gut (5).
The metformin also affects energy metabolism, gluconeogenesis,
and branched-chain amino acid metabolism, hindering host
hypoglycemic-related metabolic pathways (5). Therefore, to
study the impact of gut microbes on host metabolic phenotypes,
high attention should be paid to comprehensive information on
gut microbiota composition and its specific metabolites.

The gut microbiota regulates host metabolism, including
carbohydrate, amino acid, lipid and nucleic acid metabolism. So
far, there have been a lot of researches on the influence of gut
microbes on host metabolism, but most of them focus on the
dominant flora and its metabolites. Therefore, comprehensive
information about the metabolic phenotype of gut microbiota
to the host yet to be fully explored.

Gut microbes influence host
metabolic phenotype through
metabolites

The metabolites of gut microbes are very rich, such as
a variety of short-chain fatty acids (acetate, propionate, and
butyrate, etc.), alcohol, carbon dioxide, and hydrogen. They
can utilize their respective metabolites to ensure gut viability
and influence the development of the host immune system,
homeostasis, and function through nutrient- and metabolite-
dependent mechanisms (Table 1) (6). For example, Blautia

spp. can convert carbon dioxide plus hydrogen to acetate;
Methanobrevibacter convert carbon dioxide plus hydrogen to
methane; Desulfovibrio convert sulfate to hydrogen sulfide (7,
8). These metabolites directly or indirectly affect the response
of host immune and promote or delay the occurrence of
their own diseases.

Fiber and bacterial metabolites affect host and gut health
by modulating inflammation, glucose and lipid metabolism (9).
For example, bacterial metabolites short-chain fatty acids have
anti-inflammatory effects: Butyrate produced by Clostridium
butyricum (10) stimulates intestinal epithelial cells and antigen
presentation to produce cytokines such as TGF-β, IL-10, IL-18,
(11) and reduces mild inflammation, glucose metabolism
imbalance and insulin resistance in the host (12); Propionate
can fight lipogenesis, lower cholesterol (13), inhibit colon cancer
cell proliferation (14, 15) and induce T cells to differentiate into
T regulatory cells (16). At the same time, it can control weight by
stimulating satiety (17), and be absorbed by intestinal epithelial
cells to improve the integrity of host intestinal epithelial cells
(18). Propionate alone also reduces intra-abdominal tissue
hyperplasia and lipid content in liver cells in overweight adults
(19). Studies have confirmed that gut microbes can produce
propionate by metabolizing carbohydrates such as L-rhamnose,
D-tagatose, Resistant starch, Inulin, Polydextrose, Arabinoxylans,
Arabinoxylan oligosaccharides, Mannooligosaccharides, and
Laminarans (17); Acetate and propionate can inhibit Toll-
like receptor (TLR4) stimulation to mediate the production
of proinflammatory cytokines (16, 20), and the ratio of
propionate to acetate determines whether propionate inhibits
the conversion of acetate to cholesterol and fat (21, 22);
Pyruvate mainly comes from carbohydrate metabolism, and
can be further metabolized by the microbiota into succinic acid,
lactic acid or acetyl-CoA to produce short-chain fatty acids,
which provide energy for the normal functioning of the body
(16, 18).

When the metabolites interacting with the intestinal flora
are disordered, it also leads to increased intestinal permeability,
bacterial endotoxin and increased harmful substances absorbed
into the liver through the portal system, thereby affecting
the metabolism of carbohydrates and lipids in the liver
and exacerbating the imbalance between pro-inflammatory
factors and anti-inflammatory effectors (23–25). Eventually,
it leads to the development of metabolic fatty liver disease,
infectious diseases and certain neurological diseases (26–
29). For example, The deconjugation, oxidation/epimerization,
(7-α-) dehydroxylation and esterification of bile acids (30)
by the intestinal microbiota can dramatically change their
physicochemical properties and subsequently affect their
microbial toxicity and intestinal absorption (31). In addition,
the metabolites enhance intestinal reabsorption by uncoupling
BAs through microbial bile salt hydrolase (32); Some probiotic
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TABLE 1 Gut bacteria and the metabolites they contribute.

Metabolites Related bacteria Potential biological functions References

Short-chain fatty acids: propionate,
butyrate, acetate, hexanoate,
valerate

Faecalibacterium prausnitzii, Eubacterium
rectale, Clostridium butyricum, Blautia spp.,
Bifidobacterium, lactobacillus, Allobaculum,
Roseburia, Butyrivibrio, Dorea, and Blautia
genera

Provides energy for body functions and is
associated with cholesterol synthesis,
inflammation, obesity, imbalances in glucose
metabolism, colorectal cancer and insulin
resistance.

(7, 8, 13, 16–18, 20–22,
187, 214)

Bile acids Lactobacillus, Bifidobacteria, Clostridium,
Clostridioides, Lactobacillus rhamnosus,
Akkermansia muciniphila, Bifidobacteria,
Enterobacter

Regulates the balance of triglyceride,
cholesterol and glucose metabolism,
maintains intestinal barrier function and
promotes lipid metabolism and absorption.

(4, 30, 34, 180)

Phenolic, benzoyl, and phenyl
derivatives: 5-hydroxytryptophan,
phenylalanine, tyrosine

Lactobacillus, Some species of the genera
Clostridium, Rumenococcus and Eubacterium.

Related to tryptophan metabolism, brain-gut
axis.

(174–176, 197, 206)

Indole derivatives: indoleacetate,
indole, melatonin, serotonin,
5-hydroxyindole

Lactococcus, Lactobacillus, Streptococcus,
Escherichia coli, and Klebsiella

Implicated in gastrointestinal pathologies,
brain-gut axis, and a few neurological
conditions.

(137, 179, 180)

Lipids: triglycerides, cholesterol,
Lipopolysaccharide

Lactiplantibacillus, Lactobacillus rhamnosus,
Akkermansia muciniphila, Bifidobacterium,
Klebsiella, Lactobacillus

Cholesterol is the basis for sterol and bile acid
production. Lipopolysaccharide induces
chronic systemic inflammation; Regulate
carbohydrate and lipid metabolism.

(21, 22, 35, 38, 39, 62,
75, 76, 101)

bacteria such as Lactobacillus and Bifidobacterium and 7α-
dehydroxylating bacteria such as Clostridium scindens show bile
acid resistance that is associated with activation of glycolysis (4).

The use of antibiotics can disrupt the gut microbiota
structure and the formation of microbial metabolites, eventually
affecting the host health. For example, the antibiotics can
disrupt the commensal microbiota that converts primary bile
acids into secondary bile acids (33–35), and the gradual
accumulation of primary bile acids promotes the germination
of Clostridioides difficile spores (a spore-forming Gram-positive
bacterium and the causative agent of antibiotic-associated
diarrhea), bacterial replication and the production of colitis-
mediating enterotoxins, which induce host diarrhea and
enteritis (31). Importantly, the gut microbial metabolites are one
of the important components of host immune system. A large
number of studies have shown that the metabolic phenotype of
most hosts could be observed during the changes of intestinal
microorganisms and their metabolites.

Gut microbial responses to
carbohydrate metabolism
phenotypes

Many gut microbes can directly metabolize carbohydrates.
Lactobacillus plantarum presents a stronger carbohydrate
utilization capability (36–39), which also plays a certain role in
maintaining the balance of gastrointestinal flora, improving self-
immunity of host, promoting effective absorption of nutrients,
reducing cholesterol content, and alleviating lactose intolerance
(40). In addition to metabolizing exogenous carbohydrates by
gut microbes, endogenous carbohydrates released in the gut

mucus are also a constant source of nutrients for the microbiota,
which are decomposed and used as components for synthesizing
bacterial cell walls, thereby affecting host mucosal immunity
(41); Host intestinal epithelial cells also obtain nutrients from
microbial metabolism. When nutrients are deficient, microbes
undergo autophagy, and some bacteria have evolved a sugar-
decomposing lifestyle to escape competition (18). This direct
metabolism can not only supply the growth and development
needs of the host, but also enhance the disease resistance of the
host to a certain extent.

Gut microbes are one of the important sources
of carbohydrate metabolizing enzymes. Carbohydrate
metabolizing enzymes are highly correlated with the abundance
of certain gut flora (e.g., Bacteroides, Prevotella) (42). Studies
have reported that a large number of carbohydrate-activating
enzymes are found in the human gut flora, such as Bacteroides
thetaiotaomicron, which has 260 glycoside hydrolases in its
genome (43, 44). Human cells rarely produce these enzymes,
which rely on gut microbes for energy production from
remaining complex carbohydrates (45, 46). Gut microbes are
not only dependent on the host, but also influence the balance
of the host gut microbial ecology. Intestinal microorganisms
produce metabolic enzymes that improve the host’s ability to
digest complex carbohydrates and promote the growth and
reproduction of the corresponding flora.

The structure, metabolites and derived metabolites of the
host gut flora are altered by the ingestion of different types
and levels of carbohydrates, which in turn produce different
metabolic phenotypes. The gut microbiota is very sensitive
to the subtle structural differences between insoluble (47)
and soluble (48) plant fibers, and different fiber structures
correspond to specific microbial taxa (49). Shi et al. (50) found
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that supplementation with microbially available carbohydrates
ameliorated cognitive impairment in obese mice induced by
chronic high-fat and fiber-deficient diets. Low-fiber diets cause
increased by-products of proteolytic fermentation, resulting
in altered microbiota and its derived metabolites (increased
fecal branched-chain amino acids and decreased short-chain
fatty acids), impaired colonic epithelium and intestinal mucosal
detoxification, and increased inflammation (51, 52). The long-
term low-carbohydrate diet in traditional Western societies
has led to changes in the composition of the intestinal
flora. The production of short-chain fatty acids in the
metabolites of the intestinal flora is less, which cannot
meet the requirements of reducing inflammation, and the
incidence of diseases is significantly increased (53). Increasing
the content of resistant starch (RS) in the diet increases
the content of short-chain fatty acids in the human gut
and feces, and the gut microbiota also changes (54, 55).
For example, adding RS2 can increase the abundance of
Eubacterium rectale and Ruminococcus bromii (56, 57); RS3
can alter the abundance of Lachnospiraceae, Faecalibacterium,
Alistipes, and Bifidobacterium; RS4 can increase the relative
numbers of R. bromii L2-63, Parabacteroides distasonis 8503,
E. rectale 17629, and B. adolescentis IVS-1 (47); RS5 has
potential prebiotic activity, and addition of RS5 significantly
increases the relative abundance of Bifidobacterium, Dialister,
Collinsella, Romboutsia, and Megamonas (58). Recent evidence
from molecular ecology has also shown that the amount and
type of non-digestible carbohydrates (e.g., resistant starch, non-
starch polysaccharides, and prebiotics) influences the species
composition of the intestinal microbiota both in short-term
dietary interventions and in response to habitual long-term
dietary intake (59). For example, supplementation of the
diet with specific polysaccharides can promote the growth of
Bifidobacteria, Lactobacilli, or butyric acid-producing bacteria,
short-chain fatty acids production, lowering pH, and lead
to inhibitory effects toward pathogens (9); A diet with low
fermentable oligosaccharides, disaccharides, monosaccharides
and polyols (FODMAP) diet can enrich a large amount of sugar
catabolizing bacteria, reduce the frequency of abdominal pain,
and treat intestinal allergies (60); Study has also shown that gut
microbiome biomarkers might be associated with low FODMAP
diet efficacy (42). Different types of carbohydrates select the
corresponding intestinal dominant flora for the host, producing
different metabolites that affect the host’s development and
immune system. Resistant starch can reduce the proportion of
pathogenic bacteria to a certain extent and enhance the host’s
resistance to disease, which is promising in cultivating intestinal
probiotics and regulating host immunity.

The latest research reports that the link between the genes
encoding carbohydrate-active enzymes and the host can be used
as a tool to predict whether carbohydrates can be metabolized,
and guide the restoration of the ecological balance of the host’s
intestinal flora, transplantation of flora and supplementation of

probiotics (61). The correlation analysis between the expressions
of regulatory genes and sugar metabolism genes showed that
some regulatory genes were correlated with most of the
sugar metabolism genes, suggesting that some two-component
systems might be involved in the regulation of sugar metabolism
(62). Jia et al. (12) also found that individuals with type
2 diabetes (T2D) also had altered gut microbiota. And the
detection of genes related to sugar and amino acid metabolism in
their gut microbiota found that the abundance of related genes
was significantly reduced, indicating that the abundance of these
depleted genes can be used as potential biomarkers to identify
obese individuals at high risk of developing T2D (12).

Gut microbial responses to lipid
metabolism phenotypes

Lipid metabolism includes four categories: triglyceride
metabolism, phospholipid metabolism, cholesterol metabolism
and blood lipid metabolism, and one of the metabolic pathways
is blocked, it can cause lipid metabolism disorders (63).
Disorders of lipid metabolism can cause damage to host
vascular endothelial cells, abnormal proliferation of smooth
muscle cells, enhanced coagulation activity, inhibition of
the fibrinolytic system (64), and excessive levels of total
cholesterol or triglycerides in serum (65). The most intuitive
phenotypes of lipid metabolism disorders in host are obesity
and hyperlipidemia (64), which induce thrombosis and
complications such as atherosclerosis, coronary heart disease
and other cardiovascular and cerebrovascular diseases (66).

The role of gut microbes in host lipid metabolism is
irreplaceable. It regulates the absorption and metabolism of
lipids in the host, mainly by affecting bile acid metabolism,
producing short-chain fatty acids and regulating the
enteroendocrine system. Clinical studies have found that
Lactobacillus rhamnosus is a classic probiotic, which can
improve metabolism-related fatty liver disease by regulating
intestinal flora, improving intestinal mucosal barrier and
lowering cholesterol (67). Oral Akkermansia muciniphila
supplementation can significantly improve insulin sensitivity
and reduce insulinemia and total plasma cholesterol (68);
Abnormal levels of one or both of Bifidobacterium and
Bacteroidetes in the intestinal flora can cause hyperlipidemia
(69–71); With the decreasing abundance of probiotics such
as Bifidobacterium, Lactobacillus and Faecalibacterium genus
in the intestines of most patients with hyperlipidemia and
the increasing content of Enterobacteriaceae family and
Enterococcus genus the lipopolysaccharide in the body will
accumulate due to increased secretion or slowed metabolism
(66, 72). Then, a part of the accumulated lipopolysaccharide
enters the blood to cause endotoxemia and inflammatory
response, and the inflammatory response also aggravates the
symptoms of lipid metabolism disorder, resulting in a vicious
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circle (66, 72); Most diabetic patients have intestinal flora
imbalance, and it will affect lipid metabolism and promote
the occurrence and development of diabetes (73–75); Pig
gut bacteria Prevotella is the core microbe that dominates
fat deposition. Its abundance is positively correlated with
feed intake, and significantly negatively correlated with pig
carcass lean meat percentage. Induced by a high-fat diet,
mice colonized with Prevotelle developed severe adipose
tissue deposition (76). Studies have shown that Prevotelle
can induce chronic inflammation in the body by activating
Toll-like receptor 4 and mammalian target protein signaling
pathway of rapamycin, hindering the normal operation of
the body’s physiological metabolism, thereby aggravating fat
inflammation and deposition (77). Lipid metabolism is an
important and complex biochemical reaction in the host. Gut
microbes can play a role in regulating lipid metabolism, both
directly by breaking down lipids and through the production of
other metabolites.

Prebiotics or probiotics can modulate lipid metabolism
to improve metabolic syndrome and treat diseases such as
obesity and diabetes associated with dysbiosis of the gut
microbiome (78, 79). Prebiotics can promote the growth of
beneficial bacteria such as Bifidobacteria and Lactobacillus,
which are metabolized into lactic acid and short-chain fatty
acids in the large intestine, improving host physiology, especially
gastrointestinal health (80–82); Studies by Cani et al. (83)
have shown that the regulation of intestinal flora by prebiotics
such as Fructooligosaccharides can increase the content of
Bifidobacteria in the host intestine and prevent hyperlipidemia-
induced metabolic diseases such as diabetes and obesity.

The lipid structure of the diet affects the composition of the
gut microbiota, which in turn affects lipid metabolism and host
health. High-fat diet has been recognized as a major determinant
of obesity, and the gut microbiota plays an important role
in this phenotype (84). High-fat diet can induce enrichment
of opportunistic pathogens such as Betaproteobacteria (85),
Clostridium bolteae, Desulfovibrio sp. (86), and Enterobacter
cloacae (87); Regular consumption of functional foods rich
in fiber, polyphenols and polysaccharides can reduce the risk
of cardiometabolic diseases, and their metabolites may inhibit
pathogenic bacteria and stimulate the growth of beneficial
bacteria (88); Caesar et al. (89) validated that pro-inflammatory
Bilophila wadsworthia thrived on a lard-based diet, while
Lactobacillus and Akkermansia muciniphila thrived on a fish
oil-based diet; Feeding Auricularia auricula polysaccharid can
increase the abundance of intestinal flora in rats, such as
Parabacteroides (90), and Auricularia auricula polysaccharid
can also play a role by inhibiting the absorption of external
fat and enhancing the metabolism of liver fat (91); Lesel et al.
(92) fed rainbow trout with low-fat and high-fat diets and
found that the main bacterial groups in the feces of the low-
fat group were only Acinetobacter spp. and Enterobacteria,
while the high-fat group had higher bacterial diversity, mainly

including Acinetobacter spp., Enterobacteria, Flavobacterium
spp., Pseudomonas spp., and Coryneforms; In the high-fat-fed
mice, the content of Bacteroidetes increased significantly at
1 week, and the ratio of Firmicutes to Bacteroidetes changed
from 0.86 to 1.77 after 8 weeks. At the same time, fat
deposition and intestinal dysbiosis were also found, the content
of Verrucobacterium was significantly increased, while the E. coli
was significantly decreased (93); Recent studies have shown that
fasting can reduce host serum lipid levels and improve hepatic
steatosis by reducing the ratio of Firmicutes to Bacteroidetes and
increasing the abundance of Allobaculum in the host, resulting
in improving metabolic disorders and intestinal flora imbalance
caused by high-fat diet (94). The effects of an imbalance in
the host’s flora reflect the problems caused by an imbalance in
diet, and a balanced diet is one of the ways in which the host
can ensure that all of its physiological functions are functioning
properly. Too high or too low a lipid intake will eventually upset
the existing balance.

External environmental conditions affect the structure of
gut microbiota, which in turn affects host lipid metabolism.
Some studies have found that the structure of the intestinal
flora of carp exposed to copper has changed significantly, and
the abundance of some short-chain fatty acid-producing species
(such as Allobaculum, Blautia, etc.) has decreased significantly
(95). Moreover, liver fat synthesis genes were significantly
down-regulated, and the expression of lipolysis-related genes
was significantly increased. It can be inferred that there is
a significant correlation between changes in intestinal flora
structure and lipid metabolism (95); Under chronic hypoxia,
the intestinal microbiota composition and mucosal morphology
of Macrobrachium nipponense are changed, which affects the
metabolic enzyme activity of liver, reduces the content of
intestinal short-chain fatty acids, affects the immune enzyme
activity and inhibits the immune response, thus affecting the
intestinal health (96).

Artificial regulation of intestinal flora structure can
effectively improve host lipid metabolism and control
obesity. Serum lipid levels in patients with hyperlipidemia
are significantly correlated with changes in intestinal dominant
flora, suggesting that adjusting the structure of intestinal
dominant flora can improve serum lipid levels in patients
(66). Antibiotics have been reported to disrupt gut microbial
structure and gut immune cell composition, resulting in
abnormal lipid metabolism. This reflects the importance
of promoting antibiotic-free farming in modern farming,
which is the ultimate choice in microbial treatment strategies.
Monascus vinegar can lower body weight, total cholesterol,
and triglycerides as well as ameliorating hyperlipidemia by
regulating Peroxisome proliferator-activated α (PPARα)-,
Nuclear factor-E2-related factor 2 (Nrf2)-, and Nuclear
factor κB (NF-κB)-mediated signals and modulating the
gut microbiota composition in hyperlipidemia rats (97);
Octylphenol is a widely distributed endocrine disruptor, which
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can affect the expression level of genes related to fat digestion
and absorption, and change the structure of intestinal flora,
gradually reduce the ratio of Firmicutes/Bacteroidetes, and
destroy lipid metabolism (98). The artificial addition of
biological agents to alter the microbiological structure of the
gut to improve disease is increasingly recognized. The ratio of
Firmicutes to Bacteroidetes in the gut microbiota of patients
with type 2 diabetes is altered to absorb higher energy for
insulin resistance (45, 46); Regulating the content of glucagon
and insulin in blood can also improve lipid metabolism
disorder and intestinal flora structure, effectively preventing
and treating type 2 diabetes (99). Currently, diabetes is treated
with extracorporeal insulin injections. Finding insulin-secreting
microorganisms and colonizing them in the gut would be a
historic advance in the fight against diabetes.

Gut microbial responses to amino
acid metabolic phenotypes

Intestinal microorganisms can extensively metabolize a
variety of amino acids, such as Histidine, Lysine, Threonine,
Arginine, Glutarnine, Leucine, Isoleucine, and Valine, etc., with
a metabolic rate of more than 50% (100, 101). When the
host metabolizes amino acids, gut microbes secrete enzymes
to assist amino acid metabolism, while amino acid metabolites
of some microorganisms [e.g., histamine; immunomodulatory
signaling; alpha-aminobutyric acid (102); putrescine] can
also be involved in immunity, anti-inflammatory and other
pathological mechanisms (such as improving obesity, diabetes)
(103). The metabolize of amino acids by gut microbes also
contribute to the survival and value-added of the microbiota and
the further synthesize bacterial components (104).

Gut microbes can synthesize a variety of amino acids.
Dietary amino acids can be absorbed and metabolized by
intestinal cells for life activities and protein synthesis, and
can also be metabolized and decomposed by intestinal
microbes to maintain the ecology of intestinal microbes,
meet the host’s amino acid requirements, and regulate the
host’s inflammation and immune levels. Gut microbes such as
Streptococcus bovis, Selenomonas ruminantium, and Prevotella
bryantii can synthesize amino acids at physiological peptide
concentrations and integrate them into host proteins (105, 106);
The most abundant BCAAs, valine, isoleucine and leucine, are
essential amino acids synthesized by plants, fungi and bacteria,
particularly by members of the gut microbiota (107); Gut
bacteria can produce aspartic-, cysteine-, serine-, and metallo-
proteases, in a typical fecal sample, these bacterial enzymes are
far outnumbered by proteases arising from human cells (108).

The difference in the amount of essential amino acids
measured by N balance method and tracer-derived statistics
also indicates that in addition to diet, the gastrointestinal
microbiota can also synthesize essential amino acids to meet

host requirements (109). Gut microbes synthesize amino acids
not only to deliver energy but also to maintain a reduced
cofactor cycle (109).

Amino acids and their metabolites are integral components
of host nutrition and synthetic immunity, and they play a role
in maintaining mammalian homeostasis by regulating protein
synthesis, glucose and lipid metabolism, insulin resistance,
hepatocyte proliferation, and immunity (107). For example,
L-tryptophan (Trp) is an important component of protein,
and can be converted into a variety of substances (such
as serotonin, melatonin, indole, kynurenine) as a metabolic
substrate. It plays an important role in the onset of neurological
diseases and immune regulation such as intestinal tolerance,
balance between intestinal microbiota, hinder depression,
chronic fatigue syndrome and physical mobility disorder (110–
113); Endogenous Trp metabolites (kynurenines, serotonin,
and melatonin), and bacterial Trp metabolites (indole, indolic
acid, skatole, and tryptamine) also have profound effects
on gut microbial composition, microbial metabolism, the
host’s immune system, the host-microbiome interface, and
host immune system–intestinal microbiota interactions (114);
Aromatic amino acids are metabolized by gut microbes and their
products can serve as signaling molecules in host physiology
(115).

Try metabolism has a central role in host health. Host
genes can directly or indirectly modulate the production of
microbial Trp metabolites and affect the composition and
function of the gut microbiota (114). Shotgun metagenomics
data shows that host hepatic steatosis and metabolism are
associated with an imbalance in aromatic and branched-
chain amino acid metabolism (116). The phenotype of
host metabolic disturbances in the gut microbiota has been
found preclinically and clinically to be a reduced ability
of microorganisms to metabolize tryptophan as an aromatic
hydrocarbon agonist (117). When the activation of the aromatic
hydrocarbon pathway is defective, host GLP-1 and IL-22
production is reduced, intestinal permeability is altered, and
lipopolysaccharide translocation is promoted, leading to host
inflammation, insulin resistance, and hepatic steatosis (118).
When changes in host tissue homeostasis require an immune
response, gut microbiota can directly or indirectly activate host
aryl hydrocarbon receptors and pregnane X receptors through
derivatives produced by tryptophan metabolism (indole and
its compounds) (119). A tryptophan-rich diet increases Aryl
Hydrocarbon Receptor (AhP) mRNA expression and activates
AhP (114). AhR can mediate exogenous metabolism, rely
on IL-22 activation in the gut, and influence the balance
between immunity and microbiota by modulating microbial
composition through antimicrobial peptides (120–122). On
a low-tryptophan diet, tryptophan metabolites were reduced,
and mice or piglets were prone to inflammation (123).
After adequate supplementation, metabolites were increased,
inflammation was significantly reduced, and the degree of
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dextran sodium sulfate-induced colitis was reduced (121,
124, 125).

In turn, the composition of microbiota can influence the
production of Trp microbiota-derived metabolites, affect the
host’s intestinal homeostasis and lead to the loss of intestinal
homeostasis and intestinal inflammation (114). Specific gut
bacteria determines the availability of Trp to the host and
then regulates serotonin and subsequent melatonin synthesis
(126). Serotonin is a monoamine neurotransmitter involved
in the regulation of central nervous system transmission and
intestinal physiological functions, while tryptophan is the only
precursor for serotonin production. Melatonin, a powerful
anti-inflammatory factor, is also produced through tryptophan
metabolism and can alleviate increase gut permeability and
immune activation caused by Escherichia coli (127–130).

Various preclinical experimental strategies emphasize that
both tryptophan availability and 5-HT signaling are profoundly
affected by gut microbiota composition (131), and intervention
targeting the microbiota can modulate the tryptophan
metabolites kynurenine, tryptamine, indole, serotonin, and
melatonin, which has important implications for the treatment
of brain-gut axis diseases (127, 129). Gut microbiota derivatives
reduce the ratio of kynurenine to tryptophan in blood in the
regulation of tryptophan metabolism, suggesting that lack
of gut microbiota reduces the activity of host Indoleamine
2,3-dioxygenase, which affects color kynurenine pathway of
amino acid (118, 132). Gut microbiota can also influence
tryptophan degradation and tryptophan cycling in the host
through kynurenine pathway (131), and mitigate the adverse
effects of aging on the central nervous system (133–136).

The dietary structure of amino acids affects the host gut
microbial structure, which in turn affects host metabolism
and health. Studies have shown that the foul odor of
pig excrement is produced by intestinal microorganisms
metabolizing amino acids (137). The level of amino acids in
a balanced diet can change the abundance of pig intestinal
microbes, thereby improving fermentation and reducing odor-
causing compounds in pig excrement (137). An increase
in branched-chain amino acids induces changes in the
abundance of certain gut flora, such as increased abundance
of Akkermansia and Bifidobacterium in mice supplemented
with a mixture of branched-chain amino acids (138). The
accumulation of branched-chain amino acids is positively
correlated with insulin resistance. The number of bacteria
that absorb branched-chain amino acids (such as Butyrivibrio
crossotus and Eubacterium siraeum) gradually decreases in
insulin-resistant patients, resulting in the accumulation of
branched-chain amino acids and an insulin-resistant phenotype
(139). Metabolism of proline is associated with disturbances
in host emotional expression. Proline is the dietary factor
that has the greatest impact on depression, and individual
depression levels are enhanced with increased proline intake and
plasma proline levels, which are not significantly associated with

antidepressants (140). The higher the proline content in plasma,
the lower the proline recycling-involved in glutamate, gamma-
aminobutyric acid receptor activation, synaptic interactions,
and axon guidance pathways. Likewise, the higher abundance
of Parabacteroides and Acidaminococcus species and lower
abundance of Bifidobacterium and short-chain fatty acid-
producing species (such as Roseburia, Butyrivibrio, Dorea, and
Blautia genera) in the gut (140). If mice are fed with a diet
deficient in tryptophan, the gut microbiota will be dysregulated
and gut immunity will be compromised (130).

Gut microbes can affect host health by affecting protease
activity. The protease activity in the intestine is not only
affected by the environment such as temperature and pH,
but also restricted by microorganisms such as Bacteroides,
Clostridium, Propionibacterium, Fusobacterium, Streptococcus,
and Lactobacillus (141). Affected by various factors such as
heredity, diet, medication, the host has respective characteristic
of intestinal flora. Under normal circumstances, intestinal flora
and host can benefit from this kind of dynamic balance.
Once this balance is broken, the body of the peroxidase
proliferation of activated receptors (PPARs) signaling pathway
and amp activated protein kinase (AMPK) path are blocked
(142, 143). The lack of proteases in the host will lead to
increased susceptibility to disease, such as lack of angiotensin
I-converting enzyme 2 (Ace2), which will lead to increased
susceptibility to intestinal inflammation caused by intestinal
epithelial cells (123).

Gut microbial responses to nucleic
acid metabolic phenotypes

Nucleic acids in food mostly exist in the form of
nucleoproteins, which are broken down into nucleic acids
and proteins in the stomach. Nucleotide is the basic unit of
nucleic acid. Its main functions are the raw material for nucleic
acid synthesis, the utilization form of energy in the body, the
participation in metabolism and physiological regulation, the
component of coenzyme, the intermediate product of activation,
etc. The assembly of nucleotides has a high metabolic demand
and requires substances such as glucose, aspartic acid, serine,
glycine, CO2, and glutamine for synthesis. These substances
supplement the carbon and nitrogen sources for nucleotide
synthesis through major pathways such as glycolysis, the serine-
glycine pathway, the glutamine aminotransferase reaction, the
Krebs cycle without or with anaplerotic inputs, and the pentose
phosphate pathway (144).

Nucleic acid substances are considered to be an very
important class of molecules in organisms because they have
function of heredity, mediating and catalyzing biochemical
reactions, providing or transferring energy, etc. (145). Lack of
nucleotides in food can damage the host liver (146, 147), gut
(148–151) and immune system (152, 153). Exogenous addition

Frontiers in Nutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.1019430
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1019430 November 1, 2022 Time: 15:7 # 8

Hou et al. 10.3389/fnut.2022.1019430

can promote the maturation, activation and proliferation of
lymphocytes, improve the phagocytosis of macrophages (154,
155), promote the balance of intestinal flora (such as increasing
the proportion of Bifidobacteria), and reduce the proportion
of pathogenic bacteria (145). Exogenous nucleotides have an
important impact on maintaining the normal function of
the host immune system, intestinal function, improving the
structure of the intestinal flora and lipid metabolism, and will
have a broad prospect and development space in the field of
medical and health care.

The intestinal flora is one of the important "organs" for
the host to absorb and utilize nucleic acids. For example, the
nucleosidase produced by Ochrobactrum anthropi in the human
intestine can decompose purine nucleosides in food, and also
promote other enzymatic reactions (156–158). Escherichia coli
and baker’s yeast (dietary nucleotides) can convert glucose to 2-
deoxyribose 5-phosphate and generate the desired substrate for
2-deoxyribose 5-phosphate, respectively (159).

Nucleotides and nucleosides strongly dose-dependently
modulate infant gut microbiota composition and metabolic
activity. Nucleotide and nucleoside are added in the infant
formula, increasing the amount of the anaerobic bacteria,
gastrointestinal bacteria, Fusobacterium, Lactobacillus,
Staphylococcus, Leuconostoc, increased levels of bacteria
and bacteria related to nucleotide and metabolism of sulfur
and iron transcription content will increase, and decreasing
the biosynthesis of Salmonella, total factor and vitamin (160).
Yeast extract (dietary nucleotides) can increase the number
of Lactobacilli and Bifidobacteria, thereby increasing butyrate
production to stabilize and promote the gut microbiota in
the elderly (161). Numerous studies have also demonstrated
that the addition of exogenous nucleotides can increase the
proportion of beneficial bacteria in the host gut microflora and
play a positive regulatory role.

Signaling roles of gut microbes in
host metabolism

In recent years, the gut microbiota has attracted much
attention as a key mediator of brain-gut axis signaling. Brain-
gut interactions are mainly divided into neural, endocrine
and immune pathways. There is growing evidence that the
influence of the gut microbiota extends beyond the gut, which
modulates brain function and subsequent behavior through
the brain-gut axis (162–164). Dysregulation of the microbiota-
gut-brain axis leads to neuroinflammation and synaptic
damage that contribute to obesity-related cognitive decline
(50). Preclinical and clinical studies have also shown that the
gut microbiota influences central nervous system physiology,
anxiety, depression, social behavior, cognitive function and
visceral pain (134). For example, high-fat diet-induced changes
in gut microbiota can lead to cognitive impairment in mice;

Mice transplanted with microbiota from obese humans also
showed reduced memory scores. Moreover, RNA sequencing
of the medial prefrontal cortex showed that short-term
memory was associated with aromatic amino acid pathways,
inflammatory genes, and bacterial communities (165). Among
them, Clostridium, Ruminococcus and Eubacterium genera in
Firmicutes phylum, as well as Selenomonas family are positively
correlated with memory score, while Bacteroidetes phylum and
Proteobacteria phylum species are negatively correlated with
memory score (165). This suggests that gut microbes can talk
to the brain through neural interactions and influence host
cognition and behavior.

Gut microbiota imbalance affects hippocampal brain and
nerve development by activating microglia (32). Brain-gut
interactions play a role in functional GI disorders [e.g., irritable
bowel syndrome (IBS)] (166), organic GI disorders to a
lesser extent [e.g., inflammatory bowel disease (IBD)], and
other disorders that may be associated with dysregulation of
brain-gut communication (e.g., obesity and anorexia nervosa),
but the specific mechanisms of the interaction are not well
understood (167).

In the study of the host brain-gut axis, it was found
that tryptophan and 5-hydroxytryptophan metabolic systems
are involved in all levels of the brain-gut-microbiome axis.
For example, germ-free mice show different social novelty
preferences than normal mice (132, 168, 169); Bacterial
colonization of germ-free mice after weaning normalizes this
phenomenon (132, 169, 170); More importantly, bacterial
colonization of weaned germ-free mice normalizes circulating
tryptophan availability and kynurenine pathway metabolism
(132, 171). Lactococcus, Lactobacillus, Streptococcus, Escherichia
coli, and Klebsiella can directly use tryptophan to synthesize
serotonin (127, 131). Serotonin is widely present in the gut,
which can cross the blood-brain barrier and act directly
on the central nervous system. At present, tryptophan
treatment strategies have focused on direct regulation of the
5-hydroxytryptophan (5-HT) metabolic system, but due to the
heterogeneous of the disease and the diversification of 5-HT
effects, these strategies are only partially effective in distinct
patient subsets with stress-related brain-gut axis disorders (131).

The gut-liver axis is another pathway by which the host
controls and shapes the gut microbe to protect the gut barrier.
The gut microbiome, liver inflammation and metabolism are
connected by the gut-liver axis, and the important mediators
between the two are the gut microbiota and microbiota
metabolites (172). Gut-derived compounds, such as short-chain
fatty acids, bile acids, methylamine, amino acid derivatives,
and related microbial molecular patterns stimulate host energy
metabolism, food intake, and regulate signaling and metabolic
pathways in key tissues by sensing signals, enhancing host–
gut microbiota interactions (173). Another example is that
microbial tryptophan metabolites are directly involved in
hepatic immune responses in liver disease, or indirectly affect
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function by modulating gut barrier function and signaling along
the gut-liver axis (117, 174). The link between the gut and
liver directly influences the composition of the gut flora and
the integrity of the barrier, and is an important factor in liver
function. An imbalance on either side will lead to a decrease in
immunity and even disease.

In the brain-gut axis and gut-liver axis, the gut microbes
directly participate in or indirectly regulate the metabolic
functions of key tissues such as the brain and liver through signal
transduction, thereby affecting the health of the host. At present,
although the key mediators and specific mechanisms of brain-
gut axis and gut-liver axis signaling are still poorly understood,
it is of great significance to pay close attention to the signaling
of gut microbes.

Prospects for the study of gut
microbes and host metabolic
phenotypes

Various chemicals produced or modified by the gut
microbiota trigger responses in various physiological functions
of the host, including immune, neurological, and metabolic
(175). A large number of studies have proved that the occurrence
of host diseases is closely related to the diversity of intestinal
flora, the difference of main representative flora, and the
abundance and ratio of different flora, mainly affecting host
metabolism and metabolites (144). The role and status of
intestinal flora and its metabolites in monitoring host health
and disease prevention and control is becoming more and more
important. Furthermore, the monitoring of key indicators and
the mining of therapeutic factors will be another great progress
in the history of human disease prevention and control.

Gut microbes and their metabolites
may be important markers for disease
screening

Numerous studies have demonstrated that changes in
the abundance of gut microbiota are a common marker
of neoplastic diseases, such as Fusobacterium nucleatum,
Escherichia coli, Bacteroides fragilis, and Aspergillus are
associated with carcinogenesis (176, 177); By comparing
the gut flora of gestational diabetes patients and healthy
people, it was found that gestational diabetes patients had
abundant OTUs of Lachnospiraceae family, and decreased
OTUs of Enterobacteriaceae and Ruminococcaceae families
(178); Obese patients are often complicated by diabetes, and
the abundances of Ruminococcus gnavus, different Bacteroidetes
and Enterobacter species in the gut tend to increase compared
with insulin resistance and obesity (179, 180); Compared with

healthy people, patients with primary sclerosing cholangitis
had significantly reduced gut microbiota but significantly
enriched Clostridium species with reduced Eubacterium spp.
and Ruminococcus obeum (181); And then a further study of
its gut microbial genes showed that the genes related to the
synthesis of vitamin B6 and branched-chain amino acid cores
in gut microbes were significantly reduced (181).

Different microbial metabolites in blood can reflect different
healthy aging (age) states with unique gut microbiota. In the
study of the intestinal flora of physiologically aging people, the
core flora of the gut microbiota of the elderly is attenuated, and
the results at the genus level show that Bacteroides are mainly
reduced (182). Studies have also confirmed that there are key
families of microorganisms in the gut microbiota with potential
therapeutic effects (183–185).

The structure of the gut microbiota and its metabolites are
also markers of many diseases. Elevated ratio of Firmicutes
to Bacteroidetes is regarded as a microbial marker of
obesity (186); The profiles of gut microbiota and serum
metabolites are potential diagnostic markers for lung cancer.
Compared with healthy individuals, the feces of patients with
lung cancer showed significant differences in Megasphaera,
Clostridioides, Erysipelotrichaceae, and Phascolarctobacterium,
which the diversity of intestinal flora in patients with
lung cancer was higher. Moreover, the serum levels of
certain glycerophospholipids (e.g., LysoPE, LysoPC, LysoPC),
AcylGlcADG, AcylGlcADG, Acylcarnitine and hypoxanthine
can be used to distinguish lung cancer patients from normal
individuals (187); Microbial metabolic imbalance of aromatic
and branched-chain amino acids is a metabolic hallmark
that accompanies liver inflammation (188). Aromatic amino
acid metabolites can be used as signal molecules in host
physiology (116). For example, phenylalanine (189) metabolism
can be used as a stage-specific marker for colorectal cancer,
because it can be seen that the genes that metabolize Phe
in the intestinal flora of patients with colorectal cancer are
increased, and it is significantly increased in the gut (116);
Tyrosine and tryptophan metabolism and valine, leucine,
and isoleucine degradation are significantly associated with
identified gut microbiota markers and osteoporosis. Ling et al.
(190) found that the relative abundances of Actinobacillus,
Blautia, Oscillospira, Bacteroides, and Phascolarctobacterium
were positively correlated with osteoporosis, while some of
genera of Veillonellaceae, Ruminococcaceae, and Collinsella
were negatively associated with the presence of osteoporosis.
However, further confirmation in animal or in vitro experiments
is required as a diagnostic or therapeutic marker (190).

Inflammatory cytokines are key factors for the expression
of indoleamine 2, 3-dioxygenase (IDO1) and tryptophan 2, 3-
dioxygenase (TDO) (131). Moreover, it has been proposed as
markers of gastrointestinal diseases in the study of mucosal
inflammation and colon cancer (131).
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Different types of carbohydrate-active enzymes may
provide markers for the screening of certain diseases. For
example, glycosyltransferases can catalyze the synthesis
of glycoconjugates, including the inflammatory factor
lipopolysaccharide-a common feature of many diseases.
Comparing differences in carbohydrate-active enzymes in
health and disease suggests that microbial carbohydrate
metabolism can be a good basis for optimizing pre-selected,
pro- and synergistic biological candidates (61). Most disease
changes are associated with changes in gut microbial abundance,
while further research is needed to prove whether differential
bacteria can be used as indicators. The clarification of indicator
species will provide new ideas for therapeutic strategies.

Improving gut microbes will become
an effective means of disease
prevention and treatment

Gut microbes are an important factor in regulating various
physiological functions, immune system, cardiovascular system,
intestinal function, digestion and absorption of nutrients and
their metabolites (191). Once the healthy balance of the host’s
intestinal flora is disrupted, the host will become ill. On the
contrary, adjusting the balance of the host’s intestinal flora will
help the host maintain a healthy state. Direct supplementation
of beneficial microorganisms modulates host hepatic and
systemic lipid metabolism (192), energy stabilization (193),
and glycemic control (194). Meanwhile, it reduces the
risk of diet-induced obesity, insulin resistance, and type 2
diabetes (195).

Transplanting fecal microbiota can effectively treat
some recurrent Clostridium difficile infections in small
trial in metabolic syndrome and obesity (196); Gavage of
mice with Bacteroides thetaiotaomicron reduced plasma
glutamate concentrations and attenuated diet-induced
weight gain and obesity in mice, suggesting the possibility
of targeting the gut microbiota to intervene in obesity
(197); In mouse experiments, it was found that Prevotella
copri and Bacteroides vulgatus are the key species driving
branched chain amino acids (BCAAs) biosynthesis and
insulin resistance (139). In addition, using Prevotella copri to
interfere with the intestinal flora of mice can induce insulin
resistance, aggravate glucose intolerance and increase BCAAs
circulation level (139). Kato et al. (198) found that oral
administration of Porphyromonas gingivalis could alter the
composition of the host gut microbiota, thereby impeding or
altering the metabolic function of host amino acids, altering
immune regulation and gut barrier function, and mediating
systemic diseases.

Nutritional stress caused by an unbalanced diet can
lead to changes in the host gut microbiome, which is one
of the important factors in the occurrence of metabolic

diseases such as hypertension, abnormal lipid metabolism,
and vascular dysfunction (191). This makes dietary
guidelines for the population, based on regional differences,
particularly important. Dietary and lifestyle interventions to
supplement carbohydrates needed by microorganisms can
enhance the ability of intestinal microbiota to metabolize
carbohydrates, reduce body weight (199), and reduce metabolic
diseases caused by intestinal microbiota metabolism in
overweight and obese patients. An unbalanced diet not
only adds to the metabolic stress of the host’s metabolic
organs, but also disrupts the balance of the intestinal
microbial ecology.

More and more data suggest that host health is associated
with dietary microbial and carbohydrate-induced changes
in microbiota composition and diversity (53). Breast milk
contains a variety of complex oligosaccharides that are not
easily digested but are essential for the composition of the
neonatal gut microbiota (200). The microbiota that colonize
an infant’s gut are directly related to its ability to grow
and develop normally in later life and to the strength
of its immune system. Compared with formula, breastfed
infants had higher levels of Bifidobacteria and lactic acid
bacteria as well as lower levels of potential pathogens. By
contrast, formula-fed infants had a more diverse gut flora,
mainly Staphylococcus, Bacteroides, Clostridium, Enterococcus,
Enterobacter, and Atopobium (201). During weaning, the phyla
Proteobacteria and Actinobacteria are replaced by Firmicutes
and Bacteroidetes as the dominant members of the infant
microbiome due to the complementary introduction of a variety
of novel food substances and nutrients (202, 203). Tanes
et al. (204) found that unbalanced dietary nutrition can lead
to an imbalance of gut microbiota, and dietary fiber plays
an important role in the restoration of gut microbiota, but
the mechanism remains unclear. Flint found that both the
amount and type of indigestible carbohydrates (such as resistant
starch, non-starch polysaccharides, and prebiotics) affected the
species composition of the gut microbiota during both short-
term dietary interventions and long-term dietary habits (59).
Different geographic regions have different dietary habits, and
there are also significant differences in the composition of
gut microbes. Compared with Europeans, Africans consume
approximately twice as much dietary fiber, have a higher
diversity of gut microbes, produce more short-chain fatty acids,
and are more abundant in Bacteroidetes relative to Firmicutes
(179, 205).

It is clear that differences in food culture also
reflect the consistency of nutritional needs from
the dietary guidelines of different countries1. All
guidelines recommend limiting or avoiding foods
with high added sugar, salt, and saturated fat (206).

1 http://www.fao.org/nutrition/education/food-based-dietary-
guidelines
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Some countries specifically mention avoiding processed, ultra-
processed and/or packaged foods (206).

Conclusion

The metabolic phenotype of organisms exists objectively
(207), and is gradually being recognized and deciphered
by humans. Gut microbes are the second digestive organ
in the host and one of the key factors determining the
host’s metabolic phenotype (2). They directly or indirectly
participate in the host’s metabolism, physiology, and immunity
through population structure changes, metabolite differences,
signal transduction, and gene expression, helping the host
to resist disease and maintain health. A large number of
studies have confirmed that finding new and effective ways
to prevent or treat host metabolic diseases through the
association of gut microbiota with host metabolic phenotypes
is not only feasible and will be a historic step in the study
of gut microbiota.

But gut microbiota composition and function are also
influenced by host genetics (208), diet (209), age (210,
211), mode of birth (212), geography (210), host immune
status (213), travel (214), and drug use (215, 216). How
to obtain comprehensive information on the impact of
gut microbes on host metabolic phenotypes? What are the
mechanisms underlying the role of gut microbes in host
metabolic phenotypes? Can we find the key regulators and
indicators that gut microbes regulate host metabolism?
These issues would be the focuses of future research
on gut microbes.

The gut microbiota and metabolites are not only
the monitors of host disease, but also the guardians of
maintaining and stabilizing host health. Although the existing
researches still focus on the simple flora structure and the
level of a few influencing factors, the theoretical concept
that gut microbes affects the host’s metabolic phenotype
provides a good research idea for the systematic study
of metabolic diseases caused by gut microbes. As more
and more new discoveries about the metabolic phenotypes
of gut microbes on the host are published, it is about
to become possible to use gut microbes to maintain the
metabolic health of life.
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