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The yeast mannoproteins (MPs), a major component of yeast cell walls with

large exploration potentiality, have been attracting increasing attention due to

their beneficial effects. However, the information about the anti-obesogenic

activity of MPs is still limited. Thus, the effects of MPs on the high-fat diet

(HFD)-induced obesity and dysbiosis of gut microbiota were investigated in

this work. The results showed that MPs could significantly attenuate the HFD-

induced higher body weight, fat accumulation, liver steatosis, and damage.

Simultaneously, the inflammation in HFD-induced mice was also ameliorated

by MPs. The pyrosequencing analysis showed that intervention by MPs could

lead to an obvious change in the structure of gut microbiota. Furthermore,

the prevention of obesity by MPs is highly linked to the promotion of

Parabacteroides distasonis (increased from 0.39 ± 0.12% to 2.10 ± 0.20%) and

inhibition of Lactobacillus (decreased from 19.99 ± 3.94% to 2.68 ± 0.77%).

Moreover, the increased level of acetate (increased from 3.28 ± 0.22 mmol/g

to 7.84 ± 0.96 mmol/g) and activation of G protein-coupled receptors (GPRs)

by MPs may also contribute to the prevention of obesity. Thus, our preliminary

findings revealed that MPs from yeast could be explored as potential prebiotics

to modulate the gut microbiota and prevent HFD-induced obesity.

KEYWORDS

yeast, mannoproteins, obesity, gut microbiota, Parabacteroides distasonis,
Lactobacillus

Introduction

Obesity, recognized as a disease with serious morbidity and increased mortality,
has dramatically spread throughout the developed and developing countries due to a
shift to diets, including addictive and/or high-calorie foods and lack of exercise (1, 2).
In the past four decades, the prevalence of obesity and overweight has nearly tripled
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worldwide, which has become a growing public health challenge
of the twenty-first century (3). Furthermore, obesity may
lead to an increased risk of other obesity-related metabolic
disorders, such as non-alcoholic fatty liver disease (NAFLD),
type 2 diabetes (T2DM), and cardiovascular diseases (CDs)
(4, 5). Obesity is a chronic and progressive process with
multi-factorial factors and complex interactions, including
physiological, sociopolitical, behavioral, and environmental
factors (3, 6). Although the molecular mechanism for obesity
is still not fully understood, obesity essentially represents a
long-term positive imbalance between energy intake and energy
expenditure, thereby increasing body fat (7). Pharmaceutical
drugs, such as orlistat, could prevent, and treat obesity, however,
its adverse effects, including acute kidney injury, subacute liver
failure, and gastrointestinal adverse effects, block its further
application (8). Thus, a potential novel therapeutic strategy for
the prevention and treatment of obesity is still highly needed.

In recent decades, the effect of the gut microbiota on obesity
has attracted much attention due to its key role in calorie
harvest, energy homeostasis, and regulation of fat storage (9, 10).
Recently and more strikingly, the experiments using germ-free
mice and fecal microbiota transplantation have demonstrated
the causality between the gut microbiota and the development
of obesity (11, 12). More specifically, some key beneficial gut
microbiota responsible for the prevention of obesity, such as
Akkermansia muciniphila (13), Parabacteroides distasonis (14),
and Dysosmobacter welbionis (15), and pathogenic bacteria
which could promote obesity, such as Erysipelatoclostridium
Ramosum (16) and Enterobacter cloacae B29 (17), have been
identified, separated, and verified at the species level. The
gut microbiota is expected to be a novel therapeutic target
for the prevention and treatment of obesity. Thus, a series
of microbiota-targeted diets are presented and evaluated with
the growing public awareness of the gut microbiota (18, 19).
Thereinto, dietary polysaccharides, which served as potential
prebiotics, have recently emerged with the growing public
awareness of their probiotic effect on gut microbiota (20).

Yeast is an important food resource used for fermentation
in the food industry, and a large amount of yeast by-products is
available every year (21). The yeast cell wall is mainly composed
of β-glucan (60%) and mannoproteins (MPs, 40%), making
them a potential source for providing functional ingredients
(22). Nowadays, yeast by-products are mainly processed into
animal feed or used to produce β-glucan (22, 23). β-Glucan
from yeast has been widely investigated, whereas MPs from yeast
attract much less attention. MPs are highly glycosylated proteins
with molecular weights ranging from 20 to 200 kDa, containing
80–90% of carbohydrates and 5–20% of protein, and the
potential structure of MPs has been reported in previous work
(22, 24, 25). In recent years, the MPs have attracted more and
more attention due to their alleged health-promoting functions,
such as stimulation of angiogenesis, immunoactivities, and
antineoplastic activities (25–27). However, the effects of MPs on

obesity and gut microbiota are still unknown. Thus, the aim of
the present work was to evaluate the potential anti-obesogenic
effect of MPs on a high-fat diet (HFD)-induced obesity.
Furthermore, the role of gut microbiota in the prevention of
obesity by MPs was also investigated.

Materials and methods

Materials

The MPs from Saccharomyces cerevisiae were kindly
provided by Angel Nutritech Co., Ltd. (China). The MPs
were prepared according to the previous work with some
modifications (25, 26). Briefly, after being sieved and purified,
the slurry of S. cerevisiae cells was mixed with 3% sodium
chloride, and the solution was incubated at 55◦C for 24 h
with agitation at 120 rpm/min. The residual autolyzed cells
were obtained by centrifugation at 5,000 g for 10 min, and
the MPs were extracted by water at 121◦C for 4 h. The
supernatant was collected and mixed with a triple volume
of absolute alcohol. After keeping at 4◦C for one night, the
precipitated MPs were collected and deproteinized using the
trichloroacetic acid method. The obtained solution was further
mixed with a triple volume of absolute alcohol. The precipitate
was collected, dissolved in distilled water, and further separated
by Sepharose CL-4B to obtain the purified MPs. The contents of
carbohydrates and protein were 86.3 ± 2.37% and 14.6 ± 1.45%,
respectively. The molecular weight of MPs was 78 kD. The mice
diets, including D12450J with 10 kcal% fat and D12492 with
60 kcal% fat, were purchased from Research Diets, Inc. (New
Brunswick, NJ, USA).

Mice and diets

Six-week-old C57BL/6 male mice (n = 24, Shanghai SLAC
Laboratory Animal Co., Ltd., Shanghai, China) were bred
in the Animal Center of Nanjing Agricultural University
(SYXK < Jiangsu > 2011-0037). All animal experimental
protocols in this work were approved by the Institutional
Animal Ethics Committee of the Experimental Animal Center
of Nanjing Agricultural University. The mice were housed in
specific pathogen-free (SPF) animal rooms under a 12-h dark-
light cycle with ad libitum access to food and water. After an
accommodation period of 1 week, mice were randomly divided
into three groups (n = 8 per group), and fed for 10 weeks
with a normal-chow diet (D12450J, coded as ND group), HFD
(D12492, coded as HFD group), and HFD plus daily yeast MPs
with a dosage of 400 mg/kg of body weight (coded as HFD-
MP). The dosage of MPs in this work was chosen according
to the previous work (23). Mice were supplemented daily with
0.2 mL of water in the ND and HFD groups and 0.2 mL of MPs
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solution (400 mg of MP was dissolved in 10 mL of sterilized
water) in the HFD-MP group by intragastric gavage. The
body weight and food intake were assessed on a weekly basis.
After overnight fasting, mice were anesthetized using carbon
dioxide and then euthanized by cardiac puncture at the end of
10 weeks. The blood was drawn in tubes containing EDTA and
centrifuged at 4,000 g to obtain plasma. The adipose tissue and
liver were obtained and weighed. A part of the epididymis fat
and liver samples were fixed with a 4% of paraformaldehyde
solution. After embedding in paraffin, the epididymis fat and
liver samples were sectioned and stained with hematoxylin and
eosin (H&E stain). Then, the slices were observed under a
light microscope.

Biochemical analysis

The plasma levels of triglycerides (TGs), low-density
lipoprotein cholesterol (LDL-C), total cholesterol (TC),
fasting plasma glucose, and alanine transaminase (ALT) were
detected by a commercial kit according to the manufacturer’s
instructions. The plasma interleukin-1β (IL-1β), IL-10, IL-6,
and tumor necrosis factor-alpha (TNF-α) levels were evaluated
by commercial ELISA kits from Neobioscience Biological
Technology Co., Ltd. (Shenzhen, China).

Gut microbiota analysis by 16S rRNA
gene sequencing

The genomic DNA was extracted from the feces of the mice
using the QiAamp DNA Stool Mini Kit (no. 51504, Qiagen,
Germany). The V3-V4 region was amplified from purified
DNA with the primers 341F (CCTACGGGNGGCWGCAG)
and 805R (GACTACHVGGGTATCTAATCC). Sequencing was
performed at an Illumina MiSeq platform by DeepBiome Co.,
Ltd. (Jinan, China) based on the manufacturer’s guidelines to
obtain the raw fastq files. The quality filtering of data was
carried out using Trimmomatic (version 0.36). The paired
reads were merged by USEARCH (version 11.2.64)1 using the
default parameters. The zero-radius operational taxonomic unit
(ZOTU) was obtained using USEARCH. The bioinformatic
analysis was performed by a previously reported method (28).

Short-chain fatty acid analyses

The levels of short-chain fatty acids (SCFAs) in mice
cecal contents, including acetic, propionic, and n-butyric,
were analyzed by gas chromatography (GC, 6890 N, Agilent)
equipped with flame ionization detector (FID) and HP-
INNOWAX capillary column (30 m × 0.25 mm × 0.25 µm,

1 http://drive5.com

Agilent) using 2-ethylbutyric acid as internal standard (29).
Briefly, the distilled water was added to cecal contents at a
ratio of 1:5 (w/v). After centrifugation, the samples were mixed
with internal standard solution (0.3 mg/mL of 2-ethylbutyric
acid prepared in 0.2 mol/L of HCl solution) in equal volumes
to obtain the solutions for GC analysis. The conditions of GC
analysis were described in the previous work (29).

Ribonucleic acid extraction and
quantification of gene expression

The total ribonucleic acid (RNA) in liver tissue was extracted
by TaKaRa MiniBEST Universal RNA Extraction Kit (TaKaRa
Bio. Inc., Beijing, China). The RNA was diluted and reverse-
transcribed to cDNA by PrimeScript RT Master Mix (TaKaRa)
after quantifying by using NanoDrop 2000 Spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Then, the
cDNA was used for RT-qPCR analysis using SYBR Green Master
Mix on a QuantStudio 6 Flex (Thermo Fisher Scientific Inc.).
The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as a housekeeping gene, and the mRNA expression was
calculated using the 2−11Ct method. The specific primers used
are summarized in Supplementary Table 1.

Statistical analysis

The outliers in this work were checked by GraphPad Prism
9.3.1 based on the Grubbs test (San Diego, CA, USA). The data
were presented as mean ± SEM. The normality of all data was
checked by SPSS 22 software (IBM) according to Shapiro–Wilk
test. If the data for multiple-group comparisons had normal
distribution, the statistical significance was performed by SPSS
22 software (IBM) using the one-way ANOVA procedure
followed by the Tukey test; otherwise, the statistical significance
was calculated using the Mann–Whitney test. The relationship
between the parameters of obesity and gut microbiota was
analyzed by Spearman’s correlation analysis using SPSS 22
software using the data of all samples in ND, HFD, and HFD-
MP groups (24 samples). All results were considered statistically
significant at p < 0.05.

Results

Mannoproteins treatment ameliorated
obesity and liver steatosis in high-fat
diet-induced obese mice

As shown in Figure 1, HFD significantly resulted in the
obesity of mice by increasing the body weight, promoting the
accumulation of white adipose tissue, and inducing hepatic lipid
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FIGURE 1

Impact of HFD and MP intervention on body features of mice. (A) Body weight, (B) body weight gain, weights of (C) epididymal, (D) mesentery,
(E) perirenal, (F) subcutaneous fat pads, (G) liver weight, (H) plasma alanine transaminase (ALT) level, epididymal adipocyte sections after H&E
staining (I), quantification of adipocyte area by ImageJ software (J), liver (K) sections after H&E staining, and hepatic steatosis scores (L). The
data are represented as the mean ± SEM. Statistical differences were carried out by one-way ANOVA followed by Turkey’s test, p < 0.05
indicates significant differences.
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accumulation and steatosis. MP treatment could significantly
decrease body weight gain from the sixth week until the end of
this work. Compared with the HFD group, the MP-treated mice
showed reduced body weight, and accumulation of epididymal,
mesentery, and subcutaneous fat tissues (Figures 1A–F).
Furthermore, MP intervention could significantly ameliorate
the steatosis and damage to the liver. as indicated by decreased
levels of ALT in plasma (Figure 1H) and H&E staining of
liver tissue (Figures 1K,L). It was observed that HFD could
induce extensive liver injury, increased fatty vesicles, and
inflammatory cell infiltration, which was significantly reversed
by MP intervention. However, MPs showed a limited effect on
the accumulation of perirenal fat (Figure 1E) and liver weight
(Figure 1G). As shown in Supplementary Figure 1, the food
intake and energy intake of the HFD-MP group showed no
significant difference from that of the HFD group. Thus, the
attenuation of obesity by MP treatment was not due to the
reduction in food consumption.

Mannoproteins treatment improved
hyperlipidemia, decreased plasma
glucose, and ameliorated systemic
inflammation in high-fat diet-induced
obese mice

High-fat diet could significantly increase the level of glucose
in plasma, which was reduced after administration of MPs
(Figure 2A). HFD usually leads to hyperlipidemia, and thereby
increases the potential risk for metabolism-related diseases.
Thus, the plasma levels of TC, TG, and LDL-C were also
evaluated, and the results showed that high concentrations of
TC, TG, and LDL-C induced by HFD were largely reduced by
treatment with MPs (Figures 2B–D). Thereinto, the levels of
TG and LDL-C in the HFD-MP group showed no significant
difference from those in the ND group (p > 0.05), suggesting
the superior action of MPs for the prevention of hyperlipidemia.

FIGURE 2

MP intervention reduced HFD-induced high levels of (A) fasting plasma glucose, (B) TC, (C) TG, and (D) LDL-C in plasma. The data are
represented as the mean ± SEM. Statistical differences were carried out by one-way ANOVA followed by Turkey’s test, p < 0.05 indicates
significant differences.
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Obesity is closely related to chronic low-grade inflammation
(30). The pro-inflammatory cytokines in plasma, including
TNF-α, IL-1β, IL-6, and IL-10, were detected to evaluate
the anti-inflammation effect of MPs in HFD-induced obese
mice (Figure 3). It was found that HFD could significantly
increase the plasma levels of IL-1β and IL-6, but showed
a limited effect on the content of TNF-α and IL-10. MP
treatment could reverse the level of IL-6, which showed no
significant difference from that in the ND group. However, MP
intervention could not change the levels of TNF-α, IL-1β, and
IL-10. Furthermore, the effect of MPs on the relative mRNA
expression levels of TNF-α, IL-1β, and IL-6 in the liver was
investigated (Supplementary Figure 2). It was found that HFD
could increase the relative mRNA expression levels of TNF-
α, IL-1β, and IL-6, whereas MP treatment could significantly
downregulate the mRNA expression levels of TNF-α, IL-1β, and
IL-6 (p < 0.05).

Mannoproteins attenuated high-fat
diet-induced dysbiosis of gut
microbiota

An increasing number of studies have demonstrated that
gut microbiota is related to the etiology of obesity and obesity-
related complications (31). Thus, it was hypothesized that
the gut microbiota was a potential target responsible for the
prevention of obesity by MPs. In the present work, the high-
throughput sequencing technology was used to systematically
analyze the changes in gut microbiota after supplementation
with MPs. The Chao1, Richness, Simpson, and Shannon indexes
were calculated to quantify the alpha-diversity of gut microbiota,
as shown in Supplementary Figure 3. HFD could significantly
reduce the Chao1 and Richness indexes. Furthermore, Simpson
and Shannon indexes in the HFD group also showed increased
or decreased trends compared with those in the ND group

FIGURE 3

MP intervention attenuated HFD-induced chronic inflammation, including (A) TNF-α, (B) IL-1β, (C) IL-6, and (D) IL-10. The data are represented
as the mean ± SEM. Statistical differences were carried out by one-way ANOVA followed by Tukey’s test, p < 0.05 indicates significant
differences.
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with no significant difference. As expected, MPs could reverse
these changes of alpha-diversity induced by HFD, by increasing
the Chao1, Richness, and Shannon indexes, and decreasing
the Simpson index.

Diet plays an important role in shaping the structure
and composition of gut microbiota (32). Principal coordinate
analysis (PCoA) was first carried out to visualize the
differences in the structure of gut microbiota after HFD and
MP treatments. It was found that ND and HFD groups
could be clearly distinguished on the basis of the results
of PCoA (Figure 4A). Compared with the HFD group,
significant separation was also observed after MP treatment,
suggesting that MP intervention could change the HFD-
treated structure of gut microbiota. Furthermore, principal
component analysis (PCA) and hierarchical cluster analysis
largely agreed with the result of PCoA (Figures 4B,C).
Interestingly, based on the PC1 (41.43%) value in the result

of PCA, MPs could lead to a significant shift in the gut
microbiota from the HFD group toward the ND group.
Thus, MPs significantly modulated the HFD-induced dysbiosis
of gut microbiota back to health status. At the phylum
level, the gut microbiota of ND, HFD, and HFD-MP groups
was all mainly composed of Firmicutes and Bacteroidetes
(Figure 5A), which was consistent with the previous works (33,
34). Differently, HFD could significantly increase the relative
abundance of Firmicutes and decrease the level of Bacteroidetes
compared with the ND group, thereby significantly enhancing
the ratio of Firmicutes to Bacteroidetes (Figures 5B–D).
MPs could reverse this change induced by HFD treatment,
by increasing the relative abundance of Bacteroidetes and
decreasing the level of Firmicutes. Furthermore, the ratio of
Firmicutes to Bacteroidetes in the HFD-MP group showed no
significant difference compared to that observed in the ND
group.

FIGURE 4

MPs attenuated HFD-induced dysbiosis of gut microbiota evaluated by beta-diversity analyses, including (A) PCoA, (B) PCA, and (C) hierarchical
cluster analysis.
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FIGURE 5

MPs modulate the HFD-disrupted gut microbiota composition at the phylum level. (A) Bacterial taxonomic profiling and relative abundances of
(B) Firmicutes, (C) Bacteroidetes, and (D) the ratio of Firmicutes to Bacteroidetes. The data are represented as the mean ± SEM. Statistical
differences were carried out by one-way ANOVA followed by Tukey’s test, p < 0.05 indicates significant differences.

The gut microbiota at the family level was comparatively
analyzed in this work (Figure 6). The result showed that
HFD treatment could decrease the relative abundance
of Porphyromonadaceae and increase the levels of
Lactobacillaceae, Ruminococcaceae, Rikenellaceae, and
Desulfovibrionaceae. Compared with the HFD group, MP
intervention could significantly increase the relative abundance
of Bacteroidaceae, Ruminococcaceae, and Rikenellaceae, and
decrease the level of Lactobacillaceae. The gut microbiota at
the genus level was also analyzed, as shown in Table 1. Most
strikingly, the relative abundance of Lactobacillus was increased
from 3.94 ± 1.30% to 19.99 ± 3.94% after HFD treatment,
which was then decreased to 2.68 ± 0.77% by MP intervention.
Likewise, HFD resulted in a significant decrease in the level
of Parabacteroides, which was reversed by MP treatment.
Thus, the modulated effect of MPs on the relative abundance
of Lactobacillus and Parabacteroides may play an important
role in the prevention of HFD-induced obesity. Furthermore,
MPs could also increase the relative abundance of Alistipes,
Bacteroides, and Mucispirillum compared with that in the ND
and HFD groups. Then, the relationship between the changed

gut microbiota at the genus level by MP and phenotypical
changes in obesity was analyzed by Spearman correlation,
as shown in Supplementary Figure 4. It was found that
Parabacteroides and Alistipes showed a significant correlation
with obesity.

The different gut microbiota at the same genus level may
show different responses after treatment with MPs, thus the gut
microbiota at the ZOTU level was analyzed to further excavate
the key gut microbiota contributing to the prevention of obesity.
The ZOTUs with a relative abundance of more than 0.1% were
used to proceed with further analysis. As shown in Figure 7,
HFD and MPs could significantly change 62 ZOTUs compared
with the ND group. HFD could lead to 41 changed ZOTUs,
including increasing 23 ZOTUs and decreasing 18 ZOTUs.
Thereinto, nine ZOTUs were found to be significantly reversed
by MP intervention. Then, the relationship between the relative
abundance of these reversed ZOTUs and phenotypical changes
of obesity was analyzed by Spearman correlation (Figure 8), and
the result showed that seven ZOTUs were positively corrected
with obesity, and two ZOTUs were negatively associated
with obesity. Thereinto, two ZOTUs (ZOTU2 and ZOTU14)
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FIGURE 6

The comparative analysis of nine main families of the gut microbiota, including (A) Bacteroidaceae, (B) Porphyromonadaceae,
(C) Lactobacillaceae, (D) Lachnospiraceae, (E) Ruminococcaceae, (F) Erysipelotrichaceae, (G) Rikenellaceae, (H) Coriobacteriaceae, and
(I) Desulfovibrionaceae. The data are represented as the mean ± SEM. Statistical differences were carried out by one-way ANOVA followed by
Tukey’s test, p < 0.05 indicates significant differences.

belonging to Lactobacillus and two ZOTUs (ZOTU43 and
ZOTU108) belonging to Parabacteroides distasonis may play a
key role in the prevention of obesity.

Mannoproteins increased the content
of acetic acid in high-fat diet-fed mice

The SCFAs are the main metabolites produced by the
fermentation of polysaccharides by gut microbiota, which are
speculated to play an important role in the biological activities
of polysaccharides (35). Thereinto, acetic acid, propionic acid,
and butyric acid are the most abundant SCFAs in the human
body and colon, whereas other SCFAs, such as formate, valerate,
and caproate, are minor end products in the colon (36).
Thus, the levels of acetate, propionate, and butyrate were
measured in different groups, and the result showed that
HFD significantly reduced the levels of acetate, propionate,
and butyrate in the cecal contents of mice (Supplementary
Figure 5). The MP intervention could lead to a significant
increase in the level of acetic acid from 3.28 ± 0.22 mmol/g to

7.84 ± 0.96 mmol/g; however, MPs showed a limited effect on
the content of propionic acid and butyric acid. Furthermore, the
effect of MPs on the mRNA expression of G protein-coupled
receptors (GPRs), including GPR43 and GPR41, in the liver
was investigated to further verify the key role of SCFAs in the
attenuation of obesity (Supplementary Figure 6). The result
showed that HFD treatment significantly reduced the mRNA
expression of GPR41 and GPR43, whereas MP intervention
could upregulate the expression of GPR41 and GPR43.

Discussion

Obesity has become a leading public health problem with
pandemic proportions and can further increase the rates
of complications, such as cardiovascular disease and type 2
diabetes (T2D) (37). An increasing number of studies have
demonstrated that gut microbiota populations are sensitive
to genetic, environmental, and diet influences, and hence
can directly or indirectly affect the energy balance and
energy stores (12). Thus, the gut microbiota is expected
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TABLE 1 Comparative analysis of the gut microbiota between the
groups at the genus level.

ND HFD HFD-MP

Lactobacillus 3.94 ± 1.30a 19.99 ± 3.94b 2.68 ± 0.77a

Barnesiella 12.65 ± 1.37b 0.00 ± 0.00a 0.00 ± 0.00a

Desulfovibrio 0.99 ± 0.22a 5.51 ± 0.72b 5.21 ± 1.51b

Alistipes 0.89 ± 0.13a 2.62 ± 0.52b 4.59 ± 0.43c

Turicibacter 7.72 ± 1.12b 0.00 ± 0.00a 0.00 ± 0.00a

Clostridium_XlVa 2.97 ± 0.79a 1.85 ± 0.43a 2.57 ± 0.24a

Lactococcus 0.00 ± 0.00a 4.09 ± 1.55b 1.22 ± 0.22ab

Bacteroides 0.42 ± 0.10a 0.52 ± 0.11a 4.07 ± 1.21b

Parabacteroides 2.28 ± 0.43b 0.39 ± 0.12a 2.10 ± 0.20b

Helicobacter 0.66 ± 0.28a 0.62 ± 0.19a 2.25 ± 0.75a

Mucispirillum 0.40 ± 0.15a 0.82 ± 0.37ab 2.14 ± 0.64b

Oscillibacter 0.80 ± 0.23a 0.94 ± 0.21ab 1.56 ± 0.13b

Roseburia 0.00 ± 0.00a 1.49 ± 0.51b 1.07 ± 0.39ab

Romboutsia 0.02 ± 0.01a 1.29 ± 0.3b 0.38 ± 0.21a

Clostridium_XlVb 0.25 ± 0.05a 0.57 ± 0.09ab 0.81 ± 0.13b

Enterorhabdus 0.78 ± 0.36a 0.19 ± 0.06a 0.16 ± 0.04a

Bifidobacterium 0.87 ± 0.22b 0.25 ± 0.07a 0.00 ± 0.00a

Prevotella 1.10 ± 0.26b 0.00 ± 0.00a 0.00 ± 0.00a

Acetatifactor 0.07 ± 0.03a 0.29 ± 0.11ab 0.35 ± 0.06b

Clostridium_sensu_stricto 0.60 ± 0.15b 0.00 ± 0.00a 0.06 ± 0.02a

Clostridium_IV 0.32 ± 0.05b 0.16 ± 0.05a 0.14 ± 0.03a

Clostridium_XVIII 0.03 ± 0.01a 0.2 ± 0.06ab 0.34 ± 0.09b

Odoribacter 0.10 ± 0.05a 0.38 ± 0.19a 0.07 ± 0.05a

Olsenella 0.17 ± 0.09ab 0.03 ± 0.01a 0.27 ± 0.07b

Akkermansia 0.40 ± 0.24a 0.00 ± 0.00a 0.00 ± 0.00a

Ruminococcus 0.37 ± 0.08b 0.00 ± 0.00a 0.00 ± 0.00a

Streptococcus 0.01 ± 0.00a 0.29 ± 0.10b 0.07 ± 0.02a

Parasutterella 0.27 ± 0.06b 0.00 ± 0.00a 0.00 ± 0.00a

Anaerotruncus 0.01 ± 0.00a 0.13 ± 0.06a 0.12 ± 0.04a

Others 60.91 ± 1.74 57.41 ± 3.27 67.75 ± 2.29

The data are represented as the mean ± SEM. Statistical differences were carried out by
one-way ANOVA followed by Tukey’s test, p < 0.05 indicates significant differences.
The different letters indicate significant differences between the groups (p < 0.05).

as a promising target for the prevention and treatment of
obesity (38). Polysaccharides, serving as a superior prebiotic,
could modulate the gut microbiota by selectively stimulating
the growth of beneficial bacteria and inhibiting the harmful
microbiota, thereby improving host health (39). Furthermore,
polysaccharides could also modulate the metabolism of
probiotics (40). MP is one of the most important components
of yeast cell walls. The previous work has shown that MPs
could stimulate angiogenesis (27) and had immunoactivities
and antineoplastic activities (26). However, the effects of MPs
on obesity and gut microbiota are still unknown. Here, the
HFD-induced obesity mice model was used to investigate
the potential anti-obesogenic effect of MPs. Over 10 weeks
of treatment, HFD could significantly induce obesity in the

mice model. As expected, MPs significantly prevented HFD-
induced body weight gain, fat accumulation, and liver steatosis.
Furthermore, the levels of glucose, TC, TG, and LDL-C in
plasma were also ameliorated by the treatment with MP.
Thus, the results in the present work demonstrated that MP
intervention could reduce obesity and metabolic disorders in
HFD-fed mice. However, it would be more convincing if the
dose setting or positive control was involved in this work.

It has been reported that HFD could damage the gut
integrity and lead to a leaky gut, and the endotoxin
lipopolysaccharide (LPS) released from Gram-negative bacteria
in the gut enter the bloodstream, thereby leading to metabolic
inflammation in obese mice (30). Thus, HFD-induced obesity is
usually associated with chronic, low-grade inflammation. In the
present work, IL-1β, and IL-6 levels were significantly enhanced
after HFD treatment, and MPs could significantly reduce the
level of IL-6, which showed no significant difference from
those in the ND group. The decrease in the pro-inflammatory
cytokines by the dietary polysaccharides contributing to the
prevention of metabolic diseases has been widely reported.
For example, an insoluble polysaccharide from the sclerotium
of Poria cocos could reduce the plasmatic TNF-α in ob/ob
mice (41). Likewise, the polysaccharides isolated from Hirsutella
sinensis decreased the serum levels of the pro-inflammatory
cytokines IL-1β and TNF-α in the HFD-fed mice (42). Thus, the
improvement of metabolic disorders by MPs might be related to
the suppression of chronic inflammation.

The accumulating evidence has demonstrated that dietary
habit, especially a HFD, could lead to dysbiosis of gut
microbiota, which might thereby lead to some pathologic
conditions of obesity and obesity-related complications.
Recently, some foods or food additives, such as processed
foods (43), dietary emulsifiers (44), and artificial sweeteners
(45), could promote metabolic diseases by disordering the
gut microbiota. Alpha-diversity, including Chao1, Richness,
Simpson, and Shannon indexes, could reflect the diversity and
richness of bacteria (46). In this work, HFD could significantly
affect the structure and composition of gut microbiota, which
is evidenced by decreasing alpha-diversity and changing beta-
diversity indexes. The reports in animal and clinical studies
showed that decreased alpha-diversity and richness values
were observed in obese subjects and animals (28, 47, 48). MP
treatment could not only increase the alpha-diversity, including
Chao1, Richness, Simpson, and Shannon indexes, but could also
change the structure of gut microbiota from the HFD group
toward the ND group based on beta-diversity.

The result at the phylum level indicated that the gut
microbiota was dominated by Firmicutes and Bacteroidetes.
The ratio of Firmicutes to Bacteroidetes has been reported to
relate to metabolic diseases, and high levels of Firmicutes and
low levels of Bacteroidetes were observed in obese humans and
animals (49–51). Thus, the decrease in the ratio of Firmicutes
to Bacteroidetes may contribute to the prevention of obesity
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FIGURE 7

Gut microbiota composition was altered by HFD or MP intervention at the ZOTUs levels. Heatmap shows the relative abundance of 62 ZOTUs
(ln transformed). The dots ( ) and circles ( ) showed the more or less relative abundances of ZOTUs in ND or MPs groups compared with the
HFD group. The star ( ) represented ZOTUs changed by HFD but were reversed after treatment with MPs. Statistical differences were carried out
by one-way ANOVA followed by Tukey’s test, p < 0.05 indicates significant differences.

and metabolic diseases. A decrease in the ratio of Firmicutes
to Bacteroidetes by anti-obesogenic candidates was widely
reported (52, 53). In this work, a similar trend toward a
decreased ratio of Firmicutes to Bacteroidetes was obtained
after MP treatment, which may contribute to the prevention of
obesity by MPs. At the family level, the MPs induced increased
levels of Bacteroidaceae, Ruminococcaceae, and Rikenellaceae.
Therefore, the relative abundance of Bacteroidaceae has been
reported to negatively link to obesity (54, 55). Furthermore,
the level of Bacteroidaceae is determined by SCFA-producing
bacteria (56), which could be regarded as a positive outcome
predictor of individual weight loss (57). Lactobacillaceae was

usually considered as beneficial bacteria in the gut for the
prevention of obesity (58, 59). On the other hand, some
reports showed that Lactobacillaceae has a positive relationship
with obesity (60, 61). The different bacteria in the same
family may play different roles in the metabolic phenotype
of obesity, thus the gut microbiota was also analyzed at the
genus or ZOTU levels.

It was found that Lactobacillus, belonging to
Lactobacillaceae, and Parabacteroides, belonging to
Porphyromonadaceae, were significantly reversed by MP
treatment. Furthermore, Alistipes (belonging to Rikenellaceae)
which was increased by MPs showed a significant correlation
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FIGURE 8

Nine ZOTUs reversed by MP intervention were significantly correlated with features of obesity. The heatmap shows the R-value of Spearman’s
correlation between the relative abundance of ZOTUs and features of obesity. The dots (correlation between the more or less relative
abundance of ZOTUs in the ND or MP groups compared with the HFD group. * and **Show the significant associations (p < 0.05 and p < 0.01,
respectively) based on Spearman’s correlation analysis.

with obesity. To further identify species-level phylotypes
or specific bacterial taxa contributing to the prevention of
obesity by MPs, the gut microbiota was analyzed at the
ZOTU level. Lactobacillus (ZOTU2 and ZOTU14), which was
positively corrected with obesity, and P. distasonis (ZOTU43
and ZOTU108), which showed negative relation to obesity,
were significantly reversed after MP intervention. P. distasonis,
regarded as one of the 18 core members in the human gut
microbiota, plays an important role in human health (62).
The lower level of P. distasonis has been observed in patients
and animals with metabolic diseases (63, 64). Furthermore,
the alleviation of obesity and obesity-related dysfunctions by
P. distasonis has been reported, which was due to the generation
of succinate and secondary bile acids in the gut (14). Moreover,
the other health-promoting functions of P. distasonis, such as
blocking colon tumor formation (65) and alleviating colitis (66),
have also been widely reported. Thus, P. distasonis has been
regarded as potential probiotic for improving our health (67).
The previous work showed that polysaccharides, such as inulin,
could promote the proliferation of P. distasonis and thereby
improve human health (68). In this work, the MPs could also
increase the level of P. distasonis in HFD-induced obese mice
contributing to the prevention of obesity. Lactobacillus showed
a particularly interesting role in this work. It is well known that
lots of species in the genus Lactobacillus are probiotic bacteria
(69, 70), which can reduce the risk of metabolic diseases. On
the other hand, a report showed that some species belonging
to Lactobacillus, such as Lactobacillus reuteri, were positively
associated with obesity, while others were related to normal
weight (71). Recently, a systematic review of randomized
controlled clinical trials summarized the effect of Lactobacillus
on obesity, and it was found that the beneficial or detrimental
effects of Lactobacillus on obesity are strain-dependent (72).
Thus, the prevention of obesity by MPs might be related to
the inhibition of Lactobacillus. Unfortunately, the species for
Lactobacillus in this work could not be identified by sequencing,
which should be further investigated.

SCFAs, the key metabolites produced by gut microbiota,
play an important role in improving colonic and systemic
health (35), which could help to explain why and how the
changes in gut microbiota contribute to human health and
diseases (73). A growing amount of evidence suggests that
SCFAs could enter into the bloodstream, and thereby affect the
tissues and organs beyond the gut (74). Therefore, the specific
species, diversity, and absolute amount of gut microbiota
play a key role in the production of SCFAs (75). The diet
intervention could alter either the bacterial species or the
bacterial biosynthetic enzymes, thereby leading to alterations
in microbial SCFA production (76). A potential strategy based
on the modulation of gut microbiota by prebiotics has been
presented to stimulate the production of SCFAs, thereby
preventing diseases and improving human health (77, 78). Thus,
we suspected that the SCFAs would be changed due to the
modulation of gut microbiota by MP, which thereby contributes
to the prevention of obesity. In this work, MPs could increase
the level of acetate decreased by HFD treatment, whereas
they showed limited effects on the contents of propionate
and butyrate. Furthermore, the mRNA expression of GPR41
and GPR43 in the liver was significantly upregulated by MPs,
suggesting that SCFAs played a key role in the prevention
of obesity by MPs. A lot of reports have shown that acetate
administration could reduce body weight, decrease hepatic
fat accumulation, and improve insulin sensitivity in HFD-
fed mice (79, 80). Likewise, SCFA intervention studies in
humans also further demonstrated that consumption of acetate
could significantly reduce the body weight of patients with
obesity (81). SCFAs could activate GPR41 and GPR43 to
improve immune responses, and the activation of GPR41/43
could further modulate the levels of pro-inflammatory factors.
It has been reported that polysaccharides-derived SCFAs
could significantly reduce the level of pro-inflammatory
factors, such as LPS in the blood. Furthermore,SCFA might
also directly reverse LPS-induced inflammation (75, 82).
In addition, acetate can significantly regulate the levels
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of DNA methylation at the host miR-378a promoter, which
also contribute to the improvement of obesity and glucose
intolerance (83). It has been reported that Parabacteroides could
utilize polysaccharides with its glycoside hydrolase, and further
produced acetate to affect host health (84, 85). It is expected to be
a potential strategy to increase the level of acetate by prebiotics,
thereby preventing and treating obesity. Thus, the increased
level of acetate by MPs may also contribute to the prevention of
obesity in this work. In addition to SCFAs, the other metabolites
were not measured in the present study, which could be further
investigated by metabolomics in our next work (86).

Conclusion

In conclusion, the HFD-induced obese mice model was used
to investigate the potential anti-obesogenic effect of MPs and its
potential mechanism. The result showed that MPs significantly
attenuated HFD-induced obesity. MPs could not only increase
the alpha-diversity of gut microbiota, but also change the
structure of gut microbiota from the HFD group to the
ND group. Furthermore, harmful Lactobacillus and probiotic
P. distasonis may be potential key gut microbiota responsible
for the prevention of obesity by MPs. This preliminary research
showed promise for the efficacy of MPs in the prevention of
HFD-induced obesity, thus MPs were expected to serve as a
functional food for the improvement of human health.
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