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Background: Cold plasma (CP) can be defined as partially or wholly

ionized gas carrying myriads of highly reactive products, such as electrons,

negative ions, positive ions, free radicals, excited or non-excited atoms,

and photons at ambient temperature. It is generated at 30–60◦C under

atmospheric or reduced pressure (vacuum). In contrast to thermal plasma,

it requires less power, exhibits electron temperatures much higher than the

corresponding gas (macroscopic temperature), and does not present a local

thermodynamic equilibrium. Dielectric barrier discharges (DBD) are one of the

most convenient and efficient methods to produce CP.

Scope and approach: Cold plasma technology has the potential to replace

traditional agri-food processing purification methods because of its low

energy requirements and flexible system design. CP technology works by

reducing bacteria levels and removing pests and mycotoxins from your

produce at harvest. It can also catalyze physiological and biochemical

reactions and modify materials. It can meet microbial food safety standards,

improve the physical, nutritional, and sensory characteristics of the products,

preserve unstable bioactive compounds, and modulate enzyme activities. This

manuscript also discusses the quality characteristics of food components

before/after CP treatment.

Key findings and conclusion: In the past decade, CP treatments of food

products have experienced increased popularity due to their potential

contributions to non-thermal food processing. There is no doubt that CP

treatment is a flexible approach with demonstrated efficacy for controlling

many risks across food and agricultural sustainability sectors. In addition, CP

technologies also can be applied in food-related areas, including modification
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of chemical structures and desensitization treatments. There is a need to

fully assess the benefits and risks of stand-alone CP unit processes or their

integration as a processing chain as soon as the economic, ecological, and

consumer benefits and acceptability are considered.

KEYWORDS

cold plasma, dielectric barrier discharges, agri-food, food components,
decontamination

Introduction

Microorganisms, often known as microbes, are minute
organisms that can be single cells or colonies of cells.
Food corruption and human disease can be contributed
to microorganism contamination in food as one of the
major reasons. Unwanted microorganisms because of food
spoilage and food pathogens can cause illness, especially if
the food is prepared or kept incorrectly. Microbial toxins and
spores are also possible contaminants of food. However, in
the process of preparing food, microbes are diminished or
prevented by preservation or processing techniques including
cooking, utensil hygiene, or low temperatures. An autoclave
to control germs with heat and pressure is utilized when
total sterility is required, such as with surgical equipment.
Of these, the usage of radio frequency (RF) heat treatment
is proposed for inactivating microorganisms not just because
it is an effective method of preventing food spoilage, but
also because it can create multifarious delicacies under certain
conditions. Thermal processing technology has been widely
used in agriculture, food and industrial production fields,
its functions include sterilization, preservation, deworming,
drying, cooking and modification (1–7). However, considering
the amount of energy and the quality of heated food, heating
is not always suitable due to sensitivity to food quality. At
the same time, overcooking, lowering nutritional value, and
changes in flavor and sensory attributes caused by overheating
of foods may also destroy the acceptability of consumers.
The modern food industry is also searching for methods
to meet the growing trend for healthy and nutritional food
with “fresh” attributes (8). On the other hand, in many
places, regulatory reviews of agricultural and food production
inputs are being conducted in order to ensure their long-term
sustainability, human safety, and environmental safety. Many
safety issues include persistent contamination, spoilage, parasite,
agricultural chemical pollution, and antibiotic contamination
in the agricultural and food sectors. Therefore, new strategies
for hazard control in the food and agricultural industries
as well as in healthcare are needed. Additionally, food
manufacturers are looking for strategies to lessen or reduce
allergy, either in foods or in processing settings, since the safety

of foods in terms of their immunological reactivity is becoming
increasingly relevant.

After solids, liquids, and gases, plasma is referred to
as the fourth state of matter in science. It is a gaseous
substance that has been electrically electrified and is made
up of charged particles, free radicals, and some radiation.
A partially or completely ionized gas, made up of ions, free
electrons, atoms, and, most significantly, photons in their
fundamental or excited states, is produced during an electrical
discharge to produce plasma. These are classified as either
“heavy” or “light” species (photons and electrons) (9). Usually,
we can observe a homogeneous glow or filamented structure.
According to the mechanism of creation, the plasma may be
divided into two classes: equilibrium (thermal plasma) and non-
equilibrium (low-temperature plasma) (10). Thermal plasma
consists of ions, electrons, and gas molecules in thermodynamic
equilibrium created by thermonuclear fusion at temperatures
of about 20,000 K. Such a kind of temperature can hardly be
utilized by industries or home use. The low-temperature plasma
is usually less than 150◦C, between which quasi-equilibrium
plasma (100–150◦C) and non-equilibrium plasma (<60◦C) can
be distinguished. Local thermodynamic equilibrium between
species, such as electrons and gas molecules, is present in the
quasi-equilibrium plasma. Without any local thermodynamic
equilibrium, partial ionization in the non-equilibrium plasma
results in lower temperatures for the gas molecules and higher
temperatures for the electrons, which lowers the system’s overall
temperature. The definition of plasma as an ionized (partially or
completely ionized). Cold plasma (CP), in contrast to thermal
plasma, is produced at atmospheric pressure or lower pressures,
using less power. It also shows electron temperatures that are
significantly greater than the comparable gas and lacks a local
thermodynamic equilibrium (11).

Because the ions and uncharged molecules only receive a
little amount of energy and maintain a low temperature, CP
is appropriate for treating food products that are sensitive to
heat. It can satisfy microbiological food safety requirements,
enhance the goods’ physical, nutritional, and sensory qualities,
protect unstable bioactive chemicals, and control enzyme
activity. Food is a complex system, which needs to argue
the main components’ alternation before/after CP treatment.
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However, there is little systematic information to summarize
the impact of CP treatment on changes in food components.
As a result, the latest advancements in CP for food storage
are summarized in this article and explore the influence on
quality characteristics of food components during/after CP
treatments. The opportunities and challenges of CP applications
are also discussed.

Fundamentals and mechanisms

The purpose of the cold plasma in food
applications

Cold plasma technology is a fast and non-invasive
treatment, which has the potential to replace or work in
conjunction with several production phases in the agricultural
and food sectors, including lower bacterial levels at harvest (12),
pesticide degradation (13, 14), pest and mycotoxin elimination
(15), non-thermal pasteurization/sterilization of food (16),
decontaminant (17), and catalysis/modification (18, 19), due
to the flexible system architecture and low energy needs.
Furthermore, due to its acidic environment, which alters the
redox potential and conductivity and leads to the generation
of reactive oxygen and nitrogen species, plasma-activated water
can be used as an alternate technique for microbial inactivation.
It is discovered that Pseudomonas fluorescens was responsive
to plasma-activated water treatment, and after 3 min of CP
treatment, it was decreased to below detection limits (20).
For instance, Patange et al. (17) used plasma-activated water
to control Listeria innocua and P. fluorescens inoculated on
lettuce and found that P. fluorescens was responsive to plasma-
activated water treatment and after 3 min of CP treatment,
it was decreased to below detection limits. 2.4 Log10 CFU/g
less L. innocua were present after 5 min of CP treatment.
Liao et al. (21) used ice made from plasma-activated water for
shrimp preservation. The results indicated that the deteriorating
changes in color characteristics and hardness were delayed
and the volatile basic nitrogen (TVBN) was reduced to below
20 mg/100 g. The pH of shrimps treated with plasma-activated
water or ice remained below 7.7 during storage, which made
the extending storage time by 4–8 days. CP was also used to
reinforce the physical-chemical properties of edible film. Chen
et al. (22) studied the functional properties of zein film enhanced
by chitosan and CP treatment. After CP treatment, oxidation
and etching cause the protein molecules to unfold, exposing
the internal molecular groups and enhancing the crosslinking
of the proteins, resulting in a significant enhancement of the
mechanical behaviors of the film. Romani et al. (23) developed a
fish protein film with low water sensitivity for food preservation.
After CP treatment, a decrease in water vapor permeability
and solubility can be observed obviously. CP was also used
to improve antioxidant activities. The strengthening effect of

freshly cut pitaya fruit has increased antioxidant activity and
phenolic build-up, which was investigated by Li et al. (24).
The results indicated that CP treatment had the capacity to
increase the antioxidant activity and phenolic build-up in freshly
cut pitaya fruit, due to its ability to alter the relative gene
expression. This CP treatment could be used for changing
the consumption of primary sugars, raising the energy level,
enhancing the signaling function of reactive oxygen species
(ROS), and triggering the metabolism of phenyl propanoid in
freshly cut pitaya fruit. In addition, CP treatments are also used
for enzyme inactivation (25).

Mechanisms of microbial
decontamination by cold plasma in
foods

Non-thermal processes can inhibit microbial growth,
degrade the contaminations, and meanwhile enhance the items’
dietary, sensory, and physical qualities, which can be used
for unstable bioactive compounds preserving and enzyme
activity modulating. As an emerging non-thermal technology,
mechanisms of CP treatments for food sterilization are complex
and not completely understood. Most of the studies available are
focused on the indirect mechanisms of microbial destruction
(26). Fortunately, CP has been proven to decontaminate
efficiently the food with a minimal impact on product quality, as
growing studies are available on the antimicrobial efficacy of CP.
The summarized mechanisms of microbial decontamination by
CP in foods are listed in Table 1.

The action electronic impact (excitation, vibration,
dissociation, attachment, and ionization), ion-molecule
reactions, ion-ion neutralization, penning ionization,
quenching, neutral chemistry, and three-body neutral
recombination, in addition to photoemission, photo-
absorption, and photo-ionization by UV and photons, are
responsible for the generation of active species in a CP (25).
The oxidation of proteins and DNA by active substances
such as reactive oxides and nitrides makes low-temperature
plasma excellent for sterilization. The gas between the plate
electrodes, the plasma source’s design, the power applied to the
gas, vacuum, treatment time, and humidity levels are only a few
examples of variables that might affect the reactive species and
their concentrations in the plasma (27).

Sources of cold plasma

Plasma is an ionized gas that contains a variety of active
species with net neutral charges. However, it is of particular
interest for use in the food sector since it may be useful for
processing food at low temperatures. It is believed that non-
thermal plasma was formerly created at low pressures and
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TABLE 1 Mechanisms of microbial decontamination by cold plasma (CP) in foods.

Reactive species Mechanisms References

Charged particles Electrons, atomic, or molecular ions, etc. 1. Membrane lipid of microorganisms peroxided.
2. Amino acid in proteins of microorganisms denaturized.
3. Breaking structural bonds in cell wall component
peptidoglycan.
4. Permeabilization of the cell membrane or cell wall.
5. Damaging iron–sulfur and mononuclear iron enzymes.
6. Changing the pH that microorganisms rely on.

(10)
(26)
(28)
(27)

(9, 25)
(29)

Reactive oxygen
species (ROS)

alkoxyl (RO·), carbonate anion radical (CO3·–), hydrogen peroxide
(H2O2), hydroperoxyl (HO2·), hydroxyl radical (·OH), ozone (O3),
peroxyl (ROO·), superoxide anion (O2·–), and singlet oxygen (1O2).
Common examples of RNS in humid air plasma are included.

Reactive nitrogen
species (RNS)

alkylperoxynitrite (ROONO), nitric oxide (NO·), nitrogen dioxide
radical (·NO2), peroxynitrite (ONOO–), and peroxynitrous acid
(OONOH).

Ultraviolet rays Electromagnetic radiation created by aero-ionization Directly damaging genetic materials and inhibiting the
replication of DNA. Formation of thymine dimer due to
photon emissions, modifications of nucleo-bases, and
nucleotide oxidation by reactive species.

(30, 31)

Gene expression
changing

Activating phenylpropanoid metabolism in fruits and
vegetables. The metabolism can be used for microorganism
inactivation.

(24)

Plasma-activated
water treatment

Creating the acidic environment water full of ROS and RNS Similar to reactive species. (20)

power levels. As technology develops, plasma generators that
can function at atmospheric pressure have been developed
thanks to recent advancements in plasma engineering. The
plasma source mainly includes dielectric barrier discharges
(DBD), gliding arc discharge, corona discharge plasma jet, and
microwave/radio frequency plasma (Table 2 and Figure 1).
DBD is a non-equilibrium gas discharge in which an insulating
medium is inserted into the discharge space. The gliding arc
discharge is caused by a high voltage applied by the power
supply to the two electrodes causing an electrical breakdown
of the gas flowing between the electrodes at the narrowest part
of the electrodes. A strong arc of high current is generated,
and the arc is extinguished and then re-activated, and the
cycle repeats. A corona discharge is a local self-sustaining
discharge of a gaseous medium in an inhomogeneous electric
field. A plasma jet is two coaxial electrodes with the gas
discharging between them at high flow rates. Microwave/RF
plasma is a low-temperature plasma produced by ionizing
the air around the electrodes using high frequency and
high voltage.

Factors influencing the efficiency of
cold plasma

Atmospheric and reduced pressures
Some decades ago, the application of plasma-related

technologies in the food industry was rare due to the low-
pressure level (>105 Pa) input, the propagation power of up
to 50 MW, and the extremely high temperatures generated.
However, contemporary innovations in plasma engineering
make a possible application of plasma sources that can operate
at atmospheric pressure and produce mild temperatures.

Both atmospheric-pressure (AP) and low-pressure
(LP) plasmas have been applied to food research fields.
AP plasma systems are easy to build due to no airtight
vacuum chambers required. Thus, the materials can be
moved through a treatment zone easily. However, LP plasma
systems encounter technological challenges concerning
treatment speed and throughput volume that prevent
them from meeting the criteria for commercial scale-up
processing (37). Although, LP plasma systems encounter
technological challenges regarding treatment speed and
throughput volume that prevent them from meeting the
criteria for commercial scale-up processing. Contrary to LP
plasma, AP plasmas are difficult to ionize and do not emit
UV radiation at large dosages because air absorbs UV rays
at AP (36).

The arrangement of the distance between the electrodes
(the gap width) and the gas pressure between them defines
the ionization voltage for any gas combination (38, 39).
Figure 1B shows lower pressure of the gas also results in
a reduction in the voltage needed to ionize it, which is
the relationship’s impact for different gases. Using reduced
pressure treatment chambers to create plasma and transfer
it to the food surface to be treated, several CP generating
technologies have been developed as a result of this essential
property of ionization potentials. In addition to the throughput
restrictions imposed by batch processing, it is essential to
remember that not all food products can withstand vacuum
conditions. Materials to be treated can be conveyed through
a treatment zone via a conveyor without the requirement
for vacuum-tight chamber doors or gaskets. But as shown
in Figure 1B, ambient pressure processing presents further
difficulties for CP systems, which makes us have no choice but
to raise the voltage input or limit the distance between two
electrodes.
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TABLE 2 The classification of plasma sources.

CP
Generating mechanism and characteristics

References

Dielectric barrier discharges
(DBD)

Plasma occurs between two electrodes, and then, an AC high voltage is applied on the electrodes. It is an
excellent CP source with 1–10 eV and high density.

(32)

Gliding arc discharge Two (or more) metallic electrodes connected to an AC or DC high-voltage transformer. A plasma plume is
generated when the high voltage is applied. This arc is then pushed away by a gas flow and glides along the
electrodes until it collapses.

(33)

Plasma jet Two coaxial electrodes, between which gas flows at high rates. The free electrons are accelerated by the RF
field and collide with molecules of background gas. These inelastic collisions can produce various reactive
species (excited atoms and molecules, free radicals) that exit the nozzle at high velocity.

(25, 34)

Corona discharge plasma jet Containing substantial electric field for expediting the ionization energy of arbitrarily produced electrons
to that of milieu gas atoms or molecules.

(29)

Microwave (MW)/radio
frequency (RF) plasma

RF plasma is usually achieved when a gas is placed within an oscillating electromagnetic field, produced
by an induction coil or distinct electrodes kept outside the reactor. MW/RF CP is usually generated under
reduced pressure.

(35, 36)

Modified atmosphere
Modified atmosphere packaging (MAP) is widely used

for food preservation. The features of CP could be used for
MAP food sterilization. As the constitution of gas would
influence the ionization, the MAP food sterilized by CP needs
painstaking research. Han et al. (40) studied the performances
of food preservation treated by CP under three kinds of MAP
conditions, namely, 70% N2 + 30% CO2, 90% N2 + 10% O2,
and 70% O2 + 30% CO2. The results indicated that ROS
production, in-package inactivation effectiveness, and post-
treatment storage duration were all positively impacted by the
oxygen levels in the user’s working gas. After 15 s of treatment
with a high-oxygen MAP mix and 24 h of post-treatment
storage, Listeria populations were undetectable. However, the
production and impact of RNS were influenced by oxygen levels
in addition to nitrogen content. Strawberry CP decontamination
was examined by Misra et al. (41) using two different gas
mixes within a sealed packaging. The outcomes showed that
the plasma treatments with the two gas mixes had comparable
effects on the levels of microbial decrease. In other words,
the micro-flora of the strawberries decreased from the starting
values of 5 log10 CFU/g after 300-s treatments by an average
of 3 log10.

Attributes of microorganisms
It has been shown that plasma has a tremendous

antibacterial effect, inactivating both Gram-positive and Gram-
negative strains of bacteria, yeasts, and even viruses. Plasma
targets and destroys various structures of microorganisms,
etching cell walls, disrupting biofilms, and peroxidizing lipids,
and bacterial DNA and RNA may be affected by oxidative
damage, base modifications, and strand breaks. In addition,
large molecules (e.g., proteins) may be unfolded or modified,
all of which are specific mechanisms of plasma sterilization.
Currently, low-temperature plasma disinfection technology

has been developed and used in a variety of fields with
promising results.

The features of the target microorganisms are crucial for CP
technology decontamination success, which are given inTable 3.
Some studies have used DBD to inactivate the Bacillus subtilis
spores in culture media (42). Bourke (43) figured out that mono-
species surface inoculations had greater inactivation rates than
seed native micro-flora, which appear as multispecies microbial
communities dispersed on the surfaces and within internal seed
structures. It is also reported that different modes of interaction
of ROS and RNS created by CP treatment with Gram-positive
and Gram-negative bacteria are observed (40).

Impact of cold plasma on
characteristics and chemical
changes of food

Researchers are also very interested in how foods behave
throughout CP therapy and how physical qualities and chemical
changes are related. Making clear the relationship between the
physical and chemical indexes of each food component after
CP treatment can offer guiding significance on food processing
and preservation.

Cold plasma applied to water

Water-based food, such as beverages, can be easily infected
with microorganisms. Fortunately, CP is effective in water
sterilization. However, the interaction of water and components
of beverages requires certain tests to confirm the CP effects.
Hou et al. (44) studied the effect of blueberry juice treated by
CP jet. After reaching the equal sterilizing thermal effect, the
content of phenolics significantly increased by CP treatment,
which could better preserve the original color of blueberry
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FIGURE 1

(A) Schematic diagram of different plasma sources: (a) dielectric barrier discharge, (b) plasma jet, (c) radio frequency discharge, (d) microwave
discharge, and (e) corona discharge plasma jet (25, 35, 36). (B) Paschen ionization curves obtained for helium (He), neon (Ne), argon (Ar),
hydrogen (H2), and nitrogen (N2). VB (breakdown voltage, in volts) as a function of pd (pressure × distance, in torr cm−1) under parallel plate
electrodes (39).

juice. It was chosen to have considerably shorter exposure
times to CP for anthocyanin and vitamin C. In studies using
antioxidants, an increase in oxygen content led to rising trends
in antioxidant activity in DPPH (2,2’-diphenyl-1-picrylhydrazyl
radical) and ABTS [2,2’-azino-bis-(-3 ethylbenzothiazoline-6-
sulfononic acid)] assays. Chocolate milk drink treated by
nitrogen plasma flow system in Coutinho et al. (59, 60)
showed particles that were larger, more consistent and had a
different melting profile than the pasteurized product (lower
temperature, bound water with a greater enthalpy), which
suggested denaturation processes and the creation of protein
aggregates. The mild and severe conditions led to a reduction

of the bioactive compounds, changes in fatty acid composition,
less favorable health indices, and lower number of volatile
compounds. The authors considered that the drinks that were
subjected to CP and pasteurization showed various physical
traits and microstructures. (61). However, CP is still an effective
method for beverage sterilization. Besides, guava-flavored whey
beverage (62), coconut water (53), and white grape juice (63) are
also sterilized by CP technologies.

Some kinds of microorganisms can also be rendered inactive
by plasma-activated water. The significance of ROS in plasma-
activated water solutions has been underlined by studies to
date on the effects of pH and H2O2 on the development of
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TABLE 3 Microorganism inactivation with cold plasma (CP) technologies.

Microorganism Materials Plasma system References

Bacillus sp. Blueberry juice Plasma jet (44)

Bacillus subtilis spores Culture media Dielectric-barrier discharge CP (42)

Bacillus cereus Red pepper flake Microwave discharge plasma system (45)

Escherichia coli O157:H7 Tryptic soy broth Dielectric barrier discharge CP (46)

Bulk Romaine lettuce Dielectric barrier discharge CP (47)

Onion flakes Moisture vaporization combined helium
dielectric barrier discharge cold plasma

(48)

Baby kale leaves Dielectric barrier discharge CP (49)

Tray sealer with PBS suspension In-package modified atmospheric CP (40)

Listeria monocytogenes Cabbage,
lettuce, and dried figs

Microwave-powered CP (16)

Ready-to-eat ham Dielectric barrier discharge CP (50)

Dry-cured beef Argon and oxygen gas electrodischarge
plasma system

(51)

Tray sealer with PBS suspension In-package modified atmospheric CP (40)

Microorganisms, psychrotrophs,
yeast, and mould

Pork Low-pressure CP (52)

Salmonella Coconut water High-voltage atmospheric CP (53)

Brain heat infusion broth for assay Dielectric barrier discharge CP (54)

Cherry tomato Microwave-powered CP treatment (55)

Bulk grape tomato In-package modified atmospheric CP (56)

Thyme essential oil/silk fibroin nanofibers Nitrogen flow CP system (57)

Staphylococcus aureus Tray sealer with PBS suspension In-package modified atmospheric CP (40)

Total aerobic bacterial counts Fresh-cut pitaya Dielectric barrier discharge CP (24)

Pork Dielectric barrier discharge with MAP (58)

plasma-activated water disinfection. The species produced in
the fluid remain stable for a long time, which contributes to
their long-lasting antibacterial qualities. For instance, Xu et al.
(64) used plasma-activated water for mushroom preservation.
It indicated that the plasma-activated water decreased the
microbiological counts by 1.5 log for bacteria and 0.5 log
for fungus during storage. Additionally, the relative electrical
conductivity, observed hardness, and observed respiration rate
revealed that plasma triggered water soaking and postponed
mushroom softening. Meanwhile, no significant change was
observed in the colour, pH, or antioxidant properties of
A. bisporus treated with plasma activated water (Figure 2A).
Lettuce (17) and shrimps (21) are also treated with plasma-
activated water for preservation.

Cold plasma applied to carbohydrates

Starch and saccharides, which include saccharose,
fructopyranose, and amylaceum, among others, are the
most prevalent types of carbohydrates found in plant tissues.
Most plants synthesize carbohydrates to store energy. In
comparison with foods such as potatoes, wheat, maize, rice,
and cassava, it is also the most prevalent in human diets. In

carbohydrates, starch is one of the most important compounds
existing in food tissues.

Bulbul et al. (65) reported the effect of bell-jar-type CP
treatment on xanthan gum at different powers and treatment
times by a bell-jar-type CP system. They found that the CP
treatment reduced mass, tapped density, and compressibility
index while increasing the porosity ratio and angle of repose.
It had no influence on the proximate composition of xanthan
gum. The etching phenomenon of the CP treatment increased
the surface area, according to the Brunauer–Emmett–Teller
(BET) study. Moreover, the CP treatment also caused alterations
in pH, hydroxyl value, and acidity. Misra et al. (66) used
DBD CP to improve the viscosifying and emulsion-stabilizing
properties of xanthan gum. In CP-treated xanthan gum, it
showed more potential benefits for salad-dressing and instant
dry soup formulations as it increases in its viscosifying ability
at low shear rates (Figure 2B). Emulsion-stabilizing activity
of the gum can be found with changes without affecting the
color or the basic polysaccharide backbone of the xanthan. The
performance of fructooligosaccharides (FOS) in orange juice
after DBD CP treatment was investigated by Almeida et al.
(67). The results indicated some changes in the polymerization
degree of FOS. The treated samples did, however, exhibit
a little difference in the color characteristics following both
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FIGURE 2

(A) pH values (a), relative electric conductivity (b), firmness (c), respiration ratio (d), and weight loss (e) of control, water-, PAW- 5-, PAW- 10-,
and PAW-15-treated button mushroom during storage time (PAW: plasma-activated water) (64). (B) The viscosity profiles of 1% control and
CP-treated xanthan solutions over a shear rate range of 0.1–100 s-1 and over a temperature range of 20–60◦C. Arrows indicate an ordinate axis
corresponding to the curves (66).

treatments, and the assessed methods also failed to degrade
the orange juice’s primary organic acids, which is more
desirable than high-temperature- and high-pressure-treated
ones.

Native starch is also modified by CP. Gao et al. (68) found
that except for the increased crystallinity, more fissures and
holes appeared, granule aggregation occurred, and the starch
digestibility was strongly enhanced. It works well for starch
hydrolyzation processes such as brewing, food fermentation,
and the manufacture of bioethanol. Okyere et al. (18) figured
out that after RF CP modification, the resistant starch content of
cereal and tuber waxy starches was increased, while the setback,

final viscosities, and crystallinity decreased. The starch films
treated by high-voltage atmospheric CP were carried out by
Pankaj et al. (69), showing that all of the films underwent CP
treatment, which increased the glass transition temperature,
surface roughness, and surface oxygenation. Additionally, the
findings unmistakably show that the amylose content and the
starch source are crucial in determining how it interacts with CP.
Moreover, hexamethyl disiloxane CP treatment may improve
the barrier and hydrophobic characteristics of starch with 50%
amylose-incorporated methyl groups and favor a small amount
of water–film interaction caused by the starch components’ helix
organizing abilities (70).

Frontiers in Nutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.1015980
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1015980 November 10, 2022 Time: 15:16 # 9

Jiang et al. 10.3389/fnut.2022.1015980

Cold plasma applied to proteins

All living things contain a highly complicated molecule
called protein. It contributes crucial features to the finished
product, such as gelling properties, emulsifying ability, or
water and oil holding capacity. It is a significant structural
component of many foods. The majority of proteins fold into
distinctive, three-dimensional shapes. There are four distinct
parts of a protein’s structure that biochemists frequently
discuss. A protein’s functionality, such as its increased
solubility or emulsifying capacity, may change as a result of
emerging technologies.

Many studies revealed the effect of CP treatment on
proteins. Two common food ingredients, namely, hemoglobin
and gelatine from pork, were exposed under a DBD CP reactor.
CP treatment affected the functional properties in different
ways. For instance, after CP treatment, the proteins’ solubility
dramatically decreased, while their ability to retain oil improved
significantly. Pérez-Andréset al. (71) agreed that CP can also
be used to modify the functionality of food ingredients to
achieve the desired properties of a specific food product.
Furthermore, they found that the DBD treatment can change
carbonyl content in fish protein ranging from 0.5–1.5 nmol/mg
compared with the control samples to 0.5–2.5 nmol/mg of
protein for the plasma treated samples. These features indicate
that DBD treatment encourages protein oxidation, which leads
to the development of crosslinking, which causes beef products’
juiciness, softness, and other qualitative attributes to decline
(72). Besides, after a certain minute DBD treatment, the
solubility of peanut protein isolate and the stability of emulsion
increased (73–75) due to the solitary structure of peanut protein
unfolding, which causes the content of -sheets and random coils
to increase, while the content of -helixes and -turns decreases.
The hydrophobic properties of whey protein also increased after
being treated with low-pressure plasma (76).

Cold plasma applied on lipids

Reactive oxygen species produced by the plasma process,
including hydroxyl radicals, hydrogen peroxide, and superoxide
anions, aid in the destruction of microorganisms. Unluckily,
reactive species, especially free radicals, can start the oxidation
of lipids by removing hydrogen ions from lipid molecules (77).
It should be mentioned that despite the known negative effects
on lipids, scientists are still actively investigating its use and
developing innovative plasma sources for food applications (78).

Sarangapani et al. (79) illustrated that with FTIR spectra and
1H NMR analysis, the hydroperoxides and aldehydes formed in
butter oil and beef fat after 30-min DBD treatments. Bahrami
et al. (80) considered that total free fatty acids and phospholipids
were reduced by CP treatment; however, this effect was dose
dependent. The rate of lipid oxidation was confirmed to be

accelerated by the increase in oxidation markers (hydroperoxide
value and head space n-hexanal) with treatment time and
voltage by a specially designed CP system by a custom-made
CP system, which confirmed the acceleration of lipid oxidation
(Figure 3). The total number of aerobic bacteria or mould did
not change as a result of the therapy. This was probably caused
by the low levels of treatment and moisture (80).

Some researchers got the opposite results. Pérez-Andrés
et al. (71) observed that after DBD treatment, neither the fatty
acid composition nor the nutritional quality indices showed
any significant changes (p > 0.05) in mackerel. Similar results
were also obtained by Gavahian et al. (81); due to the modest
penetration depth of plasma-generated reactive species, the
characteristics of yolk (e.g., fatty acid composition, acid value,
and thiobarbituric acid-reactive substances) were unaffected by
plasma treatment.

Cold plasma and functional
components

Reactive oxygen species (ROS) and reactive nitrogen species
(NOS) are created when the ambient air is used as a working
gas. However, functional compounds (polyphenols, vitamins,
etc.) may protect against oxidative stress by scavenging ROS,
which may interact with bioactive substances, changing their
quantity, and functional characteristics in food products and
which might result in lipid peroxidation, protein oxidation,
and DNA oxidation. The effects of plasma technology on the
elements and characteristics of both solid and liquid foods
have been the subject of numerous research. These applications
primarily deal with the lowering of microbe and enzyme activity.
Changes in the functional components of food following plasma
therapy are therefore of particular relevance.

The antioxidant ability of sliced apples treated with
DBD was investigated by Ramazzina et al. (82). The results
indicated that DBD treatment caused only a slight reduction
of antioxidant content and up to 10% antioxidant capacity.
Moreover, in human cultured colonocytes, treated apple
polyphenol extracts did not decrease cell viability and suppress
the healthy physiological response of the cells to oxidative stress
in terms of reactive oxygen species generation and phase II
enzyme activation. Carotenoids, vitamin C, antioxidant activity,
and angiotensin-converting enzyme (ACE) are all types of
phenolic chemicals’ inhibitory activity in N2CP-treated guava-
flavored whey beverage were investigated by Silveira et al.
(62). Compared with thermal pasteurization, higher antioxidant
activity, higher amounts of vitamin C, and volatile compounds
were produced by CP treatment, but lower levels of carotenoids
and a less favorable fatty acid profile were seen along with low
N2 flow rates and short treating times (62). Similar results also
can be found in CP-treated apple juice (83) and blueberry juice
(44). These investigations showed that CP can be successfully
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FIGURE 3

(A) Free fatty acids (FFAs) composition of control and cold plasma (CP)-treated wheat flour samples: 15, 60 (15 V, 60 s); 15, 120 (15 V, 120 s); 20,
60 (20 V, 60 s); and 20, 120 (20 V, 120 s). (B) Lipid oxidation markers (a) PV (hydroperoxide value) and (b) n-hexanal of control and CP-treated
wheat flour samples: 15, 60 (15 V, 60 s); 15, 120 (15 V, 120 s); 20, 60 (20 V, 60 s); and 20, 120 (20 V, 120 s), ∗difference from control (p < 0.05) (80).

used as a food processing technique without significantly
degrading product quality.

Properties of cold plasma
treatment

Numerous reasons, such as the growing world population,
which in turn raises the need for food, water, and energy
resources, contribute to the increased demand for innovative
sustainable technology in the agricultural and food sectors.
The potential for CP technology to offer revolutionary and
long-lasting technological interventions is illustrated by a large
number of cases of inactivation of a variety of microorganisms
and enzymes with proven efficacy for managing many dangers
across these sectors. However, the risks of CP-treated food still
need to be studied in detail, to prove that it cannot cause a
negative impact on human health or the environment.

Advantages of cold plasma
technologies

These advantages of CP technologies include low-
temperature operation, quick processing times, excellent energy
economy, and strong antibacterial efficacy with little effect on
environmental quality and food safety. Some investigations
that looked at product consumption found no differences in
the sensory acceptability of dried squid shreds treated with
corona discharge for microbial decontamination despite losses
in appearance, color, flavor, taste, and texture in water content
and increased lipid peroxidation (84).

The production of ROS, such as ozone, may result in the
bleaching of produced color and adverse effects on aesthetics.
However, when exposed to plasma-activated water, fresh food
such as tomatoes, carrots, and lettuce displayed minute but
noticeable color changes (85).
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Importantly, no appreciable effects of plasma treatment
on the vitamin C content, pH, turbidity, or Brix of orange
juice in a study of the nutritional aspects of the beverage
were observed (86). For this evidence, CP technologies can be
considered as a non-thermal and fast-food treatment, which
shows little impact on food qualities including color, flavor, taste,
texture, and nutrition.

Cold plasma technologies on food
safety and agriculture sustainability

Cold plasma technology has been explored for treatments of
raw materials, intermediate, finished, or packaged products, and
the processing equipment, facilities, and environment due to the
abundance of its advantages.

Many of the ongoing safety, spoilage, and contamination
challenges in the agricultural and food industries are caused
by microbes. The question of how to perform microbial
decontamination without causing quality deterioration is being
still explored by scientists. Due to their potential role in non-
thermal food processing, CP treatments of food products have
grown in favor during the past 10 years. There is no denying
that CP treatment is a flexible strategy with a track record
of success in reducing a wide range of risks in the food and
agricultural sustainability sectors. The CP-related research area
can be classified as:

1. Microbes control and antimicrobial restrictions: A
variety of microorganisms, including food pathogenic bacteria
and fungi, spoilage microorganisms, and grains, seeds, and
crops meant for sowing or storage have all been successfully
inactivated using CP.

2. Mycotoxin degradation: Mycotoxins such as aflatoxin,
which pose serious dangers to both human and animal health
when they contaminate seeds, grains, or crops, have been
successfully degraded using CP technology (87).

3. Insect control: The use of CP caused appreciable
increases in larval and pupal mortality as well as a decline in
adult emergence.

4. Biochemical reaction termination/enzyme inactivation:
When L-alanine is directly exposed to argon plasma, the COOH
group and CNH2 group are degraded. (88).

5. Food materials’ innovative applications: For instance,
starch modification.

6. Lowering pesticide residues on a variety of substrates and
for a variety of different organochlorine and organophosphorus
pesticide chemicals (89).

Hazard of cold plasma technologies

Many questions about CP need to be addressed due to the
extent of the research that needs to be further developed. In
general, the following questions need to be studied in-depth:

1. How the biological/chemical changes happened in food
during or after CP treatment? As described, there have
been several documented chemical modifications to dietary
ingredients. Some of them would lose bioactivities after CP
treatment. However, very limited evidence can be found that
the by-products showed detrimental qualities to human health.
For instance, sugars oxidize into organic acids; the modification
of proteins, loss of protein structure, disruption of the a-helical
structure into amino acid, and the peroxidation of lipids and
unsaturated fatty acids were not clear.

2. What is the potential toxicity of CP-treated food? There
were insufficient studies on the safety of plasma for use in
culinary applications. The evaluations of the persistence of
cytotoxic effectors of chlorine, ozone ROS/RNS, and nitrite
(nitrate) that existed in CP-treated food should be carried out
including their concentration and their oral toxicity.

3. Are there any effects of plasma on the human body
directly? An interest in their application for cancer treatment
has been spurred by cytotoxic action in mammalian cell models
following CP treatments (90). Mutagenic effects of protein
treated by cold atmospheric plasma have also been reported
in some studies (91, 92). It is hard to perorate that CP
would cause serious damage to the human body because of no
evidence of the observed conviction. However, larger sample
sizes are necessary to estimate the safety of CP treatments, and
necessary shielding accessories are recommended during the
design of CP devices.

4. What is the proper dosage of CP treatment? Certain power
input is essential when concerning the performances of allergen
control, microbial killing and enzyme inactivation, etc. Some
concentrations of by-products, such as nitrite and ROS/RNS,
depending on the plasma equipment and the treatment
conditions, can approach the mM level. How to balance the
performances and concentration of harmful compounds also
needs to be determined.

Aspects of cold plasma technologies
on food processing

In recent years, several studies have successfully
demonstrated food preservation using CP. CP technologies also
can be applied in food-related areas, including modification of
chemical structures and desensitization treatment. There
is a need to thoroughly evaluate the advantages and
disadvantages of stand-alone CP unit processes or their
integration as a processing chain, as well as the advantages
and acceptability of such processes for the economy, the
environment, and consumers. To address the long-term and
multigenerational impacts of plasma on seeds and plant growth
during storage, further study is needed in the primary food
production sector.
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Conclusion and recommendation
of future research directions

A lot of studies have recently successfully shown how to
store food using CP, including microbiological control and
physiological and chemical quality characteristic modification.
It also showed the potential of food by-product waste
management and reducing immune reactivity by modifying the
chemical structures. However, it still needs in-depth research on
the facts as follows:

1. Can CP be used for controlling multispecies contaminants
in complex food or environmental matrices?

2. Can food items become chemically contaminated as a
result of CP deposition? Are there any by-products created
by CP treatment that are harmful to human health?

3. What effects do organoleptic have on food composition?
Does it have a good or any effect on taste?

4. How about the shelf-life profile of CP treated foods?
Although CP can be used in controlling contaminants, the
effect of food preservation still needs more investigation.
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