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Background: Polyunsaturated fatty acids (PUFAs) are closely related to

osteoporosis. To test their causal relationship, we conducted a Mendelian

randomization (MR) analysis.

Methods: We analyzed the causal relationship between four PUFAs measures,

n-3 PUFAs (n-3), n-6 PUFAs (n-6), the ratio of n-3 PUFAs to total fatty acids (n-

3 pct), and the ratio of n-6 PUFAs to n-3 PUFAs (n-6 to n-3), and five measures

of osteoporosis, including estimated bone mineral density (eBMD), forearm

(FA) BMD, femoral neck (FN) BMD, lumbar spine (LS) BMD, and fracture, using

two-sample MR analysis. In order to verify the direct effect between PUFAs

and BMD, we chose interleukin-6 (IL-6), tumor necrosis factor-β (TNF-β),

and bone morphogenetic proteins 7 (BMP-7), three markers or cytokines

strongly related to BMD, as possible confounding factors, and analyzed the

possible causal relationships between them and PUFAs or BMD by MR. Inverse

variance weighting (IVW), MR-Egger, weighted and weighted median were

conducted. MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and MR-

Egger regression methods were used to evaluate the potential pleiotropy

of instrumental variables (IVs) and outliers were identified by MR-PRESSO.

Cochran’s Q statistic was used to detect the heterogeneity among IVs. Leave-

one-out sensitivity analysis was used to find SNPs that have a significant

impact on the results. All results were corrected by the Bonferroni correction.

Results: The IVW results showed that n-3 PUFAs (OR = 1.030, 95% CI: 1.013,

1.047, P = 0.001) and n-6 PUFAs (OR = 1.053, 95% CI: 1.034, 1.072, P < 0.001)

were positively correlated with eBMD, while n-6 to n-3 (OR = 0.947, 95% CI:

0.924, 0.970, P < 0.001) were negatively correlated with eBMD. These casual

relationships still existed after Bonferroni correction. There were positive

effects of n-3 PUFAs on FA BMD (OR = 1.090, 95% CI: 1.011, 1.176, P = 0.025)
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and LS BMD (OR = 1.056, 95% CI: 1.011, 1.104, P = 0.014), n-3 pct on eBMD

(OR = 1.028, 95% CI: 1.002, 1.055, P = 0.035) and FA BMD (OR = 1.090, 95%

CI: 1.011, 1.174, P = 0.025), n-6 to n-3 on LS BMD (OR = 1.071, 95% CI: 1.021,

1.124, P = 0.005); negative effects of n-3 pct on fracture (OR = 0.953, 95%

CI: 0.918, 0.988, P = 0.009) and n-6 to n-3 on FA BMD (OR = 0.910, 95% CI:

0.837, 0.988, P = 0.025). However, these causal effects all disappeared after

Bonferroni correction (all P > 0.0025). None of IL-6, TNF-β, and BMP-7 had a

causal effect on PUFA and BMD simultaneously (all P > 0.05).

Conclusion: Evidence from this MR study supports the genetically predicted

causal effects of n-3, n-6, n-3 pct, and n-6 to n-3 on eBMD. In addition, n-3

not only associate with FA BMD and LS BMD through its own level and n-6 to

n-3, but also link to fracture through n-3 pct.

KEYWORDS

polyunsaturated fatty acids, osteoporosis, bone mineral density, genetic association,
causal relationship, Mendelian randomization

Introduction

Osteoporosis is one of the most common systemic bone
diseases in clinic, which is mainly manifested with the
degradation of bone tissue microenvironment, the reduction
of bone mineral density (BMD), the increase of bone fragility,
and the high risk of fracture (1, 2). Osteoporosis mostly occurs
in the postmenopausal women. Worldwide, fractures caused
by osteoporosis can be as high as 9 million times a year (3).
With the increased life expectancy of the global population
and the improvement of medical and health conditions, the
prevention and treatment of osteoporosis and fractures is still
a common public health challenge and health care problem in
the world today (4–7). It has been suggested that 20–40% of the
risk of osteoporosis is caused by environmental factors such as
nutrition (8).

Polyunsaturated fatty acids (PUFAs) are important immune
nutrients, which play a role in nutritional treatment of a
variety of diseases, including cancers, inflammatory diseases and
osteoporosis (9–20). PUFAs are straight chain fatty acids with
two or more double bonds, and the length of carbon chain is
18–22 carbon atoms. In PUFAs, the first unsaturated double
bond is located between the 3rd and 4th carbon atoms starting
from the methyl end, which is called omega-3 (n-3) PUFAs,
and between the 6th and 7th carbon atoms, which is called
omega-6 (n-6) PUFAs (15). Mounting evidence has suggested
that PUFAs are involved in osteolysis, bone formation, bone
development, bone metabolism, and metabolic bone diseases
including osteoporosis and may be beneficial for skeletal health
(21–29).

Recently, the relationship between PUFAs and osteoporosis
has attracted a lot of attention. PUFAs intake and the ratio of n-6
to n-3 PUFAs are reported to be associated with BMD in humans
(27, 30–32). Some studies found that total PUFAs, n-3 PUFAs, n-
6 PUFAs intake can increase BMD, decrease the risk of fractures
and beneficial for osteoporosis (30–34). A low n-6 to n-3 PUFAs
ratio was proposed to be beneficial for the bone quality of rats
(35). However, conclusions about the relationship between n-
3 PUFAs, n-6 PUFAs, and osteoporosis are inconsistent. It was
also observed that the intake of n-3 PUFAs or the ratio of n-6 to
n-3 PUFAs are not associated with osteoporotic fractures, while
the intake of n-6 PUFAs is positively associated with an elevated
risk of fracture (32). Other study also indicated that increased
intake of PUFAs is associated with greater perimenopausal
femoral neck (FN) BMD loss (36). In postmenopausal women,
the lower intake of marine n-3 PUFAs and the higher intake
of n-6 PUFAs were observed that can decrease the risk of total
fracture (33).

Clarifying the relationship between various PUFAs levels
and BMD can not only further study the prevention, health
care and treatment strategies of osteoporosis patients, but also
can estimate the fracture risk of osteoporosis patients. It is
imperative to evaluate the causal relationship between PUFAs
level and BMD. However, from the above evidence, conclusions
from observational studies and randomized controlled trials
(RCT) about the relationship between PUFAs and osteoporosis
are inconsistent, as well as the causal relationship between
PUFAs and osteoporosis remains obscure.

Genome wide association study (GWAS) shows that BMD
is a trait controlled by multiple genes, and is easy to be
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affected by environmental factors and has the tendency of
family aggregation. Some genetic determinants of fractures are
regulated by lower BMD (37–40). Mendelian randomization
(MR) is an advanced research using the law of free combination,
which uses genetic variation as instrumental variable (IVs) (41).
The free combination of alleles can reduce the confounding
effect of environmental factors; the one-way relationship that
genes affect traits but diseases do not change genotypes can
effectively avoid reverse causal bias (42). Compared with RCT,
MR can extract useful information from the existing GWAS
database on a large scale, with stronger statistical ability and
wider coverage (43).

Materials and methods

Study design

In this study, we used two-sample MR studies to assess
the causal relationships between PUFAs and osteoporosis. We
selected four measures of PUFAs, including the circulating level
of n-3 PUFAs (n-3), the circulating level of n-6 PUFAs (n-6),
the ratio of n-3 fatty acids to total fatty acids (n-3 pct), and the
ratio of n-6 PUFAs to n-3 PUFAs (n-6 to n-3). For osteoporosis,
estimated BMD (eBMD), forearm (FA) BMD, femoral neck (FN)
BMD, lumbar (LS) BMD, and fracture were selected as measures.

In order to verify the direct effect between PUFAs and
BMD, we chose interleukin-6 (IL-6) (44), tumor necrosis factor-
β (TNF-β) (45) and bone morphogenetic proteins 7 (BMP-7)
(46), three markers or cytokines strongly related to BMD, as
possible confounding factors, and analyzed the possible causal
relationships between them and PUFAs or BMD by MR.

Data sources and single-nucleotide
polymorphism selection

Genome wide association study of
polyunsaturated fatty acids

The GWAS data on PUFAs came from the latest and largest
public GWAS analysis by Borges MC et al. (47). In the study, the
GWAS data of n-3, n-6, n-3 pct, and n-6 to n-3 were generated
from 114,999 UK Biobank participants of European ancestry
using BOLT-LMM (v2.3) (Supplementary Table 1) (48).

Genome wide association studyof osteoporosis
Genetic associations of eBMD and fracture were obtained

from the largest public GWAS of Morris et al. (1), in which
eBMD GWAS data were retrieved from 426,824 individuals
of European ancestry in the UK Biobank and fracture GWAS
data were retrieved from 416,795 UK Biobank European
ancestry participants (ncases = 53,184 and ncontrols = 373,611)
(Supplementary Table 1).

The research by Zheng et al. (49) provided GWAS data
about FA BMD, FN BMD, and LS BMD. In the research,
the GWAS data for the three BMDs were obtained from
10,805, 49,988, and 44,731 individuals of European ancestry,
respectively (Supplementary Table 1).

Genome wide association study of possible
confounding factors

Genetic associations of IL-6 and TNF-β were obtained from
the public GWAS of Ahola-Olli et al. (50), and the GWAS data
for both were retrieved from 8,293 individuals of European
ancestry. The GWAS data of BMP-7 was obtained from 3,301
individuals of European ancestry (51) (Supplementary Table 1).

Single-nucleotide polymorphism selection
We screened single-nucleotide polymorphisms (SNPs)

strongly related to exposure factors (P < 5 × 10−8) from
the exposure GWAS, used clustering process (R2 < 0.001
and clumping distance = 10,000 kb) to eliminate linkage
disequilibrium (LD) between SNPs, and excluded SNPs with
minor allele frequency (MAF < 0.01), which ensured that the
end result was undisturbed and feasible. The selected SNPs were
matched with the outcome GWAS, and if SNP can not be found
in outcome GWAS, its proxy SNP with high LD (r2 > 0.8) was
used instead. Finally, other SNPs were selected as IVs after the
palindrome SNPs were removed.

Statistical analyses

We used four complementary and mutually corroborative
methods to analyze the causal relationship between PUFAs
and osteoporosis, including inverse variance weighting (IVW),
MR-Egger, weighted and weighted median, among which IVW
is the main analysis method. The weighted median estimator
serves as an unbiased causal effect estimate when up to 50%
of the instruments are invalid, by estimating the causal effect
as the median of the weighted ratio estimates (52). At the
same time, we used MR Pleiotropy RESidual Sum and Outlier
(MR-PRESSO) and MR-Egger regression methods to evaluate
the potential level pleiotropy of IVs (53, 54). Meanwhile, MR-
PRESSO can also find abnormal values in IVs. After removing
the abnormal values, MR-PRESSO and MR-Egger tests were
performed again until there was no horizontal pleiotropic SNP
in all IVs. Then, we applied Cochran’s Q statistic to detect
and quantify the heterogeneity among IVs (55). Leave-one-out
sensitivity analysis was used to find and eliminate SNPs that have
a significant impact on the results, so as to ensure the robustness
of causal relationship estimation. There were four exposures (n-
3, n-6, n-3pct, and n-6 to n-3) and five outcomes (eBMD, FA,
FN, LS, and fracture) in this study, therefore the Bonferroni
method was conducted to correct for multiple comparisons and
the P-value was less than 0.0025 (0.05 was divided by 4 × 5) (56,
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57). All statistical analyses were performed using the packages
“TwoSampleMR” and “MRPRESSO” in R version 4.1.1.

Results

Instrumental variables selection

Instrumental variables of polyunsaturated fatty
acids selection

After clumping process, there were 52 SNPs, 63 SNPs, 41
SNPs, and 41 SNPs strongly associated (P < 5 × 10−8) with
the circulating level of n-3 PUFAs, the circulating level of n-6
PUFAs, n-3 pct, n-6 to n-3, respectively and no LD was screened
out. MAF of all above SNPs were not less than 0.01. The main
information of SNPs is listed in Supplementary Tables 2–5.

Instrumental variables of possible confounding
factors selection

After clumping process, there were 2 SNPs and 2 SNPs
strongly associated (P < 5 × 10−8) with TNF-β and BMP-7,
respectively. There was no SNPs available at the genome wide
significance threshold (P < 5 × 10−8) of IL-6, so we relaxed
the significance threshold to P < 5 × 10−7, and 2 SNPs were
strongly associated (P < 5 × 10−7) with IL-6. Among the above
selected SNPs, no LD was found, and MAF of these SNPs were
not less than 0.01. The main information of SNPs is provided in
Supplementary Tables 6, 7.

Causal relationship between
polyunsaturated fatty acids and
osteoporosis

n-3 polyunsaturated fatty acids on
osteoporosis

From the IVW results, n-3 PUFAs had positive effects on
eBMD (OR = 1.030, 95% CI: 1.013, 1.047, P = 0.001), FA
BMD (OR = 1.090, 95% CI: 1.011, 1.176, P = 0.025), and
LS BMD (OR = 1.056, 95% CI: 1.011, 1.104, P = 0.014),
however, after further Bonferroni correction, only the effect on
eBMD remained. No causal effects of n-3 PUFAs on FN BMD
(OR = 0.988, 95% CI: 0.950, 1.028, P = 0.557) and fracture
(OR = 0.982, 95% CI: 0.938, 1.028, P = 0.433) were observed
(Figure 1 and Supplementary Table 8).

n-6 polyunsaturated fatty acids on
osteoporosis

The results of IVW showed a positive effect of n-6 PUFAs
on eBMD (OR = 1.053, 95% CI: 1.034, 1.072, P < 0.001),
which still persisted after Bonferroni correction. However, no
causal associations were found between n-6 PUFAs and FA
BMD (OR = 1.022, 95% CI: 0.925, 1.128, P = 0.673), FN

BMD (OR = 1.015, 95% CI: 0.962, 1.071, P = 0.584), LS BMD
(OR = 1.013, 95% CI: 0.951, 1.078, P = 0.688), and fracture
(OR = 1.014, 95% CI: 0.970, 1.059, P = 0.545) (Figure 1 and
Supplementary Table 9).

n-3 pct on osteoporosis
The results of IVW revealed that n-3 pct had positive causal

relationships with eBMD (OR = 1.028, 95% CI: 1.002, 1.055,
P = 0.035) and FA BMD (OR = 1.090, 95% CI: 1.011, 1.174,
P = 0.025) as well as a negative causal relationship with fracture
(OR = 0.953, 95% CI: 0.918, 0.988, P = 0.009). However, these
causal effects all disappeared after Bonferroni correction. There
were no causal effects of n-3 pct on FN BMD (OR = 0.992, 95%
CI: 0.951, 1.036, P = 0.732) and LS BMD (OR = 1.025, 95% CI:
0.969, 1.085, P = 0.384) (Figure 1 and Supplementary Table 10).

n-6 to n-3 on osteoporosis
The results of IVW indicated that n-6 to n-3 had a negative

effect on eBMD (OR = 0.947, 95% CI: 0.924, 0.970, P < 0.001),
which remain persisted after Bonferroni correction and had a
negative relationship with FA BMD (OR = 0.910, 95% CI: 0.837,
0.988, P = 0.025) while a positive relationship with LS BMD
(OR = 1.071, 95% CI: 1.021, 1.124, P = 0.005), which both
disappeared after Bonferroni correction. No causal effects of n-6
to n-3 on FN BMD (OR = 1.002, 95% CI: 0.959, 1.046, P = 0.945)
and fracture (OR = 1.035, 95% CI: 0.979, 1.095, P = 0.225) were
observed (Figure 1 and Supplementary Table 11).

Causal relationship between possible
confounding factors and
polyunsaturated fatty acids

From the IVW results, BMP-7 had a negative effect on n-3
pct (OR = 0.967, 95% CI: 0.937, 0.998, P = 0.038) and a positive
effect on n-6 to n-3 (OR = 1.035, 95% CI: 1.002, 1.069, P = 0.036).
However, no causal effect was observed of BMP-7 on n-3 PUFAs
and n-6 PUFAs (all P > 0.05). Moreover, no causal relationship
was found between IL-6, TNF-β and all four outcomes (all
P > 0.05) (Figure 2 and Supplementary Table 12).

Causal relationship between possible
confounding factors and osteoporosis

From the IVW results, no causal relationship was found
between IL-6, TNF-β, BMP-7 and eBMD, FA, FN, LS as well as
fracture (all P > 0.05) (Figure 3 and Supplementary Table 13).

Pleiotropy and sensitivity analysis

The heterogeneity test did not find any heterogeneity
between selected IVs of n-3 PUFAs and n-6 PUFAs.
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FIGURE 1

Mendelian randomization (MR) estimate results of polyunsaturated fatty acids (PUFAs) on outcomes. n-3 pct, the ratio of n-3 fatty acids to total
fatty acids; n-6 to n-3, the ratio of n-6 PUFAs to n-3 PUFAs; BMD, bone mineral density; eBMD, estimated BMD; FA, forearm; FN, femoral neck;
LS, lumbar.

Heterogeneity was not observed between the IVs of n-3 pct on
eBMD and on FA BMD, while was found among IVs of n-3 pct
on FN BMD, on fractrue and on LS BMD. No heterogeneities
were found between IVs of n-6 to n-3, except for IVs of n-6 to
n-3 on FN BMD (Q = 50.008, P = 0.022). No heterogeneity was
found between the IVs of IL-6, TNF-β and BMP-7.

MR Pleiotropy RESidual Sum and Outlier global test defined
SNPs with horizontal pleiotropy as outliers which were listed
in Supplementary Tables 2–7. After removing the outliers,
MR-Egger regression and MR-PRESSO global test were used
to verify that there was no horizontal pleiotropy between IVs
and results. Leave-one-out analysis suggested that the outcomes
were not caused by any SNPs. Supplementary Tables 8–13 and

Supplementary Figures 1–16 show the results of pleiotropy and
sensitivity analysis.

Discussion

As the IVW results shown, after Bonferroni correction
n-3 PUFAs and n-6 PUFAs were still positively correlated
with eBMD, while n-6 to n-3 were negatively correlated with
eBMD, which provides new evidence to support the relationship
between PUFAs and osteoporosis.

In this study, no causal effect was observed of IL-6 and TNF-
β on four measures of PUFAs and five measures of osteoporosis,
suggesting that the causal effect of four measures of PUFAs
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FIGURE 2

Mendelian randomization (MR) estimate results of possible confounding factors on polyunsaturated fatty acids (PUFAs). n-3 pct, the ratio of n-3
fatty acids to total fatty acids; n-6 to n-3, the ratio of n-6 PUFAs to n-3 PUFAs; IL, interleukin; TNF, tumor necrosis factor; BMP, bone
morphogenetic protein.

on BMD was not affected by IL-6 and TNF-β, moreover IL-6
and TNF-β could not affect BMD by affecting PUFAs. As we
all know, only in situations where the total effect, direct effect
and indirect effect all act in the same direction, the exposure
having indirect effect can be identified as a mediator (58). BMP-
7 has a causal effect on-3 pct and n-6 to n-3, but has no causal
effect on BMD, suggesting that BMP-7 can not affect BMD
through PUFAs and is also not a mediator in the causal effect
of PUFAs on BMD.

Recently, the relationship between PUFAs and osteoporosis
has attracted a lot of attention. Some studies have found that
intake of total PUFA, n-3 PUFAs, n-6 PUFAs can increase BMD
and be beneficial to osteoporosis (30–34), which is mutually
confirmed with our results.

These may attribute to the profitable role of PUFAs in
bone formation, absorption, development and metabolism,
and n-3 PUFAs can also regulate bone health by increasing
osteoblast activity and decreasing osteoclast activity, promoting
intestinal calcium absorption and mineral deposition during
bone development (25). The intake of n-3 PUFAs has
also been observed to be associated with increased bone
regeneration, improved bone microstructure and strength
(59–61). Osteoporosis increases the apoptosis, adipogenic
differentiation, and levels of RANKL and sclerostin of bone

marrow mesenchymal stem cells and osteoblasts (62). Bone
mineral loss is the result of an imbalance between osteoblastic
bone formation and osteoclast bone resorption. As an important
n-3 PUFAs, DHA is a lipid component specific to the
osteoblast membrane, which induces extensive lipid remodeling
in mesenchymal stem cells, resulting in more stable membrane
microdomains and thus enhanced osteogenic differentiation
(63). It has been reported that dietary n-3 can reduce osteoclast
formation and bone loss in ovariectomized mice (64). In rats,
taking fish oil can also inhibit alveolar bone absorption and
osteoclast activity (65).

In this study, n-6 to n-3 was observed to be negatively
related to eBMD, which was consistent with previous studies.
In previous study, a low n-6 to n-3 PUFAs ratio has also been
proposed to be beneficial for the bone quality of rats (35). It has
been widely documented that reducing the n-6 to n-3 PUFAs
ratio can prevent bone mineral loss and prostaglandin(PG)
E2 production in animal and in vitro cell culture experiments
(66). Kelly et al. (67) also proposed that the high proportion
of n-6 to n-3 PUFAs may be one of the important reasons
for the increased risk of obesity and osteoporosis. According
to the IVW results, the relationship between n-3 PUFAs, n-
6 PUFAs, or the ratio of n-6 to n-3 PUFAs and fractures was
not observed, while n-3 pct was negatively related to fractures,
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FIGURE 3

Mendelian randomization (MR) estimate results of possible confounding factors on BMD. BMD, bone mineral density; eBMD, estimated BMD; FA,
forearm; FN, femoral neck; LS, lumbar; IL, interleukin; TNF, tumor necrosis factor; BMP, bone morphogenetic protein.

which suggests that it may not be the level of PUFAs who
affected the fracture, but n-3 pct. These results, together with
the n-6 to n-3 results, suggest that n-3 may influence BMD
not only by itself or by its ratio to n-6, but also by its ratio
to total fatty acids. The single item has little significance, but
its proportion has important diagnostic value, which is not
uncommon in clinical practice. For example, neutrophils to
lymphocytes ratio (NLR) is an inflammatory index, which plays
a role in the prognosis evaluation of sepsis and various diseases.
A higher NLR may indicate more serious infection and worse
prognosis (68, 69). The ratio of soluble fms-like tyrosine kinase
1 (sFlt-1) to placental growth factor (PlGF) can be used as
a monitoring indicator of preeclampsia (PE), which is a kind
of hypertensive disorder complicating pregnancy and seriously
endangers the health of mothers and infants, with unpredictable
outcomes (70).

Moreover, the IVW results showed that FA BMD and LS
BMD, which were less affected by weight bearing, were more
susceptible to n-3 and n-6 to n-3 than FN BMD which was
more affected by weight bearing. Fat is digested, decomposed

and metabolized into glycerin and PUFAs (71). Like vitamins
and minerals, PUFAs are closely related to bone health through
various ways. The distribution and accumulation of adipose
tissue is extremely important for bone health. At the same
time, adipose tissue secretions such as leptin, adiponectin,
estrogen and osteocalcin can also act on bones. Multiple studies
have shown that BMI is positively correlated with BMD, with
lower BMI being thought to increase the risk of osteoporosis,
while higher body weight (even obesity) protects bones (72–
75). However, in recent years, this “obesity paradox” has been
challenged like never before. Fat-rich bone marrow may be
the cause of osteoporosis, especially in postmenopausal women
(76). In 2011, the UK Fracture Liaison Service first reported that
the incidence of obesity in postmenopausal women with fragility
fractures can be as high as 27% (77). Two other studies were
also pointed out that visceral fat was significantly associated with
bone loss (78, 79). Excessive body fat, especially abdominal fat,
produces inflammatory cytokines that stimulate increased bone
marrow lipogenesis, increased bone resorption, decreased bone
strength, and decreased bone mass (80).
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Advantages and disadvantages

This study has several advantages. First of all, as a MR
study, this study investigated the causal associations between
different types of PUFAs and BMD in different parts, with
detailed classification and comprehensive research. Secondly, we
not only studied the level of PUFAs, but also the proportion
of PUFAs, and all the results verified each other, and the
conclusions were unified. Third, we used a strict Bonferroni
correction, thus the conclusions are robust.

At the same time, this study also has some limitations. First,
all GWAS data in this study were from European populations,
and the representativeness of the results to the entire population
remains to be determined. Second, the relationship between
different doses of PUFAs and BMD has not been studied, and
more detailed quantitative experiments are needed. In addition,
the mediating effects of obesity, BMD and other factors still need
further research.

Conclusion

This MR study establishes that n-3, n-6, n-3 pct, and n-6 to
n-3 are causally associated with eBMD. In addition, n-3 not only
associated with FA BMD and LS BMD through its own level and
n-6 to n-3, but also associated with fracture through n-3 pct. Our
findings provide new clue to further reveal the pathogenic role
and therapeutic potential of PUFAs in osteoporosis.
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