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Selenium supplementation and
pregnancy outcomes
Carl R.Dahlen*, Lawrence P. Reynolds and Joel S. Caton

Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University,
Fargo, ND, United States

In vertebrates and invertebrates, selenium (Se) is an essential micronutrient,

and Se deficiency or excess is associated with gonadal insufficiency and

gamete dysfunction in both males and females, leading to implantation

failure, altered embryonic development and, ultimately, infertility. During

pregnancy, Se excess or deficiency is associated with miscarriage, pre-

eclampsia (hypertension of pregnancy), gestational diabetes, fetal growth

restriction and preterm birth. None of this is surprising, as Se is present in

high concentrations in the ovary and testes, and work in animal models has

shown that addition of Se to culture media improves embryo development

and survival in vitro in association with reduced reactive oxygen species and

less DNA damage. Selenium also affects uterine function and conceptus

growth and gene expression, again in association with its antioxidant

properties. Similarly, Se improves testicular function including sperm count,

morphology and motility, and fertility. In animal models, supplementation

of Se in the maternal diet during early pregnancy improves fetal substrate

supply and alters fetal somatic and organ growth. Supplementation of Se

throughout pregnancy in cows and sheep that are receiving an inadequate

or excess dietary intake affected maternal whole-body and organ growth

and vascular development, and also affected expression of angiogenic factors

in maternal and fetal organs. Supplemental Se throughout pregnancy also

affected placental growth, which may partly explain its effects on fetal

growth and development, and also affected mammary gland development,

colostrum yield and composition as well as postnatal development of the

offspring. In conclusion, Se supplementation in nutritionally compromised

pregnancies can potentially improve fertility and pregnancy outcomes, and

thereby improve postnatal growth and development. Future research efforts

should examine in more detail and more species the potential benefits of Se

supplementation to reproductive processes in mammals.
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Introduction

In both vertebrates and invertebrates, selenium (Se)
deficiency or excess is associated with infertility (that is,
the inability to conceive and establish a pregnancy), as
reflected by small, poorly developed and poorly functioning
gonads, primarily ovarian follicles in females and testes
and spermatozoa in males. At least a portion of this
problem is associated with implantation failure due to poor
embryonic development and altered endometrial (uterine)
function. Deficiency or excess of Se also is associated
with reduced libido. Lastly, in terms of pregnancy, Se
excess or deficiency is associated with spontaneous abortion
(miscarriage), pre-eclampsia (hypertension of pregnancy),
gestational diabetes, fetal growth restriction, and preterm birth
(1–4).

Consistent with its known functions in cellular metabolism,
in reproductive tissues Se appears to function primarily as
a component of selenoproteins/selenoenzymes in a variety of
antioxidant systems, including glutathione peroxidases (GPX),
iodothyronine deiodinases (DIO), and thioredoxin reductases
(TXNR). These major familes of antioxidant enzymes contribute
to reductions in tissue reactive oxygen species and therefore
minimize DNA damage (5).

Selenium in the female
reproductive tract

The bovine ovary contains high levels of Se (Figure 1),
which are localized to healthy preovulatory follicles, but
not in atretic follicles (6). Localization of Se in healthy
pre-antral follicles indicates that Se is in close contact with
the pre-ovulatory oocyte, which may play a preparatory
role for subsequent fertilization, embryo development, and
postnatal life. In humans, cases of low plasma, follicular
fluid, amniotic fluid or tissue Se concentrations and(or)
low tissue GPX concentrations or activity are associated
with unexplained infertility, miscarriage, preterm birth,
gestational diabetes mellitus, and small for gestational age
(SGA) fetuses/newborns (1, 2, 7–9). Elevated serum levels
of Se-binding protein 1, an autoantibody produced by
the ovary, has been reported in women with unexplained
intertility and premature ovarian failure (1, 10). In women with
gestational diabetes mellitus, serum Se levels were low, and Se
supplementation improved glycemic status and lipid profiles
(11, 12).

After ovulation the oocyte moves to the oviduct, where
fertilization and early embryo development take place.
Oviductal fluid is secreted by the oviduct and acts as an
embryotropic culture media for the oocyte and early embryo
for their time in residence (13, 14). Addition of Se to in vitro

fertilization cultures in animal models (cattle, dogs, pigs, yak,
etc.) has resulted in positive impacts on embryo development
and survival, reduced reactive oxygen species, and reduced
DNA damage (15–19). Interestingly, Se-dependent mechanisms
are in place to control embryo metabolic reprogramming in
pro-inflammatory environments (20).

Upon deposition of semen into the reproductive tract a
post-mating inflammatory response is elicited (21), and an LPS
challenge of cultured bovine endometrial cells demonstrated a
protective role of Se (22). In vivo effects of Se were demonstrated
in cattle, where females receiving an organically bound source
of Se had greater conceptus length compared with females
receiving an inorganic source of Se (23). In addition, cattle
receiving organic Se had differential expression of genes related
to maternal recognition of pregnancy, including interferon-
stimulated genes and progesterone-stimulated genes (23).

Selenium in the male reproductive
tract

The testis contains high concentrations of Se (Figure 2),
where Se has effects both in the seminiferous tubule where
sperm are being produced, and in the interstitial space where
testosterone production occurs and the blood supply resides
(4). As sperm mature Se is localized in the mid-piece, which
is also the location of sperm mitochondria (24). The action of
Se is primarily as GPX4, which protects sperm from oxidative
damage to their cell membranes and DNA. However, there
also appears to be a specialized testes- specific isoform of
TXNR (5, 25), which supports the importance of Se-containing
antioxidant enzymes to testicular function and health.

In addition, greater dietary intake of Se has been associated
greater sperm concentrations in semen of men infertile men
(26) and some Se supplementation studies in infertile men
show improvements in testicular antioxidant activity, semen
Se concentrations, sperm count, sperm morphology and
motility, and fertility (1–3). Selenoproteins are abundant in
the testis and epididymis, include GPX4 (testis, intracellular
membranes), sperm nucleus GPX4 (snGPX4), mitochondrial
GPX4 (mGPX4; sperm midpiece – see Figure 2), cytosolic GPX4
(cGPX4; testis and epididymal epithelium), secreted GPX5
(epididymal lumen), cytosolic GPX3 and GPX1 (epididymal
epithelium) (3). In addition, gene knockouts of selenoproteins
in male mice, including mGPX4, SELENOP, snGPX4, GPX5
and global GPX4 (mGPX4, snGPX4, and cGPX4), lead to
sperm abnormalities, defects in chromatin condensation in
sperm, early embryonic death, and(or) increased number of
miscarriages, developmental defects and neonatal mortality (3).

In terms of our understanding of the underlying
mechanisms, Se excess or deficiency affects the concentrations
or activities of various selenoproteins, resulting in:
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FIGURE 1

(A) Drawing of human ovary with sections removed to reveal histological details of an antral (preovulatory) follicle (3) containing an oocyte
(arrowhead) and a postovulatory follicle that has released its oocyte and partially collapsed (8). Blood vessels are colored red (arteries) and blue
(veins); modified, with permission, from Clark, 1900. (B) Trace elements localized in bovine ovaries by synchrotron x-ray fluorescence (S-XRF).
(a) Represents fresh tissue. Zinc (b, pink) localized primarily to blood vessels, Fe (c, pink) localized primarily to corpora lutea, and Se (d, pink)
localized to healthy, preovulatory follicles (*) but not to atretic (regressing) antral follicles. Modified, with permission, from Ceko et al. (6).

• Oxidative stress/DNA damage from reactive oxygen
species;

• Lack of structural integrity of sperm, affecting sperm
motility and fertilization capacity;

• Defects in transport of Se into tissues, particularly testis and
brain;

• Alterations in other Se effects/functions – e.g., altered
gonadal morphology/size, endocrine function (e.g.,
thyroid), immune function, cardiovascular function,
synergism with Vit E, etc. (27).

Selenium supplementation during
pregnancy

There are geographic locations and times of the year

when forages grazed by livestock have insufficient Se to meet

requirements. In addition, producer decisions about whether to
provide supplemental mineral to grazing livestock vary widely.

Therefore, our research group implemented a bovine model
comparing unsupplemented beef heifers to those receiving a
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FIGURE 2

Localization of Se in mouse testis by x-ray fluorescence microscopy (XFM). In the left-hand images, a seminiferous tubule is visualized in cross
section at 20×. Se (bright blue to green) localizes to elongating spermatids. In the right-hand images, Se in mature sperm localizes to the
mid-piece, which is the location of sperm mitochondria (see the schematic of a mature sperm, lower right). The range below the seminiferous
tubule image indicates the low and high concentrations of Se in ng/cm2. Modified, with permission, from Kehr et al. (24).

Se-containing mineral supplement (VTM) to understand the
impacts of early gestation supplementation on maternal and
fetal outcomes (28–33). An important aspect of these studies is
that the control, unsupplemented heifers were receiving a basal
diet that was either inadequate or in excess of requirements,
both of which typically result in reduced birth weights of the
offspring. Thus, they were also receiving inadequate or excess
micronutrient intakes.

Evaluation of maternal and fetal samples collected on
d 83 of gestation revealed heavier livers in fetuses exposed
to VTM during gestation (29), and that concentrations of
Se in maternal liver, fetal liver, muscle, and allantoic fluid
were all greater in heifers receiving the VTM supplement.
In addition, concentrations of Se in maternal liver were
correlated with concentrations in fetal liver (r = 0.60), fetal
muscle (r = 0.40), and allantoic fluid [r = 0.34; (33)]. Though
no differential expression of selenoprotein transcripts was
observed in the fetal or maternal portions of the placenta,
VTM supplementation influenced genes related to amino acid
activation, fat cell differentiation and metabolic processes (32).
Amino acids are critical fuels for fetal growth and development
(34) and our evaluation revealed that total amino acids and
concentrations of 12 of 14 neutral amino acids evaluated in
allantoic fluid were greater in heifers receiving VTM (28). Taken
together, our results demonstrate that providing a Se-containing
supplement during early gestation resulted in major alterations
in substrate supply and(or) utilization in the fetus, indicating
that research evaluating post-natal effects on health, growth, and
metabolism is necessary.

In a series of studies we targeted feeding “supranutritional”
(meaning above adequate but below toxic) levels of Se to

pregnant ewes, fed as Se-enriched yeast or Se-enriched wheat
(35–48). Again, the control, unsupplemented animals were
receiving a basal diet that was either inadequate or in excess
of requirements, both of which typically result in reduced birth
weights of the offspring.

When fed during early pregnancy (from 21 days before until
64 days after breeding – i.e., 0.44 of pregnancy), supranutritional
Se increased maternal lung mass, liver mass, and total visceral
organ mass, as well as cellularity, cell proliferation and
vascularity of maternal small intestine. All of these effects on the
maternal system would increase metabolic capacity to support
the metabolic demands of pregnancy.

Supranutritional levels of Se in the maternal diet during
early pregnancy also increased fetal body mass, heart mass, lung
mass, spleen mass, total visceral organ mass and large intestinal
mass, as well as cell density of fetal skeletal muscle. These effects
of Se supplementation would potentially improve survival and
growth of the fetus and offspring. In addition, the effect on fetal
skeletal muscle also has important implications for postnatal
growth and carcass quality, considering that the number of
myocytes in skeletal muscle is “fixed” at birth (49).

When fed throughout pregnancy, supranutritional levels
of Se in the maternal diet also affected maternal whole-body
and organ growth and vascular development, and these effects
depended on the plane of nutrition (adequate or restricted
intake). For example, Se supplementation increased maternal
mammary gland vascularity at 24 h postpartum, Selenium
supplementation also increased fetal body weight as well as fetal
heart, lung, spleen, total visceral and large intestine weights
and fetal muscle DNA concentations at 0.9 of gestation. Along
with the effects on vascular development, supplemental Se
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throughout pregnancy also increased maternal and fetal organ
expression of mRNA for vascular growth (angiogenic) factors,
including NOS3 and VEGF.

Supranutritional Se fed to ewes throughout gestation also
increased cell density and cell proliferation in the placenta in
late pregnancy as well as lamb birth weights. As the placenta is
the only source of exchange of nutrients, respiratory gases and
metabolic wastes between the fetal and maternal systems (50–
52), the effects of Se on placental development may explain, at
least in part, the effects of supranutritional Se on fetal growth
and development.

Alternatively, epigenetic mechanisms within developing
offspring may also explain developmental programming
responses resulting from dietary Se supplementation (53).
Specifically, enzymes associated with one-carbon metabolism
have been shown to be affected by Se (54, 55), while others
(56) reported that Se regulates microRNAs (56) and DNA
methylation (55, 57). In humans experiencing Kashin-
Beck disease (associated with Se deficiencies), differentially
methylated genes were reported (53). Research exploring the
potential role of Se induced epigenetic changes in offspring
within a developmental programming paradigm are needed to
further understand the mechanisms and roles of supplemental
dietary Se in developmental programming events in livestock.

Lastly, supranutritional Se fed to ewes throughout gestation
also increased colostrum yield, altered colostrum composition,
and increased mammary gland vascular development, and
resulted in increased average daily weight gain, efficiency of
growth, visceral adiposity and small intestinal mass and vascular
development of the lambs postnatally. These observations
further suggest a role for supranutritional supplementation of
Se to the dams on developmental programming of the offspring
and support the need for additional research in this area.

Conclusion

As we have discussed, Se plays an important role
in reproductive processes. Recent research with Se
supplementation of sheep during nutritionally compromised
pregnancies has suggested that “supranutritional” levels in
the diet can positively impact pregnancy outcomes. However,
these studies need to be replicated in other mammals as
well. In addition, the effects of Se supplementation on other
reproductive processes such as follicular development, oocyte
and sperm development and maturation, fertilization and
implantation, early embryonic development, and, especially,
developmental programming of offspring, warrant further
research as well (4, 58).

Importantly, when supranutritional maternal Se was fed
as sodium selenate at 20 or 100×, or as Se-enriched wheat
at 20×, of so-called “adequate” levels from day 50 to 134
(0.34–0.92) of pregnancy in ewes, no signs of selenosis were

observed. These studies using sheep models of pregnancy
therefore indicate that in addition to the role of dietary Se in
other reproductive processes, supranutritional levels of Se fed to
ewes during the periconceptual period or throughout pregnancy
are not only non-toxic but can improve maternal and fetal
pregnancy outcomes and postnatal growth and development.
Taken together, these observations suggest to us that further
research on adding Se to the diet during pregnancy is warranted
in other mammals as well.
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