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Skeletal muscle of livestock is composed of both fast- and slow-twitch muscle

fibers, which are key factors in their meat quality. However, the role of protein

phosphorylation in muscle fiber type is not completely understood. Here, a

fast-twitch (biceps femoris, BF) and slow-twitch (soleus, SOL) muscle tissue

sample was collected from three male offspring of Duroc and Meishan pigs.

We demonstrate that the meat quality of SOL muscle is significantly better

than that of BF muscle. We further used phosphoproteomic profiling of BF

and SOL muscles to identify differences between these muscle types. A total

of 2,327 phosphorylation sites from 770 phosphoproteins were identified.

Among these sites, 287 differentially expressed phosphorylation sites (DEPSs)

were identified between BF and SOL. GO and KEGG enrichment analysis of

proteins containing DEPSs showed that these phosphorylated proteins were

enriched in the glycolytic process GO term and the AMPK signaling pathway.

A protein-protein interaction (PPI) analysis reveals that these phosphorylated

proteins interact with each other to regulate the transformation of muscle

fiber type. These analyses reveal that protein phosphorylation modifications

are involved in porcine skeletal muscle fiber type transformation. This study

provides new insights into the molecular mechanisms by which protein

phosphorylation regulates muscle fiber type transformation and meat quality

in pigs.
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Introduction

Skeletal muscle, which is a heterogeneous tissue, accounts
for approximately 40% of body mass in mammals (1). Muscle
fibers are the main component of skeletal muscle and are
classified as type I, IIA, IIX, and IIB based on the predominant
myosin heavy chain isoform (2, 3). Slow muscle fiber is mainly
composed of myosin heavy chain I (MyHC I), while fast
muscle fiber contains three types of myosin heavy chains: IIA
(MyHC IIA), IIX (MyHC IIX), and IIB (MyHC IIB) (2, 4).
Muscles with different types of fibers also display differences
in metabolic properties, which have different mitochondrial
content (5). Previous studies have shown that muscle fiber type
is closely related to meat quality (6–8). For example, Kang et al.
demonstrated that high level of MyHC I is associated with
improved pork meat quality through changes in pH, tenderness,
and drip loss (7). In recent years, as the living standards of
consumers have improved, they have demanded better quality
pork. Therefore, control of muscle fiber type has become an
approach to improve the quality of pork. Previous reports have
found that muscle fiber type is influenced by many regulatory
factors, including hormones (9), nutrients (10), genes (11),
non-coding RNAs (12, 13), and calcineurin (14). Specifically,
a recent study reported that dihydromyricetin regulates the
conversion of fast to slow muscle through AMPK signaling,
thereby improving pork quality (10). Shen et al. found that miR-
152 improves pork quality by regulating glycolytic activity (12).
Nevertheless, mechanisms that govern the type of muscle fiber
found in muscles of the pig are not yet fully understood.

Post-translational modifications of proteins, including
phosphorylation, acetylation, and ubiquitination, likely play
crucial roles in the regulation of meat quality (15). With
advances in proteomic technologies, many post-translational
modifications associated with meat quality have been identified.
Recently, phosphorylation proteomics has been used to
identify phosphorylated proteins and their modification sites.
Weng et al. used a phosphoproteomic approach to identify
phosphoproteins associated with meat quality in geese (16).
Modifications of protein phosphorylation were identified due to
post-slaughter muscle metabolism in pigs and thus could affect
meat quality (17). Differential expression of phosphorylated
proteins in muscle was found in yak living at different altitudes
(18). In addition, studies in mice (19) and humans (20) have
found significant differences in proteins between fast and slow-
twitch muscle. Deshmukh et al. also showed that proteomic
changes occur in fast and slow-twitch muscle during exercise
training in humans (20). While many of these reports focused
on disease and health-related features of muscle fiber types, the
consequences of the modification of phosphorylation in muscle
fiber types in porcine muscle is still unknown.

The Duroc breed is usually used as a terminal sire, as it
has an excellent growth rate (21), while the Chinese native
Meishan pig has a high prolificacy and high-quality pork (22).

Therefore, offspring of a cross between Duroc and Meishan pigs
were used in the current study. In this study, we examined meat
quality, and muscle fiber characteristics from three fast-twitch
(biceps femoris, BF) and three slow-twitch (soleus, SOL) pig
muscle samples. Phosphoproteins, and their phosphorylation
sites, were identified and characterized from these six muscle
samples. Differentially expressed phosphorylation sites (DEPSs)
between the BF and SOL samples were identified and GO
and KEGG enrichment analyses were performed on the
proteins containing these sites. Finally, a PPI network analysis
was conducted with the phosphoproteins containing these
DEPSs. This data provides a basis for mechanisms involving
protein phosphorylation that affect pork muscle fiber type
transformation and meat quality.

Materials and methods

Animals and sample collection

Muscle samples used in these experiments were obtained
from three full sib male animals derived from a cross between
a Duroc boar and a Meishan sow, with the sibs raised
under identical environmental conditions. The animals were
slaughtered at an age of 180 days in a standardized commercial
abattoir (Jiangsu Sushi Meat Product Co., Ltd., Huaian, China)
according to Chinese slaughter guidelines (GB/T 17236-2019),
and biceps femoris (BF) and soleus (SOL) muscle tissues
collected from each of the three individuals. All collected
samples were immediately frozen in liquid nitrogen and stored
at −80◦C until use. All animal procedures were approved by
the Ethical Committee and Experimental Animal Committee of
Shenyang Agricultural University.

Determination of BF and SOL muscle
meat quality

The lightness (L∗), redness (a∗), and yellowness (b∗) values
of meat color were measured at 45 min after slaughter using a
portable Minolta colorimeter (CR-10, Minolta, Japan). The pH
value of the meat was determined with a pH meter (Hanna,
Thornleigh, NSW, Australia). Drip loss was measured using a
bag method following an operational procedure. The shear force
was evaluated using a C-LM3 digital tenderness instrument
according to the operating instructions.

Measurement of muscle fiber
characteristics

For hematoxylin and eosin (HE) staining, the muscle tissue
was fixed in 4% paraformaldehyde, embedded in paraffin, and
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stained with hematoxylin and eosin. Each tissue section was
imaged using an inverted microscope (Olympus, Tokyo, Japan)
and the muscle fiber areas were calculated using Image J
software (version 1.53).

Protein extraction

Muscle tissue samples were lysed with a lysis buffer
containing 100 mM NH4HCO3 (pH 8), 8 M Urea, and
0.2% SDS, followed by ultrasonication for 5 min on ice.
The lysate was centrifuged at 12,000 g for 15 min and the
supernatant was collected into a new tube. Each sample
supernatant was reduced with 10 mM DTT at 56◦C for
1 h, and then alkylated with iodoacetamide for 1 h at
room temperature. Afterward, each sample was added to
pre-cooled acetone and centrifuged at 12,000 g for 15 min
to collect the precipitate. The pellet was dissolved with a
dissolution buffer containing 0.1 M TEAB (pH 8.5) and
6 M urea. Protein concentration was determined using a
Bradford Assay kit (Beyotime Biotechnology, Shanghai, China)
according to the manufacturer’s instructions. For investigate
total protein integrity and purity, 20 µg of protein from each
sample was subjected to 12% SDS-PAGE gel electrophoresis.
After electrophoresis, the gel was stained with coomassie
brilliant blue R-250.

Trypsin digestion and TMT labeling

Protein samples were digested at 37◦C for 4 h by adding
trypsin at a trypsin: protein ratio of 1:100 (w/w). Trypsin
and CaCl2 were then added to each sample at a trypsin:
protein ratio of 1:100 (w/w) and incubated overnight. Formic
acid was then added to each digest to adjust the pH to
less than 3 and centrifuged at 12,000 g for 5 min. The
supernatants were desalted with C18 columns, washed three
times with 0.1% formic acid-3% acetonitrile, and digests
eluted with 75% acetonitrile-0.1% formic acid. Peptides were
reconstituted with 100 µl of 0.1 M TEAB buffer and
added to 82 µl of acetonitrile-soluble TMT labeling reagent
(Thermo Fisher Scientific, Waltham, MA, USA) for 2 h at
room temperature.

Phosphopeptide enrichment

A High SelectTM Fe-NTA Phosphopeptide Enrichment Kit
(Thermo Fisher Scientific, Waltham, MA, USA) was applied
to enrich for phosphorylated peptides. Briefly, each lyophilized
peptide sample was resuspended in 200 µl binding buffer, and
then centrifuged at 12,000 g at 4◦C for 5 min. The supernatant
was then loaded onto an equilibrated spin column, incubated

at room temperature for 30 min, centrifuged at 2,000 g for 30 s,
and then washed three times using washing buffer. Peptides were
eluted with elution buffer and centrifuged at 1,000 g for 30 s.

Liquid chromatography tandem-mass
spectrometry (LC-MS/MS) analysis

LC-MS/MS analysis was performed with an EASY-nLCTM

1200 UHPLC system (Thermo Fisher Scientific, Waltham, MA,
USA) coupled with an Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). Samples were
redissolved with buffer A (0.1% formic acid) and injected onto
a C18 nano trap column (2 cm × 75 µm, 3 µm). Peptides were
separated in an analytical column (15 cm × 150 µm, 1.9 µm),
and eluted using a 180 min linear gradient from 6 to 100% of
buffer B (0.1% formic acid, 80% acetonitrile) at a flow rate of
600 nl/min. Separated peptides were analyzed using Q Exactive
HF-X, with an ion source of Nanospray FlexTM (ESI), spray
voltage of 2.3 kV, and ion transport capillary temperature of
320◦C. MS scans were acquired in a data-dependent acquisition
mode with a scan range of m/z 350–1,500, a resolution of
60,000 (200 m/z), an automatic gain control (AGC) target value
of 3 × 106, and a maximum ion injection time of 20 ms.
The 40 most abundant ions were fragmented by higher energy
collisional dissociation (HCD) and analyzed in MS/MS with a
resolution of 45,000 (200 m/z), an AGC target value of 5 × 104,
a maximum ion injection time of 54 ms, a normalized collision
energy of 32%, an intensity threshold of 1× 104, and a dynamic
exclusion parameter of 20 s.

Phosphoproteomic data analysis

Raw spectra from each fraction were searched against the
Sus scrofa uniprot database (188,977 entries) by Proteome
Discoverer 2.4 (PD 2.4, Thermo Fisher Scientific, Waltham,
MA, USA). Proteome Discoverer 2.4 analysis parameters are
as follows: enzyme for digestion: trypsin; missed cleavage
sites maximum allowed was 2; precursor mass tolerance of
10 ppm and fragment mass tolerance of 0.02 Da; oxidation
methionine, TMT plex of lysine, and phosphorylation of serine
(S), threonine (T), and tyrosine (Y) as variable modifications,
and carbamidomethyl cysteine as a fixed modification.

Peptide spectrum matches (PSMs) with a confidence level
of 99% or higher are considered as plausible PSMs, and
proteins containing at least one unique peptide are considered
as plausible proteins. Only plausible peptides and proteins
with an FDR of less than 1% were retained in this study.
Comparative analysis of differences in phosphorylation sites
between the two groups was performed using a Student’s t-test.
Phosphorylation sites with a fold change > 1.2 or < 0.83
and a p-value < 0.05 were considered to be differentially
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FIGURE 1

Analysis of meat quality and muscle fiber characteristics of BF and SOL muscle. Determination of BF and SOL meat color (A), pH (B), drip loss
(C), and shear force (D). All data were expressed as mean ± SEM (n = 3). (E,F) HE staining and muscle fiber area analysis of BF and SOL. At least
150 muscle fibers were analyzed in each sample. Scale bars, 200 µm. ∗P < 0.05 and ∗∗P < 0.01.

expressed phosphorylation sites (DEPSs) based on previous
studies (16, 23).

Motif analysis of phosphorylation sites
and analysis of kinase-substrate
relationships

To analyze the motifs for the identified phosphorylation site
sequences, we used the Motif-X algorithm (version 1.0) (24) to
significantly enrich motifs from the phosphorylated peptides.
All enrichment analyses were performed based on seven amino
acids upstream and downstream of the phosphorylation site
with occurrences > 20 and p-value < 10−6. Further, WebLogo
(version 3.5) (25) was used to draw the diagrams generated
by the Motif-X analysis. For kinase-substrate relationships, all
identified serine, threonine, and tyrosine phosphorylation sites
were evaluated with the NetworKIN algorithm (26).

Gene ontology and KEGG analysis of
the phosphorylated proteins

Gene ontology analysis was conducted using the
InterProScan 5 program (version 5.22-61.0) (27) against
the Pfam database. KEGG annotation was performed using

BLASTp program (version 2.2.26) against the KEGG database
with an e-value ≤ 1e-4. GO and KEGG enrichment analysis
were carried out using hypergeometric tests, with the threshold
set at p < 0.05.

Construction of protein-protein
interaction

We used the STRING database (28) to construct a
network of interactions between proteins. In addition,
Cytoscape software (version 3.4.0) (29) visualized these
protein-protein interactions.

Subcellular localization of protein

The subcellular localization of the identified phosphorylated
proteins were predicted using the Cell-PLoc 2.0 (version 2.0)
package (30).

Statistical analysis

Statistical analyses were conducted using GraphPad Prism 9
(GraphPad Software, La Jolla, USA). Student’s t-test was used to
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FIGURE 2

Characterization of identified phosphorylation sites. (A) Distribution of amino acids in the identified phosphorylation sites. (B) Number of
phosphorylation sites in each protein. (C) Enriched sequence motifs of phosphorylation sites together with the seven amino acid sites upstream
and downstream of the phosphorylation site. The height of each letter represents the probability of finding that amino acids in the motif. The
central amino acid represents the phosphorylation site. (D,E) Heatmaps of the frequencies of the different amino acids flanking the
phosphorylated serine and threonine residues, respectively. Different colors represent the possibilities.

calculate the significance between the two groups. All data are
expressed as mean± SEM.

Results and discussion

Meat quality and muscle fiber
characteristics of BF and SOL muscle

To demonstrate the difference in meat quality between the
fast (BF) and slow (SOL) muscles, we tested these two types

of muscle for meat color, pH, drip loss, and shear force traits.
Our results showed that the L∗ and b∗ values of meat color
for SOL were lower than those for BF (P < 0.05), while the
a∗ value of meat color for SOL was higher than those for BF
(P < 0.05; Figure 1A). In addition, the pH of SOL was higher
than BF (P < 0.05; Figure 1B), while drip loss and shear force
of SOL were decreased compared to BF (P < 0.05; Figures 1C,
D). These results suggest that the meat quality of slow-twitch
muscle was significantly improved compared to fast-twitch
muscle. We further observed that the muscle fiber area of
SOL was smaller than for BF (P < 0.05; Figures 1E, F). Our
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results are consistent with findings in previous studies looking
at slow-twitch (psoas major) and fast-twitch (longissimus
thoracis) muscles (12). Previous studies have demonstrated
that dihydromyricetin and lycopene improve pork quality by
regulating the transformation from fast-twitch to slow-twitch
(10, 31). Thus, resolving the mechanism for the conversion of
muscle fiber types potentially opens a way to improve pork
quality.

Global phosphoproteomic analysis of
BF and SOL muscle

To explore the functional role of protein phosphorylation
modifications in fast-twitch (BF) and slow-twitch (SOL) muscle,
we first established their phosphoproteome landscape using a
TMT-labeled quantitative phosphoproteomic technique. Here,
a total of 3,332 phosphorylated peptides were identified, which
correspond to 2,327 phosphorylation sites within 770 distinct
phosphoproteins (Supplementary Table 1). Several previous
studies have identified phosphorylation sites, and their proteins,
in pigs based on phosphoproteomic approaches (17, 32). Our
study identified a greater number of phosphoproteins, which
suggests that the identification of phosphorylation sites in pig
proteins is still incomplete. Of the identified phosphorylation
sites, the majority occur at serine (S) residues, accounting
for 73.27% of the sites, followed by threonine (T) (22.52%)
and tyrosine (T) (4.21%) (Figure 2A). This distribution
of phosphorylation across these three amino acid residues
is consistent with those identified in sheep (33), yak (18),
chicken (34), and geese (16). These data suggest that the
amino acid residues modified by phosphorylation are relatively
similar in different animals. Furthermore, the number of
phosphorylation sites on each protein is variable, ranging from
1 to 51 (Figure 2B). A statistical analysis of the phosphoproteins
showed that 60.65% of these proteins had only a single
phosphorylation site, 17.40% had two phosphorylation sites
and the remaining 21.95% had three or more phosphorylation
sites (Figure 2B). The motif of phosphorylation site motifs of
our phosphoproteins was evaluated using Motif-X software,
which showed that 15 conserved motifs could be identified, 14
for serine phosphorylation and 1 for threonine phosphorylation
(Figure 2C). The major serine phosphorylation motifs were
P×SP, RR×S, R××SP, SP×××R, SPP, RS×S, SP, R××S,
R×S, GS, S×××××K, K××S, S××K, and S××E, while
the threonine phosphorylation motif was TP, where × is any
residue (Figure 2C). The above motifs were also observed in
a phosphoproteomic analysis of broiler chicken proteins (34),
suggesting that, as expected, phosphorylation modification
sites are conserved across animals. A heatmap analysis of
the preferences for each of these 15 amino acid sequence
motifs revealed that arginine was the preferred amino acid
upstream of the phosphorylated serine or threonine residue

FIGURE 3

Functional analysis of the phosphorylated proteins.
(A) Subcellular distribution of the phosphorylated proteins.
(B) GO annotated classification of the phosphorylated proteins.
(C) KEEG annotated classification of the phosphorylated
proteins.

(Figures 2D, E), while proline was preferred to be located
downstream (Figures 2D, E). Protein phosphorylation is
catalyzed by protein kinases, which in turn play a role in many
biological processes (35). Therefore, we performed kinase-
substrate interaction analysis and the results showed that many
kinases, including AMPKa2, PDHK1, and CaMKII gamma,
could potentially bind to the identified phosphorylation
sites, suggesting that these kinases are responsible for
regulating protein phosphorylation processes in porcine
muscle. Taken together, these data can provide a basis for the
identification of potentially phosphorylated proteins in pig
muscle tissue.
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FIGURE 4

Identification of differentially expressed phosphorylation sites (DEPSs) in BF and SOL muscle tissue. (A) Volcano plot showing DEPSs in BF vs.
SOL. DEPSs which are significantly up-regulated or down-regulated are indicated in pink and green dots. DESPs without statistical significance
are indicated by gray dots. (B) Number of total, up- and down-regulated DEPSs and their corresponding phosphorylated proteins. (C) Heat map
showing the abundance patterns of the DEPSs in BF and SOL.
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Functional analysis of phosphorylated
proteins

To understand the functional roles of these 770
phosphorylated proteins in muscle cells, we assessed the
predicted subcellular localization of each of these proteins.
The phosphoproteins were located in diverse fractions of the
cell, with 32.42% predicted to be localized to the nucleus,
19.60% to the cytoplasm, and 6.59% to the mitochondria
(Figure 3A). This distribution of phosphoproteins is similar to
those seen in a previous study (36). In addition, we annotated
the phosphoproteins into 290 GO terms, of which 109, 42, and
139 were in the Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF) categories, respectively
(Supplementary Table 2). The top 10 BP, CC, and MF terms
are shown in Figure 3B. The GO term containing the largest
number of proteins in BP is protein phosphorylation, suggesting
that the phosphorylated proteins obtained in this study are
plausible. The largest number of proteins for GO terms in
CC and MF were nucleus and protein binding, respectively.
Previous evidence implicates that phosphorylation can create
binding sites for certain proteins, thus allowing protein
interactions (37). Furthermore, KEGG annotation of these
phosphoproteins classified them into 30 level 2 pathways
(Figure 3C). Of these, 121 proteins were annotated as Signal
transduction pathways. This data provides information that can
be used for functional studies of these phosphorylated proteins
in pig muscle.

Identification of differentially
expressed phosphorylation sites
between BF and SOL muscles

To examine the involvement of changes in protein
phosphorylation in the transformation of muscle fiber types, we
identified differentially expressed phosphorylation sites (DEPSs)
between BF and SOL muscles. A total of 287 phosphorylation
sites were found to be differentially phosphorylated between
BF and SOL muscles (Figure 4A), which included 149
up-regulated sites, in 85 proteins, and 138 down-regulated
sites, in 85 proteins (Figure 4B). Details on these DEPSs
are shown in Supplementary Table 3. The top five up-
regulated phosphorylation sites were Ser1348, Thr1492, and
Ser742 in Myosin-4 (MYH4), Thr354 in Titin, and Thr481
in Myosin binding protein C1 (MYBPC1) (Supplementary
Table 3). The top five down-regulated phosphorylation sites
were Ser434 in UTP-glucose-1-phosphate uridylyltransferase
(UGP2), Ser152 in Receptor expression-enhancing protein
(REEP1), Ser1294 in Titin isoform X6, Ser159 in A0A4X1VV29
(an uncharacterized protein), and Ser67 in Arsenite-resistance
protein 2 (Supplementary Table 3). The expression profiles of
these DEPSs were quantitated in samples from three BF and

three SOL muscles. A heatmap result shows that the identified
DEPSs have a very distinct expression pattern in BF and SOL
muscles (Figure 4C), suggesting that these DEPSs may be
associated with muscle fiber type conversion.

Interestingly, many phosphorylation sites are found on
slow- and fast-type sarcomeric proteins. For example, 12
phosphorylation sites are found on the fast-type sarcomeric
protein, MYH4, and a single phosphorylation site on slow-
type sarcomeric protein MYH7 (Thr446) and fast-type
sarcomeric protein tnnt3 (Ser200). These data suggest that
post-translational modification of sarcomeric proteins by
phosphorylation may be associated with muscle fiber types.
The metabolic properties of fast and slow muscle differ due
to differences in their glycolytic and mitochondrial oxidative
enzymes (38). Here, we found that the key glycolytic enzyme,
phosphofructokinase 1 (PFKM) (38), has six DESPs that
are significantly down-regulated in SOL muscle. This data
suggests that phosphorylation of PFKM proteins may inhibit
the conversion of fast to slow muscle by regulating glycolytic
process. The calcium-transporting ATPase (ATP2A1), a protein
responsible for Ca2+ re-uptake in fast muscles (2), has six
DESPs that were significantly down-regulated in SOL, which
indicated that reduced phosphorylation of ATP2A1 promoted
slow muscle development. In addition, nebulin (NEB) protein
has six upregulated DEPSs in SOL (Ser393, Ser608, Ser432,
Thr6256, and Thr6318). Li et al. demonstrated that slow muscle
fibers are significantly increased in the muscle tissue from mice
with a conditional knockout NEB (39), suggesting that the six
DEPSs in NEB could contribute to the facilitation of a switch
from a slow- to fast-twitch muscle. The identified DEPSs are
essential for the development of the fast muscle fiber type.
The precise molecular mechanisms for this change need to be
verified in the future functional studies.

Functional analysis of proteins with
DEPSs

To elucidate the functional role of the DEPSs in the
transformation of muscle fiber type, proteins with DEPSs
were used for GO and KEGG enrichment analyses. The
results of GO and KEGG enrichment analyses are shown in
Supplementary Tables 4, 5. GO enrichment analysis showed
significant enrichment for GO terms associated with the
glycolytic process in biological process, myosin complex and
actin cytoskeleton in cellular component, and catalytic activity
and transferase activity in molecular function (Figure 5A).
Increased glycolysis is required for fast-twitch muscle (2),
where four glycolytic enzymes (PFKM, PKM, GPI, and PGK1)
are enriched. A previous study demonstrated that PGK1,
the first ATP-producing enzyme in glycolysis, facilitates the
glycolytic process in cells by undergoing modification of its
phosphorylation (40). The phosphorylation levels at the DESPs
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FIGURE 5

Gene ontology (GO) and KEGG enrichment analyses of proteins with DEPSs. (A) Significantly enriched GO terms in biological process, cellular
component, and molecular function. The x-axis represents the protein number, and y-axis represents the GO term. (B) Significantly enriched
pathways. The x-axis represents the rich factor, and y-axis represents the pathway. Color and size of dots represent –log10(p-value) and the
number of proteins, respectively.

of these glycolytic enzymes were significantly down-regulated in
SOL, indicating that glycolytic enzyme activities are inhibited
in slow muscle. Also, pathway enrichment analysis of the
proteins with DEPSs revealed a number of pathways associated
with muscle fiber types, including Glycolysis/Gluconeogenesis,
Metabolic pathways, Carbon metabolism, and AMPK signaling

pathway (Figure 5B). Some studies have reported that the
AMPK pathway can promote fast to slow muscle fiber
transformation by activating PGC-1a activity, which in turn
stimulates mitochondrial gene expression (41–43). These data
suggest that phosphorylated proteins enriched in the AMPK
pathway may promote slow fiber development in SOL by
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FIGURE 6

Protein-protein interaction regulatory network of proteins with DEPSs. Each node represents a phosphorylated protein. Green indicates
up-regulated, yellow for down-regulated, and blue for both up- and down-regulated proteins. Each edge represents an interaction between
proteins.

activating mitochondrial biogenesis. However, the specific
regulatory mechanisms need further evidence. The investigation
reported a SNP mutation in the PRKAG3 gene encoding the
AMPK γ3 subunit, which in turn leads to inferior meat quality
(44). It might be possible to design AMPK signaling pathway
activators, through the phosphorylation sites, that improve pork
quality. In conclusion, differentially expressed phosphorylated
proteins likely regulate pig fiber type transformation through
glycolysis-related processes and the AMPK pathway.

Protein-protein interaction analysis of
proteins with DEPSs

To examine whether proteins with DEPSs might regulate
the different muscle fiber types by binding with each other,
we constructed a protein-protein interaction network of the
phosphorylated proteins using the STRING database. In
our PPI network, there are 84 phosphoproteins that have
268 interactions (Figure 6 and Supplementary Table 6).
The network suggests that MYOZ1 is a key protein for
regulating myofiber type conversion as it binds to 16 proteins
(e.g., TMOD4, PYGM, ATP2A1, MYBPC1, MYH1, and
MYLK2). MYOZ1-deficient mice have significantly increased

numbers of type I fibers, which causes the conversion of
fast-twitch fibers to slow-twitch fibers (45). In the current
study, we found that MYOZ1 phosphorylation is down-
regulated in slow-twitch SOL muscle. These results suggest
that phosphorylated MYOZ1 may promote slow- to fast-
twitch muscle phenotype by binding to other proteins.
In addition, ACTN3 protein is involved in the positive
regulation of fast-twitch muscle contraction and also interacts
with many proteins including MYH7, ATP2A1, MYLK2,
and TPM2. A study has shown that TPM2 encodes β-
Tm (tropomyosin), which regulates muscle contraction by
inhibiting actin-myosin protein interactions (46). Seto et al.
reported that ACTN3 is an important component of the fast-
twitch muscle Z-disk and interacts with other structural muscle
proteins (47). Taken together, these data provide fundamental
information for the study of phosphorylation-mediated protein-
protein interactions that likely regulate porcine muscle fiber
transformation.

Conclusion

In this study, a phosphoproteomic analysis was carried
out comparing fast-twitch BF muscle with slow-twitch SOL
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muscle in pigs. Our phosphoproteomic data identified 287
DEPSs, in 161 proteins, which were mainly enriched in
glycolysis-related and AMPK signaling pathways. A PPI
analysis resolved a regulatory network of phosphorylated
protein-protein regulation for fiber type transformation,
particularly glycolytic enzymes. These results provide new
insights into the role of protein phosphorylation modification
in the transformation of porcine muscle fiber types
and meat quality.
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