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of Animal Science and Technology, Hunan Agricultural University, Changsha, China, 2Animal

Science and Technology College, Beijing University of Agriculture, Beijing, China, 3Hunan

Xinguang’an Agricultural Husbandry Co., Ltd., Changsha, China

Placental function is vital to the fetal growth of sows, and resveratrol (RES)

can protect cells against oxidative stress, which is one of the major factors

impairing placental function. This study aimed to investigate the e�ect of

dietary resveratrol (RES) on placental function and reproductive performance

during late pregnancy in a sow model from the aspects of oxidative stress,

insulin resistance, and gut microbiota. A total of 26 hybrid pregnant sows

(Landrace × Yorkshire) with similar parity were randomly allocated into

two groups (n = 13) and fed with a basal diet or a diet containing 200

mg/kg of resveratrol from day 85 of gestation until parturition. The dietary

supplementation of RES increased the litter weight at parturition by 12.53% (p

= 0.145), with ameliorated insulin resistance (HOMA-IR), increased triglyceride

(TG) levels, and decreased interleukin (IL)-1β and IL-6 levels in serum (p< 0.05).

Moreover, resveratrol increased the placental vascular density (p < 0.05)

with the enhanced expression of nutrient transporter genes (SLC2A1 and

SLC2A3) and antioxidant genes, such as superoxide dismutase 2 (SOD2)

and heme oxygenase-1 (HO-1) but declined the expression of inflammatory

genes, such as IL-1β and IL-6 (p < 0.05). The characterization of the fecal

microbiota revealed that resveratrol decreased the relative abundance of the

Christensensllaceae R-7 group and Ruminococcaceae UCG-008 (p < 0.05),

which had a positive linear correlation with the expression of IL-1β and IL-6

(p < 0.05), but had a negative linear correlation with the expression of SOD2,

HO-1, SLC2A1, and SCL2A3 genes (p < 0.05). These data demonstrated that

dietary supplementation with resveratrol can improve placental function with

ameliorated insulin resistance, oxidative stress, and inflammation potentially

by regulating Ruminococcaceae UCG-008 and the Christensensllaceae R-7

group in sows.
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Introduction

Placental function is vital to the nutrition supply of a fetus

and thus has a strong impact on the reproductive performance

of humans and animals. Over the past 20 decades, genetic

improvement has increased the productivity of the sow herd,

and nowadays high-yielding sows achieve 35 pigs per sow

per year (1). However, an increase in the litter size results

in a significant decrease in piglet birth weight (2) and gives

piglets a harder time accessing the mammary glands and

consuming less colostrum, and leads to higher pre-weaning

mortality rates (3). Piglets born at a low birth weight have

fewer glycogen reserves right after birth, making them more

vulnerable to hypothermia and hypoglycemia within the first

24 h of life (4, 5).

Late pregnancy is a crucial period for fetal growth, and

the maternal body undergoes substantial metabolic changes

(6, 7), which make sows adapt from anabolic to catabolic

metabolism (8). Increased metabolic intensity may lead to

low-level inflammation (9), progressive oxidative stress (10),

and insulin resistance (11). Meanwhile, the gut microbiota

undergoes dramatic remodeling during late pregnancy that can

affect a sow’s physiological state and metabolic process (12). Our

previous studies have demonstrated that nutritional additives

can improve antioxidant capacity and reduce inflammation

by modulating the intestinal flora in late pregnancy (13,

14). Moreover, abnormal glucose metabolism can decrease

glucose utilization and placental nutrient transport to cause

a low-weight maternal fetus (15), and increased systemic

oxidative stress in late gestation can result in vascular

dysfunction in the placenta (16, 17). These studies suggest that

alleviating inflammation, oxidative stress, and insulin resistance

in late gestation might be a promising strategy for improving

placental function and increasing the reproductive performance

of sows.

The dietary supplementation of phytochemicals during

pregnancy can positively affect reproductive performance in

sows (18). Polyphenols are plant-derived natural bioactive

compounds with a strong antioxidant ability (19), and

our previous studies have shown that polyphenols possess

biological functions, such as anti-inflammatory, antioxidant,

and alleviation of insulin resistance (20, 21). Resveratrol (RES) is

a polyphenol that belongs to the stilbene family of phytoalexins

and has shown an effect against oxidative stress and apoptosis

in embryos of diabetic dams (22). In addition, it has been

reported that RES may increase uterine artery blood flow

velocity and fetal weight in murine models (23), and the

biological activity of RES appears to be closely linked with

modulating gut microbiota (24). Therefore, this study aimed to

investigate the effect of dietary RES on the placental function

and reproductive performance of sows during late pregnancy

from the aspects of oxidative stress, insulin resistance, and

gut microbiota.

Materials and methods

The animal experiment protocol used for the present

study was approved by the Hunan Agricultural University

Institutional Animal Care and Use Committee.

Materials and reagents

Resveratrol (≥98%) was provided by Hunan Engineering

and Technology Center for Natural Products. Ingredients for

the basal diet were provided byHunan Xinguang’an Agricultural

Husbandry Co., Ltd. (Changsha, Hunan, China).

Experimental design and diets

This study was carried out on the farm of Hunan

Xinguang’an Agricultural Husbandry Co., Ltd. A total of 26

pregnant sows (Landrace × Yorkshire) with similar body

condition scores and parity from 2 to 5 were used in this study.

Sows were randomly divided into two treatments (n = 13),

housed individually in gestation stalls, and had free access

to water under environmental temperature. The experiment

started on the 90th day of gestation and continued until delivery.

Based on our pilot experiment, sows in the control group (CTL)

were fed a basal diet, while sows in the RES group were fed

a basal diet containing 200 mg/kg of RES based on our pilot

experiment (RES intake 640 mg/day/sow). Approximately 3.2 kg

of feed/sow/day was fed at 6:00 a.m., 12:00 p.m., and 6:00 p.m.

The experiment started on day 85 of gestation and lasted until

delivery. The composition of the basal diet, which meets the

nutritional requirements of pigs according to NRC (2012), as is

shown in Supplementary Table S1.

Measurements of reproductive
performance and sample collection

After delivery, the number of live births, litter weight at

parturition, and average weight of piglets born alive were

measured immediately. On the day of parturition, blood samples

(5ml) of sows were collected from the marginal auricular

vein into anticoagulant-free vacuum tubes and centrifuged on

1,500 × g for 10min after standing at room temperature for

30min to obtain serum. The placentae were collected after being

weighed and snap-frozen in liquid nitrogen (3–4 cm from the

cord insertion point). Fecal samples (∼2 g from each sow) were

collected into sterile tubes after defecation in the morning,

and snap-frozen in liquid nitrogen. Finally, these samples were

stored at −80◦C until further analysis. Another about 1 cm

× 1 cm fresh placentas tissues were immediately fixed in 4%
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paraformaldehyde (G1119, Servicebio Technology Co., Ltd.

Wuhan, Hubei, China) for at least 24 h for H&E staining.

Histomorphological analysis

Each sow’s placentae were sectioned for histological analysis

as in a previous study (14). Briefly, placenta tissues were fixed

in 4% paraformaldehyde overnight and submitted to Wuhan

Servicebio Technology Co., Ltd (Wuhan, Hubei, China) for

paraffin embedding and sectioning, then put the slices into

xylene for 20min two times, 75% alcohol for 5min, and washed

with tap water. Then, the slices were stained with hematoxylin

dye solution for 3–5min, washed with tap water, differentiated

with differentiation solution, washed with tap water, H&E stain

returned to blue, and rinsed with tap water. The slices were

dehydrated with 85 and 95% gradient alcohol for 5min and

stained with eosin for 5min. Then, put in absolute ethanol I

for 5min, absolute ethanol II for 5min, absolute ethanol III for

5min, dimethyl I for 5min, and xylene II for 5min, transparent

and sealed with neutral gum. For each slice, the total number of

vessels in the placental stroma areas was determined, and then

corrected with the total placental stroma areas measured (per

unit area as mm2).

Measurement of serum biochemical
indices

The activity of total superoxide dismutase (T-SOD) and

serum levels of thiobarbituric acid reactive substances (TBARS),

glucose (GLU), total cholesterol (TC), triglycerides (TGs),

high-density lipoproteins (HDL-c), and low-density lipoprotein

cholesterol (LDL-c) were determined by using respective assay

kits (Nanjing Jiancheng Bioengineering Institute, Nanjing,

China) according to the manufacturer’s instructions as

described previously.

Serum levels of hormones, such as progesterone (PRO),

follicle-stimulating hormone (FSH), and prolactin (PRL),

insulin, and serum cytokines, such as interleukin (IL)-1β,

IL-6, and Monocyte Chemotactic Protein 1 (MCP1) were

measured with respective ELISA kits (Aifang biological

Co., Ltd, Changsha, Hunan, China) according to the

manufacturer’s manual.

Insulin resistance and sensitivity were evaluated by the

homeostasis model assessment (HOMA) values using the

following indirect methods.

HOMA− insulin resistance (HOMA− IR)

= [Fasting insulin (mIU/L) × Fasting glucose (mmol/L)]/22.5

HOMA− insulin sensitivity (HOMA− IS)

= 1/[Fasting insulin (mIU/L) × Fasting glucose (mmol/L)]

Real-time PCR

The quantitative PCR assays were validated according to

the MIQE guidelines (25). Total RNA from the placenta or

PVECs was extracted with the Total RNA Kit (Steadypure

universal RNA extraction kit, Accurate Biotechnology Co., Ltd.,

Changsha, Hunan, China) according to the manufacturer’s

instructions. The concentration of RNA was quantified using a

NanoDrop
R©

lite (Thermo Fisher, USA). Reverse transcription

of 1 µg total RNA was performed by a reverse transcription

kit (Evo M-MLV RT Premix, Accurate Biotechnology Co., Ltd.,

Changsha, Hunan, China). The PCR reactions were performed

in a 20 µl total reaction volume, which included 10 µl of 2

× SybrGreen qPCR Master Mix (SYBR
R©

Green Premix Pro

Taq HS qPCR Kit), 0.4 µl of each of the forward and reverse

primers (10 µmol/L), 2 µl of cDNA template, and 7.2 µl of

sterilized water. The PCR was carried out on a LightCycler480

Real-Time PCR system (Rotkreuz, Switzerland). The thermal

cycler parameters were as follows: 3min at 95◦C, 40 cycles for

5 s at 95◦C, and 30 s at 60◦C. The stability of the β-actin and

GADPH genes was evaluated by measuring the fluctuation range

of the Ct values. The 2−11CT methodwas used for data analysis.

Primers used in this study are shown in Supplementary Table S2.

Characterization of the gut microbiota

The fecal microbiota was characterized by 16S rDNA

gene sequencing as described previously (14). Briefly,

total DNA was extracted from fecal samples (six random

samples from each group) by using a DNA Isolation Kit

(MoBio Laboratories, Carlsbad, CA, USA) following the

manufacturer’s manual. The V3-4 hypervariable region of

the bacterial 16S rRNA gene was amplified with the primers

338F (5
′
-ACTCCTACGGGAGGCAGCA-3

′
) and 806R (5

′
-

GGACTACHVGGGTWTCTAAT-3
′
). The PCR was carried

out on a Mastercycler Gradient (Eppendorf, Germany) using

25 µl reaction volumes, containing 12.5 µl KAPA 2G Robust

Hot Start Ready Mix, 1 µl Forward Primer (5 µmol/L), 1 µl

Reverse Primer (5 µmol/L), 5 µl DNA (total template quantity

is 30 ng), and 5.5 µl H2O. Cycling parameters were 95◦C for

5min, followed by 28 cycles of 95◦C for 45 s, 55◦C for 50 s, and

72◦C for 45 s with a final extension at 72◦C for 10min. Three

PCR products per sample were pooled to mitigate reaction-level

PCR biases. The PCR products were purified using a QIAquick

Gel Extraction Kit (QIAGEN, Germany), quantified using

Real-Time PCR, and sequenced on the Miseq platform at

Allwegene Technology Inc., Beijing, China. Qualified reads

were separated using the sample-specific barcode sequences

and trimmed with Illumina Analysis Pipeline Version 2.6.

The dataset was analyzed using QIIME (Version 1.8.0). The

sequences were clustered into operational taxonomic units

(OTUs) at a similarity level of 97%, to generate rarefaction
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TABLE 1 The e�ect of RES on the reproductive performance of sows.

Item CTL RES P-value

Total born number 14.75± 3.22 15.00± 4.18 0.866

The number of live birth 12.25± 3.27 13.27± 3.44 0.445

Litter weight at parturition, kg 16.06± 3.91 18.36± 3.87 0.145

Average weight of piglets born alive, kg 1.33± 0.17 1.42± 0.24 0.271

Weak piglets’ number 0.54± 0.88 0.08± 0.27 0.083

Stillborn piglets’ number 2.50± 2.95 1.72± 1.58 0.415

CTL, a basal diet; RES, a basal diet containing 200 mg/kg, weak piglets defined as below

20% of the average weight of piglets, RES, n= 13.

curves and to calculate the richness and diversity index. The

Ribosomal Database Project (RDP) Classifier tool was used to

classify all sequences into different taxonomic groups.

Statistical analysis

The significant differences between groups were analyzed

by a t-test with the SPSS 23.0 program (SPSS 23, IBM

Corp., Armonk, NY, USA). The Pearson correlation and linear

regression methods were used for the correlation analysis

between the abundance of the top 50 microbial genera

and placental gene expression. The value of p < 0.05 was

considered significant.

Results

The impact of RES on the reproductive
performance of sows

As shown in Table 1, there was no significant difference

in total born number, the number of live birth, weak piglets’

number, litter weight at parturition, and the average weight of

piglets born alive. However, dietary supplementation of RES

increased the litter weight at parturition by 12.53% (p= 0.145).

The e�ect of RES on insulin resistance
and lipid metabolism in perinatal sows

As shown in Figure 1, RES significantly decreased the serum

glucose (Figure 1A) in perinatal sows (p < 0.01) but showed

no influence on the insulin level (Figure 1B). HOMA-IR and

HOMA-IS were used to reflect insulin resistance and insulin

sensitivity, respectively. Supplementation of the diet with RES

significantly decreased HOMA-IR and increased HOMA-IS

(Figure 1C) (p< 0.01). Moreover, the TG (Figure 1D) in the RES

group was significantly increased compared with the CTL group

(p < 0.05), while there was no significant change in TC, HDL-C,

and LDL-C.

The e�ect of RES on serum cytokines and
hormones in perinatal sows

Serum cytokine and hormone levels in perinatal sows

were measured to assess the inflammatory status in perinatal

sows. Figure 2 shows that RES decreased serum levels of IL-1β

(Figure 2A) and IL-6 (Figure 2B) (p < 0.05). However, there was

no significant difference in the levels of MCP-1. Additionally,

RES shows no significant effects on serum levels of FSH,

prolactin, and progesterone (Figure 3).

E�ects of RES on vessel density and the
expression of genes regulating nutrient
transport, antioxidant defense, and
inflammation in placenta

As shown in Figure 4, the placenta in the RES group

showed significantly higher (p < 0.01) blood vessel density

(Figures 4A,B) and the CD31 messenger RNA (mRNA)

expression (a biomarker of the endothelial cell in small vessels)

(Figure 4C). Meanwhile, RES significantly increased the

expression of nutrient transporter genes of SLC2A1 and SCL2A3

(p < 0.01) but showed no effect on SLC7A1. Moreover, the

expression of IL-1β and IL-6 were downregulated by RES, and

the expression of SOD2 and HO-1 were upregulated by RES in

the placenta (p < 0.05).

The e�ect of RES on the gut microbiota

As shown in Figure 5, principal component analysis (PCA)

indicated that the CTL and RES groups had a similarity cluster

(Figure 5A), and RES showed limited effects on the Chao 1 index

(Figure 5B) and the Shannon index (Figure 5C). Firmicutes,

Bacteroidetes, Proteobacteria, and Euryarchaeota accounted for

90% of the total microbes at the phylum level (Figure 5D), and

RES significantly downregulated the relative abundances of the

Christensenellaceae R-7 group (Figure 5E), and Ruminococcaceae

UCG-005 (Figure 5F) at the genus level (p < 0.05).

Correlation analysis of the gut microbiota
and placental gene expression

To further understand the role of whole gut microbiota in

regulating oxidative and inflammatory status, the abundance

of the top 50 genera was chosen to process correlation

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2022.1001031
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Hu et al. 10.3389/fnut.2022.1001031

FIGURE 1

The e�ect of RES on glucose metabolism and lipid metabolism in perinatal sows. (A) Glu, (B) insulin, (C) HOMA-IR and HOMA-IS, (D) TC and TG,

and (E) HDL-C and LDL-C. Glu, glucose; HOMA-IR, homeostasis model assessment-insulin resistance; HOMA-IS, homeostasis model

assessment-insulin sensitivity; TC, total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density

lipoprotein cholesterol; CTL, a basal diet; and RES, a basal diet containing 200 mg/kg resveratrol. Data are expressed as mean ± SD (n = 10); *,

p < 0.05; and **, p < 0.01.

FIGURE 2

E�ects of RES on blood inflammatory markers. Serum levels of (A) IL-1β, (B) IL-6, and (C) MCP-1 were measured by using ELISA kits. CTL, a basal

diet; and RES, a basal diet containing 200 mg/kg resveratrol. Data are expressed as mean ± SD (n = 10); *, p < 0.05.

analysis with placental gene expression to better understand

the role of the whole gut microbiota in regulating oxidative

and inflammatory status. As shown in Figure 6A, a total

number of 14 microbial genera were significantly correlated

(p < 0.05) with the placental nutrient transport, antioxidant

defense, and inflammation-related mRNA expression. Based

on the results in Figure 5, the Christensenellaceae R-7 group

and Ruminococcaceae UCG-005 were selected to perform

linear regression analyses. As shown in Figure 6B, the

Christensenellaceae R-7 group and Ruminococcaceae UCG-005

had a positive linear correlation with the expression of IL-1β

and IL-6 (p < 0.05). Moreover, the Christensenellaceae R-7
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FIGURE 3

The e�ect of resveratrol on serum hormone levels in perinatal sows. (A) Follicle-stimulating hormone (FSH), (B) prolactin, and (C) progesterone.

CTL, a basal diet; and RES, a basal diet containing 200 mg/kg resveratrol. Data are expressed as mean ± SD (n = 10); *, p < 0.05.

FIGURE 4

The e�ect of RES on vessel density, nutrient transport, antioxidant, and inflammation mRNA expression in the placental. (A,B) The hematoxylin

and eosin method was used to examine blood vessel density in placental tissues, and the black arrows indicate placental blood vessels (bar =

100µm, n = 12); (C) CD31 mRNA expression; (D) Nutrient transporters SLC2A1, SCL2A3, and SLC7A1 genes expression; (E) Inflammatory factors

IL-1β, IL-6, MCP1, and TNF-α genes expression; (F) Antioxidant genes SOD1, SOD2, SOD3, GPX4, and HO-1 expression. CTL, a basal diet; and

RES, a basal diet containing 200 mg/kg resveratrol. Data are expressed as mean ± SD (n = 8); *, p < 0.05; and **, p < 0.01.

group had a negative linear correlation with SOD2 and HO-1

(p < 0.05) (Figure 6C). In addition, the Christensenellaceae

R-7 group and Ruminococcaceae UCG-005 had a negative

linear correlation with SLC2A1 and SCL2A3 (p < 0.05)

(Figure 6D).

Discussion

The latter part of pregnancy is critical for fetal development

and the critical period of litter weight at parturition. About 60%

of fetal body weight gain occurs in late gestation (6). During
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FIGURE 5

Modulation of the gut microbiota by RES. The e�ect of RES on genus-based (n = 6) principal component analysis (PCA) (A), the Chao 1 index

(B), the Shannon index (C), the e�ect of RES on the relative abundance of main microbes at the phylum level (D) and the genera

Christensenellaceae R-7 group (E), and Ruminococcaceae UCG-005 (F). CTL, a basal diet; and RES, a basal diet containing 200 mg/kg

resveratrol. Data are expressed as mean ± SD (n = 6); and *, p < 0.05.

pregnancy, sows have a complex and dynamic metabolism,

which includes nutrient intake, digestion, and absorption, and

as well as complex transport processes, such as nutrients

transported from maternal tissues to fetal and breast tissues (8).

As a result, the metabolic intensity in the sow is significantly

increased during late pregnancy due to the rapid growth of the

fetus. Studies have shown that sows suffered increased oxidative

stress during delivery of late gestation, as indicated by their

increased reactive oxygen (ROS), 8-hydroxy-deoxyguanosine,

and thiobarbituric acid reactive substance levels (16). A series

of metabolic changes characterize the metabolic syndrome in

late gestation, especially insulin resistance. Yang et al. (15) have

reported that starch inclusion in the maternal diet can improve

the sows’ insulin resistance during late gestation, increase piglet

weight at birth and weaning, and decrease the stillbirth rate.

In the present study, supplementation of 200 mg/kg RES

in late gestation can be increased, (although not significantly,

p > 0.05). An increase in insulin resistance during gestation

has been considered as a fundamental cause of the reduced

reproductive performance of sows (26). Previous studies have

demonstrated that RES may attenuate insulin resistance to

improve glucose homeostasis and metabolic disorders (27, 28).

Our results showed that RES improved insulin resistance,

which suggests that RES may improve metabolic disorders and

maternal metabolism during late gestation. The development

of insulin resistance during pregnancy is considered to be
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FIGURE 6

The correlation analysis of the gut microbiota and placental gene expression. The correlation analysis between the abundance of the top 50

microbial genera and placental gene expression by Spearman’s correlation analysis (A), linear regression analyses between genera and placental

mRNA expression of inflammatory cytokines (B), mRNA expression of antioxidative genes (C), and expression of genes involved in the regulation

of nutrient transport in placenta (D). *, p < 0.05; and **, p < 0.01.

induced by some placental hormones (29). For insulin-secreting

beta-cells that reside in the pancreas, maternal prolactin can

directly promote their proliferation, enhance their sensitivity,

and increase insulin secretion from this group of cells after

glucose stimulation (29). Progesterone could induce insulin

resistance by inhibiting GLUT-4 translocation, decreasing the

expression of insulin receptor substrate-1 (IRS-1), and blocking

the glucose absorption by adipocytes (30). Moreover, FSH

has been reported to have a negative association with insulin

resistance (31). However, RES showed no significant effect on

these hormones in the present study, indicating that RES may

improve insulin resistance through other mechanisms, rather

than regulating hormones level.

The placenta is a highly vascularized tissue and is essential

for the growth and development of the fetus. The development

of the epitheliochorial placenta of pigs begins at the embryonic

stage (29). It has been reported that the piglet birth weight has

a significant positive correlation with placental vascular density

(17), and RES may increase uterine artery blood flow and fetal

weight (32). In this study, RES increased the placental vessel

density with upregulated mRNA expression of CD31, which is a

biomarker of endothelial cells in blood vessels (33). Meanwhile,

RES increased the mRNA levels of SLC2A3 and SLC2A1, which

code glucose transporter GLUT-3 and GLUT-1, respectively.

However, RES showed no significant effect on SLC7A1, which

encodes a cationic amino acid transporter (34). Thus, RESmight

benefit fetal growth and development by improving placental

glucose transport, which is the primary energy source for fetal

development (35). Oxidative stress and inflammation have been

considered important factors that affect the growth and function

of the placenta. The activation of the NF-κB pathway in the

placental has been reported to have a close relationship with the

downregulation of angiogenesis-related genes, such as HIF1α,

VEGFA, and ANGPTL6 (36). Oxidative stress can also induce

vascular endothelial injury and abnormal development of the

placenta vascular (17). RES is a known antioxidant and anti-

inflammatory agent and has been proved to promote the nuclear

accumulation, DNA binding, and transcriptional activity of

Nrf2 (37) in sows’ placenta. Moreover, RES can suppress Cd-

induced apoptosis in the placenta and JEG-3 cells and decrease
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Cd-induced expression of TNF-α, IFN-γ, MCP-1, MIP-2, and

KC in the placenta (32). In this study, RES alleviated placenta

oxidative stress and inflammation via improving SOD2 and

HO-1 expression, but inhibiting IL-1β and IL-6 production.

Increasing pieces of evidence have suggested that the gut

microbiota plays a crucial role in pregnancy, and maternal

gut microbiota undergoes dramatic changes throughout the

gestation period. The abundance and diversity of the gut

microbiota increase as the pregnancy continues and they are

closely related with the metabolism and reproduction of the

host (38). Our previous studies have shown that the gut

microbiota is associated with low-grade inflammation and

oxidative stress in normal pregnancy, and β-carotene can

inhibit the production of inflammatory cytokines and improve

antioxidant capacity by modulating the gut microbiota (13, 14).

RES is a kind of polyphenol with low in vivo bioavailability

(39), and it can interact with the gut microbiota in the

hindgut (40). When passing the small intestinal lumen, RES

can be absorbed into the enterocyte and undergoes sulfation

and glucuronidation. The RES and conjugated metabolites that

exit from the apical membrane of the small intestine will

move to the large intestine and further be metabolized by

the gut microbiota to generate dihydroresveratrol, lunularin,

and 3,4’-dihydroxy-trans-stilbene (41, 42). Previous studies

have revealed that the biological functions of RES may be

attributed to the regulation of gut microbiota (43, 44). In

the present study, dietary supplementation of RES mainly

downregulated the relative abundance of Ruminococcaceae

UCG-008 and the Christensensllaceae R-7 group at the genus

level. Ruminococcaceae UCG-008 belongs to the family of

Ruminococcaceae and has a close correlation with butyrate

production (45), and negatively correlated with inflammatory

cytokines in our previous study (46). The Christensensllaceae

R-7 group belongs to the family of Christensensllaceae, which

has a negative correlation with lipid biosynthesis and energy

metabolism pathways in humans (47). In the present study, the

Christensensllaceae R-7 group and Ruminococcaceae UCG-008

had a positive linear correlation with IL-1β and IL-6 but had a

negative linear correlation with SLC2A1 and SCL2A3. However,

only the Christensensllaceae R-7 group had a negative linear

correlation with SOD2 and HO-1. These results suggest that the

Christensensllaceae R-7 group and Ruminococcaceae UCG-008

may play an important role in the beneficial effects of RES on

placental function.

Conclusion

Dietary supplementation of resveratrol during late

pregnancy showed a positive effect on the placental function

of sows, with ameliorated insulin resistance (HOMA-IR),

increased triglyceride (TG) levels, and reduced levels of

inflammatory cytokines, such as IL-1β and IL-6. Resveratrol

could enhance the placental vascular density by upregulating

the expression of nutrient transporters genes (SLC2A1 and

SLC2A3), attenuate placental oxidative stress and inflammation

by promoting the expression of antioxidant genes (SOD2 and

HO-1), and suppressing inflammatory genes (IL-1β and IL-6).

An analysis of the gut microbiota revealed that resveratrol can

reduce the relative abundance of the Christensensllaceae R-7

group and Ruminococcaceae UCG-008, which have a positive

linear correlation with IL-1β, IL-6, SLC2A1, and SCL2A3.
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