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Cinnamaldehyde is an aromatic aldehyde isolated from the essential oil of cinnamon. It

has been proved to possess various bioactivities such as anti-inflammation, anti-bacteria

and antihypertensive. Nevertheless, early weaning could lead to intestinal stress, causing

a range of intestinal health problems. The aim of this study is to explore the effects

of cinnamaldehyde on gut barrier integrity, inflammatory responses, and intestinal

microbiome of early weaned rats. In this study, treatment with cinnamaldehyde (100 or

200 mg/kg bodyweight/day) for 2 weeks significantly promoted the production of mucins

in the colonic epithelial tissue of rats. Cinnamaldehyde supplementation significantly

upregulated the expression of Muc2, TFF3 and the tight junction proteins (ZO-1,

claudin-1, and occludin). Hematoxylin and eosin staining results showed that colonic

histopathological changes were recovered by cinnamaldehyde supplementation. The

mRNA expression of IL-6 and TNF-α were significantly decreased in the cinnamaldehyde

groups while the TNF-α protein levels were significantly decreased in the two

cinnamaldehyde groups. Cinnamaldehyde treatment obviously attenuated the activation

of NF-κB signaling pathway in rat colonic tissue and suppressed the production of

inflammatory cytokines. Furthermore, cinnamaldehyde supplementation remodeled the

gut microbiome structure, at the genus level, Akkermansia, Bacteroides, Clostridium

III, Psychrobacter, Intestinimonas were increased, whereas those of Ruminococcus,

Escherichia/Shigella were obviously decreased in the cinnamaldehyde treated groups.

These findings indicated that cinnamaldehyde could effectively enhance intestinal barrier

integrity, ameliorate inflammatory responses and remodel gut microbiome in early

weaned rats.
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INTRODUCTION

Cinnamaldehyde is the major bioactive component isolated from cinnamon essential oils.
Previous studies have shown that cinnamaldehyde exhibits a wide range of biological activities
including anti-inflammatory, anti-bacterial, and immune-modulating properties (1–3). As the
major component of cinnamon, cinnamaldehyde has been traditionally used as a food additive,
and registered as a flavoring agent by the Food and Drug Administration and approved for food
use (4).
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Gut is an important barrier which protects against the entry of
pathogenic bacteria and harmful macromolecules into the body.
The immature barrier function plays key roles in the pathogenesis
of intestinal inflammatory diseases of newborns and children,
such as inflammatory bowel disease (IBD), infectious enteritis, or
necrotizing enterocolitis (5). Previous study has suggested that
the infant maturation of the intestinal epithelium has lifelong
impacts on gut functions and immune homeostasis (6). The
suckling-to-weaning dietary transition influences the maturation
of gut barrier in mammals. The transition from maternal milk
to solid food also results in the remodeling of gut microbiota
composition. The intestinal bacterial metabolites were found to
be the key intermediates which induced the maturation of gut
and formation of intestinal barrier (7).

Many natural bioactive compounds have been found to
promote intestinal maturation and modulate the gut microbiota
composition (8, 9). Previous investigations suggested that
cinnamaldehyde inhibited PLCγ-1 activation in mucosal mast
cells, attenuated the inflammatory responses and ameliorated
ulcerative colitis in the rat models (10, 11). To our knowledge,
the effects of cinnamaldehyde on the gut integrity and mucosal
immune functions in juvenile animals have not been explored.
Weaning, especially early weaning, is a stressful condition for
mammals and negatively affects growth performance by affecting
the development of mucosal barrier function in the intestine (12).
Early weaning (15- to 21-day weaning age) resulted in sustained
impairment in intestinal barrier function, and commonly results
in gastrointestinal disorders, inflammation and diarrhea in
infants and young animals (13). Therefore, in the current study,
we used early weaned rats as the animal model to investigate
the effects of cinnamaldehyde on the intestinal barrier, mucosal
immune functions and gut microbiota profile in the early
weaned rats.

MATERIALS AND METHODS

Materials and Reagents
Cinnamaldehyde was purchased from Sigma-Aldrich (St.Louis,
MO,USA). The total RNAKit and Stool DNAKit were purchased
from OMEGA Bio-Tek (Norcross, GA, USA). One-step qRT-
PCR kits were purchased from TOYOBO (Osaka, Japan).
Anti-NF-κB p65, anti-phospho-NF-κB p65, anti-TNF, anti-IL-
6 and HRP-linked goat anti-rabbit antibody were obtained
from Cell Signaling Technology (Beverly, MA, USA). ECL
Western Blotting Substrate was supplied by Thermo Fisher
(Shanghai, China). RIPA lysis buffer and BCA protein assay kits
were obtained from Beyotime (Shanghai, China). Nitrocellulose
membranes were purchased from Sigma-Aldrich (St.Louis, MO,
USA). AB/PAS staining kits were purchased from Solarbio Life
Science (Beijing, China). Enzyme-linked immunosorbent assay
(ELISA) kits for estimating TNF-α, and IL-6 levels were obtained
fromMultisciences Biotech (Hangzhou, China).

Animal Experiment Design
Twenty four early weaned male SPF SD rats (17 days) were
purchased from the Laboratory Animal Center of Zhejiang
Province (Hangzhou, China). The rats had free access to water

and were fed in a temperature-controlled room (23–25◦C)
under a 12-h dark-light cycle. The experimental procedure was
approved by the ethical committee in Zhejiang University, and
was decided following the rule of the NIH Guide for the Care
and Use of Laboratory Animals (NIH Publication No. 85-23,
1985, revised 1996). The immature rats were removed from their
dams at 17 days of age (weaned), following 3 days of adaptive
feeding with the diet of rat formula feeds mixed with corn,
soybean meal, fish meal, flour, yeast powder, vegetable oil, salt, a
variety of vitamins, and mineral elements. The diet contains 18%
protein, 4% fat, 5% crude fiber, 1.8% Ca, and 1.2% phosphorus
with the energy content of 3.4 kcal/g. The rats were weighed
after 3 days (21 days of age) of adaptive feeding, then they
were randomly divided into 3 groups with 8 rats per group:
control, CIN100 and CIN200. In addition, each mouse was raised
separately. The control group was feed with the above formula
feeds, and the CIN100 and CIN200 groups were fed with the
above formula feeds mixed with the fresh liquid cinnamaldehyde
of 100 or 200 mg/kg body weight/d, respectively (the liquid
cinnamaldehyde was added directly into formula feeds). The
reason why cinnamaldehyde was administered as the amounts
of 100–200 mg/kg was the result of the previous pre-test and
reference of the previous research reports (14). After 7 days
of feeding experiment (28 days of age), euthanasia was carried
out by intraperitoneal injection of pentobarbital sodium of 150
mg/kg body weight until the animal stopped breathing, then the
abdomen was incised to obtain the colon tissue samples.

Alcian Blue-Periodic Acid Schiff (AB/PAS)
Staining
Alcian blue-periodic acid schiff (AB/PAS) staining was conducted
to observe the variation of goblet cells. Five millimeter of colonic
tissue was immediately fixed in Carnoy’s fluid at 4◦C for 2 h.
Fixed colon tissues were embedded in paraffin and cut into
5µm sections and subjected to AB/PAS staining. The variation
of goblet cells and integrity of mucus were analyzed using a
microscope (Nikon E100, Tokyo, Japan). ImageJ software was
used for data acquisition and image analysis.

TABLE 1 | Primers used for qRT-PCR.

Forward primer (5′-3′) Reverse primer (5′-3′)

MUC2 GCTGACGAGTGGTTGGT

GAATG

GATGAGGTGGCAGACAGGAGAC

TFF3 CCGTGGTTGCTGTTTTGAC GCCTGGACAGCTTCAAAATG

ZO-1 ACCCGAAACTGATGCTGTG

GATAG

AAATGGCCGGGCAGAACTTGTGTA

claudin-1 AGCTGCCTGTTCCATGTACT CTCCCATTTGTCTGCTGCTC

occludin ACGGACCCTGACCACTATGA TCAGCAGCAGCCATGTACTC

TNF-α CCCTCACACTCAGATCAT

CTTCT

CTACGACGTGGGCTACAG

IL-6 CTCTGGCGGAGCTATTGAGA AAGTCTCCTGCGTGGAGAAA

GAPDH GAAGGTGAAGGTCGGAG

TCAAC

CATCGCCCCACTTGATTTTGGA
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Hematoxylin and Eosin (H&E) Staining
The colonic tissues were fixed in 10% neutral buffered formalin
and then transferred to 70% ethanol. Fixed tissues were
embedded in paraffin and cut into 4µm thick slices. Tissues
were stained with hematoxylin and eosin (H&E). The histological
changes were observed with optical microscopy (Nikon, Tokyo,
Japan). Sections were evaluated based on the cell infiltration of
inflammatory cells and epithelial damage as previously described.

RT-qPCR
Total RNAwas extracted from colonic tissues using the total RNA
Kit (OMEGA Bio-Tek). RNA concentrations were determined
at 260 nm and purity was assessed by the A260/A280 nm ratio.
RT-qPCR was performed using CFX Connect System (Bio-
Rad, California, USA) with one-step RT-qPCR Kit (TOYOBO)
according to the manufacturer’s protocols. The sequences of the
primers were listed in Table 1. Thermal cycling conditions were
as follows: 2min denaturation at 98◦C, followed by 40 cycles at
98◦C at 10 s, 10 s at 60◦C, 30 s at 68◦C. Data were collected and
analyzed using the CFX Manager software (Bio-Rad, California,
USA). Cycle thresholds were normalized to GAPDH levels and
fold changes were calculated to the normalized control of each
gene. The relative mRNA levels were examined using the 11Ct
method. Each sample was treated in triplicate to ensure statistical
analysis significance.

Western Blot Analysis
The fresh colon tissue was washed for three times with pre-
cooling PBS of 4◦C. Filter paper was used to absorb the rest
liquid on the tissue surface and then cut the colon tissue into
several smaller tissue pieces. Add the tissue pieces into RIPA
(Radio Immunoprecipitation Assay) buffer (Beyotime, Shanghai,
China) in a ratio of tissue weight (g): lysate (mL) = 1:10, and
homogenized using a homogenizer until no obvious tissue mass
could be observed, then incubated on ice for 30min. Centrifuged
10,000 g at 4◦C for 10min, the supernatant was the extracted
protein. Fifty microgram of protein samples were separated by
either 3–8% Tris-acetate gradient gels for MUC2 detection or

12.5% Tris-glycine gels for detection of other proteins. Then the
protein samples were transferred to nitrocellulose membranes
(Sigma-Aldrich, St. Louis, MO, USA). The membranes were
blocked with 5% skim milk in TBS-T for 2 h and then washed
with TBS-T for three times at 4◦C. The blocked membranes
were incubated in primary antibody at 4◦C overnight, followed
by incubation with secondary antibody at room temperature for
1 h. ECL Substrate (Thermo Fisher, Shanghai, China) was used
to image the protein bands with Chemi Doc XRS system (Bio-
Rad, CA, USA). The optical density was analyzed byQuantity one
4.6.2 software. The antibodies used were shown as follows: anti-
Claudin-1 (Invitrogen, Cat.37-4900), anti-Occludin (Invitrogen,
Cat.33-1500), anti-ZO-1 (Invitrogen, Cat.61-7300), anti-P-NFκB
(CST, Cat.3003), anti-NF-κB (CST, Cat.8242), anti-TNF alpha
(Abcam, Cat.ab183218), anti-IL6 (Abcam, Cat.ab259341), and
anti-β-actin (Abcam, Cat.ab8226).

Enzyme-Linked Immunosorbent Assay
(ELISA)
To determine the protein levels of TNF-α and IL-6, the
colon tissue was homogenized with cold 10mM PBS (pH 7.4,
containing 1mM phenylmethylsulfonyl fluoride). After that, the
mixture was centrifuged at 10,000×g for 5min at 4◦C. The
supernatants were collected and detected by using TNF-α or IL-6
ELISA kits (Multisciences Biotech, Hangzhou, China) according
to the manufacturer’s instructions. The TNF-α and IL-6 levels
were expressed as picograms per gram of tissue protein.

Analysis of Gut Microbiota
The structural changes of gut microbiome were conducted by
16S rRNA sequencing analysis. Total DNA was extracted with
the E.Z.N.A. Stool DNA Kit (Omega, Norcross, GA, USA)
according to instructions. The collection of feces was carried
out in a sterile environment in a super clean table. Fixed the
experiment rat and lifted its tail, gently pressed the abdomen
with fingers to collect fresh feces and put them into a sterile
EP tube, each tube contained 2–3 fecal particles. The bacterial
hypervariable V3–V4 region of 16S rRNA was amplified by using

FIGURE 1 | Cinnamaldehyde treatment promoted the production of mucins. The variation of goblet cells in different treatment groups was analyzed by AB/PAS

staining (200×, n = 3). (A) Control. (B) CIN100. (C) CIN200. The mean fluorescence intensity of each picture is 0.057, 0.088**, 0.125** arbitrary units (AU) using

ImageJ software. One-way ANOVA was carried out for each comparison with HSD test.
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FIGURE 2 | Cinnamaldehyde supplementation promotes the mRNA levels of MUC2, TFF3, TJs, and protein levels of TJs (ZO-1, Claudin-1, and Occludin) in early

weaned rats. (A) MUC2. (B) TFF3. (C) ZO-1. (D) Claudin-1. (E) Occludin. (F) Protein levels of TJs. mRNA levels were normalized by GAPDH and protein levels were

normalized β-actin. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01. One-way ANOVA was carried out for each comparison with HSD test.

primer: 341F: CCCTACACGACGCTCTTCCGATCTG and
805R: GACTGG+AGTTCCTTGGCACCCGAGAATTCCA.
The validated library was used for sequencing on HiSeq 2500
(Illumina, CA, USA). The high quality paired-end reads were
combined to tags based on overlaps by FLASH (Fast Length
Adjustment of Short reads, v1.2.11), and then clustered into
Operational Taxonomic Units (OTUs) at a similarity cutoff
value of 97% using USEARCH (v7.0.1090), and chimeric
sequences were compared with Gold database using UCHIME
(v4.2.40) to detect. Alpha diversities (Shannon and Simpson)
and richness (ACE and Chao1) were obtained using mother
(version 1.30.1). Beta diversity was determined using OTUs
from each sample. Gut microbiota compositions of the groups
at different levels (phylum and genus) were analyzed using

MUSCLE software (version 3.8.31). Mothur software and
Metastats statistical algorithms were used to compare the relative
bacterial abundances at the phylum and genus levels, and
significant differences in taxonomic compositions were analyzed
via the Kruskal Wallis test. The data was uploaded to SAR with
the accession NO. PRJNA761503.

Statistical Analysis
SPSS20.0 (SPSS, Chicago, IL) was used for statistical analysis,
a one-way analysis of variance (ANOVA) was carried out for
each comparison, followed by post hoc analysis to identify
differences between specific factor levels using the Tukey’s
Honest Significant Difference (HSD) test. P < 0.05 were regarded
as statistically significant.
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RESULTS AND DISCUSSION

Cinnamaldehyde Promotes the Production
of Colonic Mucin
Mucus is the first mechanical defense in the intestinal barrier,
which protects against the invasion of intestinal bacteria and

entry of harmful macromolecules (15). Damage of mucus
integrity would result in leaky gut, promote the translocation
of bacteria and induce intestinal inflammatory responses
(16). To investigate the influence of cinnamaldehyde on the
intestinal mucus, we visualized the colonic epithelial layer
by staining with AB/PAS after 7 days of treatment with

FIGURE 3 | Cinnamaldehyde supplementation attenuates the inflammatory responses in early weaned rat colon. (A) H&E stained distal colon sections from untreated

and cinnamaldehyde treated rats at day 7 (Original magnification 100×). Inflammation is evident in control group rats. Quantitative RT-PCR was performed to detect

the mRNA expression of TNF-α (B) and IL-6 (C), normalized by GAPDH. ELISA was conducted to measure the production of TNF-α (D) and IL-6 (E) in rat colonic

tissues. Data are represented as mean ± SD. *P < 0.05, **P < 0.01. One-way ANOVA was carried out for each comparison with HSD test.
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FIGURE 4 | Cinnamaldehyde supplementation inhibits the activation of NF-κB in early weaned rat colon tissues. (A) Western blot analysis for NF-κB, pNF-κB and the

downstreaming inflammatory cytokines. (B) Quantitative analysis for the densitometry of the proteins performed using ImageJ software. Data are expressed as mean

± SD. *P < 0.05, **P < 0.01. One-way ANOVA was carried out for each comparison with HSD test.

cinnamaldehyde (Figure 1). The results showed that treatment
with cinnamaldehyde significantly (P < 0.01) increased the
amount of secretary granules in the colonic epithelial tissues
compared to the control (Figure 1). This study suggested that
cinnamaldehyde might enhance the host defense via promoting
the production of mucins.

Cinnamaldehyde Supplementation
Improved the Gut Barrier Integrity in Newly
Weaned Rats
Increased permeability is thought to be associated with intestinal
pathogenesis (17, 18). The intestinal mucus in juvenile animals is
immature, which is easy to be infected by intestinal bacteria. In
the colon, MUC2 is a predominant secretory mucin expressed
in goblet cells (19). Trefoil factor 3 (TFF3) is an important
mucosal protective factor which usually enhances the protective
properties of the mucus layer in a cooperative manner with
MUC2 (20). It has been reported that the expression of
MUC2 and TFF3 could be stimulated by phytonutrient such as
eugenol, carvacrol, and cinnamaldehyde (21). Here we found
that cinnamaldehyde treatment markedly enhanced the mRNA
expression of MUC2 and TFF3 in the colon compared with
control group (Figures 2A,B).

Tight junctions (TJs) also play important roles in the
maintenance of intestinal permeability, which is considered
to determine selective para-cellular absorption (18). Previous
studies have shown that the zonula occludins (ZO), claudin
family proteins, and occludin are essential components of TJs
in the epithelial barrier (22). The major functions of TJs are
to maintain the integrity of the intestinal epithelial barrier.
RT-qPCR results showed that treatment with cinnamaldehyde

significantly up-regulated the mRNA expression of TJs such
as ZO-1 (Figure 2C), claudin-1 (Figure 2D), and occluding
(Figure 2E). In the CIN100 group, the mRNA levels of ZO-
1, claudin-1, and occludin were elevated by 54, 14, and 22%,
respectively, compared with the control group. In the CIN200
group, the mRNA levels of ZO-1, claudin-1, and occludin were
elevated by 67, 87, and 39%, respectively. Moreover, WB results
also showed that treatment with cinnamaldehyde significantly
up-regulated the protein expression levels of TJs such as ZO-
1, claudin-1, and occluding (Figure 2F). Consistent with these
results, a few other phytochemicals, such as flavonoids and
polyphenols, have also been indicated to enhance TJ functions
and gut integrities (22–24).

Cinnamaldehyde Attenuates the
Inflammatory Responses in the Colon
Tissues
It has been reported that cinnamaldehyde could play anti-
inflammatory activities in infection, injury and autoimmune
disease (14, 25). Histological analysis showed clear inflammation
in the colon of newly weaned rats, while treatment with
cinnamaldehyde markedly ameliorated the histological changes
(Figure 3A). These results suggested that cinnamaldehyde
treatment could attenuate the colonic inflammatory responses of
early weaned rats. As cytokines play key roles in the inflammatory
responses, the expression and production of cytokines (TNF-α
and IL-6) have been determined. The results showed the mRNA
expression of IL-6 and TNF-α were significantly decreased in
the cinnamaldehyde groups (Figures 3B,C). Compared with
the control group, TNF-α protein levels were significantly
decreased in the two cinnamaldehyde groups. In the control
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FIGURE 5 | The effects of Cinnamaldehyde supplementation on the α- and β-diversity of gut microbiota communities. (A) Alpha diversity metrics for the gut

microbiota treated with cinnamaldehyde. (B) Beta diversity presented as weighted UniFrac distances. (C) Beta diversity presented as unweighted UniFrac distances.

One-way ANOVA was carried out for each comparison with HSD test.

group, the concentration of IL-6 was 139.4 ± 7.7 pg/g tissue,
while the levels of IL-6 in CIN100 and CIN200 were 117.7
± 9.3 pg/g tissue and 109.4 ± 11.2 pg/g tissue, respectively

(Figures 3D,E). Our results demonstrate cinnamaldehyde could
attenuate the intestinal inflammatory responses in newly
weaned rats. These results are in line with the previous
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FIGURE 6 | Cinnamaldehyde supplementation remodels the structure of gut microbiota in early weaned rats. (A) Composition of gut microbiota at the phylum level

analysis. (B) Heat map of phylum. (C) Relative abundance of the top four phyla. (D) Ratio of Firmicutes to Bacteroidetes. Data are presented as mean ± SEM. *P <

0.05 and **P < 0.01. One-way ANOVA was carried out for each comparison with HSD test.

study which reported that cinnamaldehyde suppressed the
production of TNF-α and IL-6 in ulcerative colitis model
mice (11).

Cinnamaldehyde Inhibited the Activation of
NF-κB Signaling Pathway in the Colon
Tissues
NF-κB signaling pathway play important roles in the
inflammatory responses (26). NF-κB exists as an inactive form
in the cytoplasm, which is a p50/p65 heterodimer and associated
with the inhibitor of nuclear factor-kappa B (IκB). After being
stimulated by external stimuli, the p65 is phosphorylated
by the protein kinases and then the phosphorylated NF-κB
translocates to the nucleus and promotes the expression of
downstream inflammatory factors (27). When the signaling
pathway is activated, the ratio of pNF-κB/NF-κB is markedly

elevated (28). To explore the effects of cinnamaldehyde on
NF-κB signaling pathway in colonic tissues of newly weaned
rats, western blot analysis was performed to determine the
levels of the key proteins. The results showed that when the
rats were administrated with 100 or 200mg cinnamaldehyde/kg
body weight, the level of colonic pNF-κB was reduced 54
and 51% (Figure 4A), respectively. Compared to the control
group, the ratios of pNF-κB/NF-κB were also markedly
decreased. The expression levels of TNF-α showed 91%
reduction in both cinnamaldehyde groups, while the levels
of IL-6 were reduced 44 and 88% (Figure 4B), respectively.
These results suggested that cinnamaldehyde treatment could
attenuate the inflammatory responses through inhibiting
the activation of NF-κB signaling pathway. Our results were
supported by a previous report that cinnamaldehyde could
inhibit the NF-κB activation and attenuate inflammatory
responses (16).
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FIGURE 7 | Effects of cinnamaldehyde supplementation on the abundance of intestinal bacteria at genus level. (A) The relative abundance of the intestinal bacteria at

the genus level. (B) Heatmap of genus. (C) The relative abundances of the top seven most abundant microbial genera across all samples. *P < 0.05 and **P < 0.01.

One-way ANOVA was carried out for each comparison with HSD test.

Cinnamaldehyde Altered Microbial
Composition in Colon of Early Weaned
Rats
The impact of cinnamaldehyde on alpha diversity of the
gut microbiota community was determined based on ACE
Diversity Index, Chao Diversity Index and Shannon’s Diversity
Index (Figure 5A). These measures of diversity were calculated
following the creation of a rooted phylogenetic tree using
OTUs generated from 16s rRNA sequencing. Species Richness
is a measure of the number of different species in each
sample. As shown in Figure 5A, there was no significant
difference between the control and cinnamaldehyde treated
groups, a measure of the diversities of the species in each
sample exhibited no significant differences between any of the
experimental groups. These results showed that cinnamaldehyde

couldn’t cause a consistent disruption in the alpha diversity
of the human gut microbial community. The impact of
cinnamaldehyde on the beta diversity of the human gut
microbial community was determined using weighted and
unweighted UniFrac distance PCoA analysis. The principal
coordinates analysis (PCoA) based on the Weighted and
Unweighted UniFrac algorithm clearly revealed gut microbial
community altered between cinnamaldehyde groups and control
group (Figures 5B,C). There was no significant difference
between the two cinnamaldehyde groups. This suggested
the majority members of the microbial community didn’t
differ dramatically in cinnamaldehyde groups, whereas the
composition of the microbial community was distinct from
control group.

At the phylum level, Firmicutes and Bacteroidetes were
the most abundant phyla in all groups (Figures 6A,B). The
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relative abundance of Firmicutes in cinnamaldehyde groups was
significantly reduced (P < 0.01), whereas those of Bacteroidete,
Verrucomicrobia, Proteobacteria were increased in comparison
with the control group (P < 0.01).

The Firmicutes to Bacteroidetes ratio (F/B ratio) has been
suggested being highly correlated with many gut diseases. The
increase of F/B ratio is an indicator of microbial imbalance,
which is associated with intestinal diseases (29, 30). The
declined F/B ratiois important for the intervention of intestinal
inflammation. The ratio of F/B was 6.0 in the control group,
whereas the ratios were 2.9 and 2.0 in the cinnamaldehyde
groups (Figures 6C,D), respectively. These results suggested
that cinnamaldehyde could attenuate the intestinal
inflammatory responses via modulating the composition of
gut microbiota.

Intestinal microbiota community structure was analyzed
by high-throughput sequencing of 16S rRNA. At the
genus level, Akkermansia, Bacteroides, Clostridium III,
Psychrobacter, Intestinimonas were increased, whereas those
of Ruminococcus, Escherichia/Shigellawere obviously decreased
in the cinnamaldehyde treated groups (Figures 7A,B). As
shown in Figure 7C, the abundance of Akkermansia muciniphila
increased from 10.48 ± 1.77% in the control group to 26.08
± 3.15% and 14.79 ± 2.01% in the cinnamaldehyde groups,
respectively. Compared with the control group, the abundance
of Ruminococcus was significantly decreased in CIN100 and
CIN200 group. The abundance of Escherichia/Shigella was
decreased from 1.12 ± 0.09 to 0.55 ± 0.04% and 0.09 ±

0.01%, respectively, in CIN100 and CIN200 groups. It has been
reported the A. muciniphila is a mucin-degrading bacterium
that resides in the mucus layer (31). It has been previously
described that A. muciniphila population is reduced or depleted
in inflammation (32), inflammatory bowel disease and type 2
diabetes (33, 34). The mucolytic properties seem to promote
mucus renewal via a positive feedback loop which exists in a
symbiotic relationship with the host (35). It has been found
that R.gnavuscan degrade colonic MUC2 (36). High abundance
of R. gnavus is prevalent in patients with intestinal Crohn’s
disease and inflammatory bowel disease (37, 38). Shigella
flexneri could colonize and invade the intestinal epithelium,
resulting in severe inflammatory colitis (39). Enterotoxigenic
Escherichia coli (ETEC) and Shigella are most frequently isolated
pathogenic bacteria in young children with diarrhea (40).
Shigella infection could induce the expression and excretion of
cytokines in colonic epithelia. In this study, the expansion of
intestinal beneficial bacteria and the reduction of conditional
pathogenic bacteria in the cinnamaldehyde groups may be the
reasons that the intestinal inflammation was attenuated by
cinnamaldehyde treatment.

CONCLUSION

Cinnamaldehyde, an important bioactive component extracted
from cinnamonessential oils, has been found to exhibit many

biological activities. To our knowledge, this is the first study
to investigate the effects of cinnamaldehyde on the intestinal
epithelial barrier and the gut micobiome of juvenile rats.
Cinnamaldehyde treatment could promote the production of
mucins in early weaned rats and upregulate the gene expression
of the TJs such as ZO-1, claudin-1, and occludin. The activation
of NF-κB signaling pathway was significantly suppressed and the
inflammatory responses were attenuated in the colonic tissues
of early weaned rats treated with cinnamaldehyde. Treatment
with 100 or 200 mg/kg body weight/d of cinnamaldehyde
significantly enhanced the phosphorylation of NF-κB, promoted
the nuclear translocation of NF-κB, and suppressed the
production of cytokines (TNF-α and IL-6). Cinnamaldehyde
modulated the gut bacterial microbiota by increasing the
abundance of Bacteroidetes, Proteobacteria, and Verrucomicrobia
in the colon. In the cinnamaldehyde treated groups, the
Firmicutes to Bacteroidetes ratio was significantly decreased.
Moreover, cinnamaldehyde treatment obviously improved
the diversity of colonic microbiota in the early weaned
rats. These findings suggest that cinnamaldehyde should be
considered as a potential drug to prevent or treat the intestinal
inflammatory diseases of newborns and children. Clinical
trials should be performed to confirm or refute these findings
in humans.
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