AUTHOR=Niforou Aikaterini , Konstantinidou Valentini , Naska Androniki TITLE=Genetic Variants Shaping Inter-individual Differences in Response to Dietary Intakes—A Narrative Review of the Case of Vitamins JOURNAL=Frontiers in Nutrition VOLUME=7 YEAR=2020 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2020.558598 DOI=10.3389/fnut.2020.558598 ISSN=2296-861X ABSTRACT=

Recent advances in the field of nutrigenetics have provided evidence on how genetic variations can impact the individuals' response to dietary intakes. An objective and reliable assessment of dietary exposures should rely on combinations of methodologies including frequency questionnaires, short-term recalls or records, together with biological samples to evaluate markers of intake or status and to identify genetic susceptibilities. In an attempt to present current knowledge on how genetic fingerprints contribute to an individual's nutritional status, we present a review of current literature describing associations between genetic variants and levels of well-established biomarkers of vitamin status in free-living and generally healthy individuals. Based on the outcomes of candidate gene, genome-wide-association studies and meta-analyses thereof, we have identified several single nucleotide polymorphisms (SNPs) involved in the vitamins' metabolic pathways. Polymorphisms in genes encoding proteins involved in vitamin metabolism and transport are reported to have an impact on vitamin D status; while genetic variants of vitamin D receptor were most frequently associated with health outcomes. Genetic variations that can influence vitamin E status include SNPs involved in its uptake and transport, such as in SCAR-B1 gene, and in lipoprotein metabolism. Variants of the genes encoding the sodium-dependent vitamin C transport proteins are greatly associated with the body's status on vitamin C. Regarding the vitamins of the B-complex, special reference is made to the widely studied variant in the MTHFR gene. Methodological attributes of genetic studies that may limit the comparability and interpretability of the findings are also discussed. Our understanding of how genes affect our responses to nutritional triggers will enhance our capacity to evaluate dietary exposure and design personalized nutrition programs to sustain health and prevent disease.