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INTRODUCTION

Personalized Nutrition and Approaches Employed
Personalized nutrition refers to tailored nutritional recommendations aimed at the promotion,
maintenance of health and prevention against diseases (1). These recommendations take into
account differential responses to certain individualized food-derived nutrients that arise due to
the interaction between nutrients and biological processes (2). These include the interactions
between internal factors such as genetics, microbiome, metabolome interactions as well as external
factors such as dietary habits and physical activity (3). In contrast to precision medicine defined
by the Precision Medicine Initiative (https://obamawhitehouse.archives.gov/node/333101) as an
approach toward the treatment and prevention of disease for an individual, the goal of personalized
nutrition is to promote the health and well-being through diet.

A balanced diet promotes good health as it provides adequate amounts of energy, proteins,
vitamins, minerals, essential fats, micro, and macronutrients for the metabolic needs of the body to
function properly at each stage of the lifespan. The absence of balanced food and nutrition security
leads to health problems such as diabetes, obesity, and malnutrition (4). Although, the importance
of nutrition and beneficial effects of food are well established, the mechanisms underlying their role
in disease prevention or health benefits are incompletely understood (5, 6). Further, there exists
an inter-individual response to dietary intervention due to which a sub population may benefit
more than others. This underlying variability can be attributed to genetics, age, gender, lifestyle,
environmental exposure, gut microbiome, epigenetics, metabolism nutrition derived from diet, and
foods. The inter-individual variability to treatments and nutritional recommendations is largely
reflected in biomarker values (7).

Reductionist approaches fail to demonstrate how the cellular and molecular responses due to
food produce health benefits (6). Current approaches used to study the inter-individual response to
diet include–omics technologies such as genomics, metabolomics, proteomics integrated with the
systems biology programs. These approaches are focused on integrating and analyzing complex
datasets generated during dietary intervention association studies (3, 8, 9). Systems biology
approaches are impacting the field of nutrition (10–12) and immunology (13), however, significant
challenges still remain in the translation and application of these advances to human studies (9).
A comprehensive systems-wide mechanistic understanding of the interplay between nutrition and
health benefits requires the knowledge of network dynamics in the context of health, pre-disease,
and disease states. This requirement gives rise to the demand for new approaches and methods that
could not only quantify the effects of dietary interventions in healthy individuals but also facilitate
comparison to diseased patients (6).
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Need for Integrated Personalized
Predictive Models for Use in Personalized
Nutrition and Health
To understand the underlying health dynamics while considering
inter-individual variability and implementing personalized
nutrition-driven interventions, efforts should focus on devising
predictive methods that timely monitor the individual’s
health responses to food. A systems science perspective can
help physicians tailor targeted treatment, comprehend the
variability in response to treatments and design personalized
nutrition approaches (14). Personalized nutrition approaches
have the potential to spearhead the creation of information-
processing representations of digestion, absorption, and
metabolism. These provide linkages between molecular events
and health outcomes through: (i) integration of data at all
salient scales; (ii) combination of mulsticale models with
health outcomes through advanced machine learning (ML)
models; (iii) generation of non-intuitive hypotheses; and (iv)
experimental validation using preclinical and clinical trials
with standardized nutritional interventions. With the advent
of big-data era, data specific to consumption of standardized
meal, functional food, and beverage sales reports can be
extracted. Health informatics enabled initiatives can be applied
to conduct data mining and extraction from the electronic
health records (EHRs) and insurance claims database. The
EHR data can be combined with knowledge derived from
nutritional and data sciences to build computational models
and synthetic patient cohorts. These synthetic patients can
be used as avatars that reflect inter-individual variation to
preform predictive analysis and evaluate the system-level
responses to the personalized food recommendations. These
predictive insights can be utilized in order to elucidate the
complex regulatory mechanisms of nutritional interventions at
the interface of immunity, metabolism, and gut microbiome.
Overall, advanced computational methods and data analytics
platforms could help shape the development of health platforms,
tailor future nutritional recommendations for promoting health
and accelerating the translation of the recommendations into the
clinic.

Recent studies demonstrated successful application of
providing personalized dietary advice at an individual level
(15, 16). Although the prediction method used by Zeevi et al.
demonstrated the effectiveness of personalized diet regimes to
reduce levels of glucose, the results failed to connect to health
outcomes. A web-based pan-European, Food4Me study (17)
aimed to evaluate whether personalized advice caused more
changes in dietary behavior as compared to “one size fits all”
approach (16). An automated dietary feedback system was
used to deliver personalized dietary advice and its comparison
with manual system demonstrated complete agreement (17).
The study demonstrated that personalized nutrition advice
was more effective compared to a population-based nutritional
advice.

Abbreviations:ML, Machine learning; AL, Artificial Intelligence; EHR, Electronic

health record; FHI, Food health infrastructure.

These integrated data-driven approaches that build predictive
computational models could be trained with additional features
including phenotypic changes due to nutritional factors and
changes due to interaction between genotypic and nutrient
derived metabolic factors. The predictions from these models
that include genotypic and metabolic features can aid the
design of personalized diets based on the feature attributes
that capture human diversity and variation. Thus, a unique
comprehensive strategy that can automate data driven analytical
model building, could be employed by focusing on the unique
iterative integration of large-scale clinical record mining, -omic
analysis, hypothesis-based modeling, simulation, and advanced
ML approaches, to make tangible progress toward personalized
nutrition and precision medicine. The vision for personalized
nutrition has stimulated an immense interest for advancements
in the diagnostics and decision support systems that allow
continuous assessments of nutritional status. However, the
advancement in the predictive technologies and their integration
has posed numerous challenges. The focus of this review article
is to put forth the major challenges (as shown in Figure 1)
encountered in the process of revolutionizing the personalized
nutrition health-care information technology including (i)
limitation in the reductionist approaches and opportunities for
adoption of advanced computational data-driven technologies;
(ii) need for personalized nutrition computational infrastructure;
(iii) data standardization and the requirement for training
individuals; (iv) data sparsity, missing data and need for
improved imputation methods. We further discuss the possible
solutions for above listed challenges to achieve preventive,
personalized and predictive approaches that aid the process
of making decisions about diet and foods at an individual
personalized level.

CHALLENGES

Challenge 1: Limitation in Reductionist
Approaches and Opportunities for
Adoption of Advanced Computational
Data-Driven Technologies
The study of biological mechanisms at a single gene or
protein level in nutritional studies is largely outdated. The
dynamic interaction among nutrition-metabolism-microbiota-
host at the cellular and molecular level and health outcomes
at the individual and personalized level are not completely
understood (5, 6). A holistic understanding of health requires
evaluating the interactions among diet, genes, gene products,
health, and environmental exposures as opposed to focusing on
the interaction of nutrients or macromolecules on specific gene
or gene products. Current experimental techniques are limited
in their ability to—(i) allowing researchers to quantitatively
manipulate diet in a controlled manner in humans and animals
and (ii) being able to trace events at the tissue level back
to specific cellular and molecular level interactions and or
signalingmechanisms. Data-driven approaches that utilizemulti-
parameter measures such as the influence of the nutrients
on gene expression, genetic variations and interaction with
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FIGURE 1 | Challenges in personalized nutrition. The challenges encountered in the path of making tailored recommendations toward personalized nutrition and health

include—(i) limitations due to the reductionist approaches that can be overcome by employing data-driven technologies such as AI and ML; adaptation to existing

data-driven technologies raises, (ii) the need for building a personalized nutrition computational infrastructure; the lack of standardization in format of the data utilized

in electronic health records raises, (iii) the need for data standardization and updated training programs for the users; the inconsistencies and missing values in the

electronic health records results in, (iv) the data sparsity and missing data problem that emphasizes the need for the development of new methods for data imputation.

environmental factors such as influence of lifestyle measures
on gut microbiome interaction are capable of providing a
comprehensive understanding of an individual’s health.

The current health care system evaluates static measurements
of an individual’s health which includes the EHR data contents
and physical examination results. In addition to the static
measurements continuous measurements of health determinants
such as the daily meal intake, microbiota composition,
metabolomes, sleep, and stress levels can allow for stratification
of patients in sub-groups. An establishment of a baseline range
for every parameter of a healthy individual is crucial (18). The
above listed multi-parameter measures will not only capture the
dynamic relationship between the healthy parameter range of an
individual but also aid in the process of early detection of the
diseases and provide support in the decision-making processes.
Advances in computational modeling and tools, data analytics
methods, and a systems science approach (4) can be employed
to design, update strategies for nutrition-based health care, and
enhance disease preventive management.

The Use of Electronic Health Records, Data From

Wearables, and Health Apps Integrated With

Individual Specific Variables—A “Big Data” Approach
The EHRs are clinical repositories wherein longitudinal patient
health information generated in any healthcare delivery setting
is updated in real time. The data within are comprised
of physiological measure outcomes, patient’s demographics,
progress notes, past medical history, laboratory reports, medical

prescriptions, radiology reports, and administrative information.
These data differ from those in the disease registries, claims

records, or prescription databases and are specifically designed
for patient care, billing purposes and prove to be important
pertaining to health research (19). Until 2011, the US healthcare

system reached 150 exabytes of data and at this rate the healthcare
big data are estimated to reach up to zetabyte (1021 gigabytes)

(20) level. These EHR repositories are sufficiently large and

can be integrated with other—omics based databases to unravel
phenotypic links between the data and other genetic risk factors

(21). The worldwide EHR adoption rates has increased and
it is suggested that there will soon be a billion patient visits

recorded yearly in the EHR systems (22) (23). However, it is
important to note that the amount of nutritional information

in EHRs is limited. The collection of information regarding the
daily dietary intake, meals, and food content information and
integration of consumer products with the massive amounts of
clinical records already stored in the EHR systems could open
up a new avenue for development of precision medicine and
personalized nutrition pipelines. The wearable sensors integrated
with the mobile technology have become increasingly popular.
The real-time parameters recorded by these wearable sensors
include physical activity, calories burnt and blood glucose levels
that can also be leveraged to derive precise health outcomes for
each individual. The derived data integrated with the EHRs could
aid the process of designing automated data analytic pipeline
to tailor personalized recommendation with real time input
(23, 24). With an emerging need for collection of real-time data,
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collaboration within the healthcare firms, insurers, and hospitals
has become equally crucial. In addition exposome (25) and social
determinants of health could be used to assist in the personalized
nutrition based recommendations (as shown in Figure 2).

Use of Advanced Artificial Intelligence Methods
The healthcare sector generates a large amount of data that
would promote wide studies in terms of risk evaluation, disease
management, and patient stratification. The major drivers of the
increase in U.S. data analytics market will include the initiative
to increase adoption of EHR systems, availability of healthcare
information technology big data infrastructure in healthcare,
and technological advancements in genome sequencing. To
derive predictive insights from patient data we would need to
employ data-driven modeling because systems wide advanced
computational methods and data analytics platforms can help in
the organization, interpretation, and pattern extraction from the
health data (5, 6). These modeling technologies would include
the use of AI systems, ML classifiers, and mathematical models
including differential equations (DEs), rules and agent based
modeling (5, 6, 18, 26–28).

With the wider application of AI methods large data
repositories have ceased to be a data warehouse and have become
true brains for information and knowledge extraction. Advanced
ML approaches and AI are transformative technologies (29)
that can be used to—(i) develop synthetic patient populations
from large-scale clinical data, (ii) conduct in silico clinical
trials to optimize clinical trial design and (iii) compare the
response to various treatment options and health outcomes. The
application of ML techniques and AI technologies to build in
silico pipelines with data analytics capabilities have the potential
to tailor recommendations to achieve personalized nutrition and
guide the design of human studies to improve success rate.
These technologies are promising in terms of investigating the
linkages between nutritional regimens and modulation of whole
genome-scale molecular signatures predictive of: (i) health,

(ii) future health deterioration, (iii) pre-disease, and (iv) diseased
states.

During the adoption of the data analytics platform as a
decision support system it is important to consider not only its
scientific and functional capabilities but also the management
and technology issues associated with it. The compatibility
of EHRs software versions with the ML and AI technology is
crucial. Further, it is important to have evidence based research
regarding the success of the analytics platforms. Pilot and
published studies that demonstrated improved outcomes due to
the use of analytics platform (similar to the reporting process on
drugs and medical devices) is required. The lack of the above
listed points, were some of the reasons why the MD Anderson
Cancer Center’s efforts to use IBM Watson cognitive computing
system, in the clinical decision making process were put on hold
(https://www.healthnewsreview.org/2017/02/md-anderson-
cancer-centers-ibm-watson-project-fails-journalism-related/).

Case study
Application of advanced ML methods generated predictive
insights in 10,000 virtual patients with Crohn’s disease (30).
Information on changes in the immunological parameters
that drive response to treatment and knowledge based on
experimental immunological insights were applied to create an
advanced ML model. Leber et al. developed a computational
modeling pipeline to use preclinical data to test and predict
the efficacy of existing and novel treatments against Clostridium
difficile infection and make predictions about clinical outcomes
(31, 32). The computational pipeline included mechanistic
ordinary DE based models (33) with stochastic simulations
and an ensemble of advanced ML methods. Leber et al.
generated replicates through stochastic simulation of the model
which are similar to virtual patients from seed populations of
actual patients. This approach facilitated a complete coverage
of parameter and response space (31, 32) as compared to
responses obtained from averaging the data. The modeling

FIGURE 2 | A pipeline for personalized nutrition and health. The figure represents the integration of the data derived from health determinants such as diet, gut

microbiome, data from electronic health records, physical activity measures, and data collected from wearable sensors can be used to train the artificial intelligence

algorithms. The outputs can be used to make targeted personalized nutrition recommendations.
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pipeline examined the dosage effects and predicted synergisms or
antagonisms of combination therapies (32). Another data driven
study in personalized nutrition (15) involved the metabolic
phenotyping of 800 individuals and provided personalized
dietary advice. This study was highly successful for clinically
useful predictive modeling (15). Zeevi et al. investigated the
intra and inter-individual variability in the glycemic response to
standardized meals measured in an 800-participant cohort over
7 days. A ML algorithm was devised to predict the postprandial
glycemic response and a combination of dietary, anthropometric,
physical activity, and gut microbiota data were used as input
training dataset and the output was validated from the trained
ML model in an independent cohort of 100 participants. Zeevi
et al. reported that different people have widely different post
meal responses to the same standardized meal. Further, they
provided individually tailored dietary advice to a new group of 26
individuals based on a ML derived insight or an expert opinion
from clinical dietician and similar improvements in the glycemic
response were reported in both the groups (15).

Another study conducted by Mathias et al. evaluated how
healthy Brazilian children and teens (aged 9–13) responded inter-
individually to multi-micronutrients supplement intervention
(34). Mathias et al. took into account that all the individuals
were genetically and environmentally unique and utilized a
comprehensive approach wherein the aggregated data from
all the individuals were analyzed along with the analyses of
individual responses using a variation of n-of-1 trial design
(34). The n-of-1 was designed such that each participant
were their own control accounting for their inter-individual
variability. Mathias et al. assessed the effectiveness of nutritional
intervention by comparing the changes in–omics and clinical
variables recorded at baseline, 6 weeks post intervention
followed by a 6-week washout period. They employed an
elastic net regression model and evaluated whether multiple
variables such as the baseline clinical biochemistry, blood
vitamin levels and dietary intakes could explain the variation
in response to the intervention at each clinical endpoint (34).
The results demonstrated that multi-micronutrients mediated
the physiology of the systems associated with metabolism. This
result was based upon the response of the total cholesterol, LDL-
cholesterol, mean corpuscular volume, and circulating levels of
nine vitamin metabolites to the 6-week intervention within a
duration of 2 consecutive years (34).

Thus, these case studies demonstrated that ML architecture
integrated with large-scale clinical data are capable of
taking into account the inter-individual variability to an
assigned diet and could help in moving away from the
standardized approach of making general nutrition related
recommendations. During a patient visit the integration of AI
powered healthcare decision support systems could provide
the clinicians with the EHR information, record of physical
activity, microbiome information, and aid in forming tailored
health recommendations. The aim of utilizing the healthcare
information technology driven framework will be used to
provide a predictive, personalized, and secured solution based
on personal health record.

Integration of Electronic Health Records With

Artificial Intelligence-Based Methods and Need for

New Biomarkers
Along with advances in ML models, deep learning has set
a new trend (35) and advancements in computer vision
has revolutionized clinical image analysis and widened the
possibilities of complex tasks that the human brain can perform.
For example, a deep convolutional neural network trained
on thousands of clinical images of skin lesions outperformed
dermatologists in the classification task of skin cancers (36).
Similar deep neural network trained on thousands of images
outperformed ophthalmologists in the detection of diabetic
retinopathy (37). This demonstrates the capacity of advanced
AI systems to be employed as smart clinical decision support
system. Similar to the application of AI in interpretation of
medical images, the AI technology can be leveraged toward
tracking the nutritional contents in the daily meals (18) and
the data can be connected to health outcomes measures. Food
tracking is an essential component of disease management for
patients with chronic metabolic disorders such as pre-diabetes,
diabetes, obesity, metabolic syndrome, or for people who aim
to reach their recommended body mass index. The advent of
mobile applications and wearable sensors can ease the tedious
process of manual data entry by capturing an image of the meal
that can be used to train a ML system along with input from
EHRs. The ML system could be used for further processing such
as the calorie content calculation (18, 38–40) that can aid the
monitoring of food intake and change in health outcomes. One
such study used a ML algorithm, trained the model with a dataset
of images obtained from 23 different restaurants, and accurately
determined the contents and calories in a meal (40). However, it
is important to note that these methods need to be fine-tuned
and improved for meals that are highly complex in terms of
multiple ingredients and spices (41). In healthcare one of the
most important components of AI system are physicians that
drive and review the predictions regarding patient healthcare.
The personal health data can be used to train the AI platforms
and the prediction can be reviewed by the clinicians along with
patient reports to aid in the decision-making process. After the
doctors review the AI recommended suggestions they can then
prescribe or make alternative dietary or medication suggestions.
Once the doctor determines the recommendations, the AI system
can be designed to send the prescriptions directly to patient’s
pharmacy and notify the patients in real time regarding any
abnormalities or alternative medication suggestions.

Further, modeling systems that integrate the patient
characteristics from different sources of data ranging from
molecular to clinical cohort scales can aid the predictive in
silico testing of new nutritional interventions. These advanced
analytics approaches can be employed to identify new molecular
bio signatures as biomarkers which would be capable of defining
individual responses, diversity and variation to a specific diet.
The biomarker analysis tends to vary per individual especially
based on age and other physiological factors. For instance, an
increase in age changes the expression of gene or protein over
time, for e.g., a disease biomarker for a younger adult will be
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different compared to an elderly. Although, there are available
biomarkers for nutrition which includes the measure of essential
dietary acids in plasma, protein intake, sodium and potassium
levels (42), new biomarkers that would reflect the overall dietary
pattern are needed. These new biomarkers and biomarker
variation linked to dietary changes can be utilized as additional
features for training the MLmodels to make accurate predictions
of a personalized diet for an individual.

Challenge 2: Need for Personalized
Nutrition Computational Infrastructure
In spite of nutrition research gaining enormous support due
to the revolutionary -omic and data science era, there is an
urgent need to deploy personalized nutrition computational
infrastructure. When considering this it is important to take into
account the challenges involved in the food intake databases.
The food intake databases are comprised of the ability to
capture complex eating patterns in an organized manner
translating chemicals constituents in the food to intake of
energy and nutrients. The existing tools for monitoring the
food intake include the food diaries but those are challenging
in terms of converting the food descriptions to the energy. An
effort of moving toward an informatics infrastructure can be
advantageous in terms of tailored nutrition databases that can
create an environment of standard formats, annotations and
network based systems to enhance food monitoring and intake
processes (43). However, differences can exist in terms of food
description and methods used to collect the information. These
include the methods used to generate compositional values when
the food is collected from different sources such as the laboratory,
patient, or hospital-based sources.

Personalized nutrition and health research can benefit from
building research infrastructures (44). The development of
personalized nutrition user-friendly platforms can enable the
interrogation of data from different resources, multiple studies,
research groups at different levels comprised of molecular,
cellular, tissue, organ, and population level. This personalized
nutrition platform is required to take into account a systems-
based approach for the identification of components involved
in the human well-being and optimal health. The infrastructure
build should enable the collection of information from each
individual with a focus on n-of-1, as opposed to population-level
data wherein an average response data limits its translatability
(45). It is known that the variation in response to nutritional
factors can be explained by a set of identifiable factors such as
genetic, environmental, and behavioral factors that are specific
to any individual (46). The advent of self-monitoring devices
that facilitate real-time recording of health data can facilitate
this process. Although, most of the self-monitoring devices
could potentially be affected due to personal bias and do not
contain the scientific rigor of n-of-1 trials, they can be improved
if the individuals are well informed and are made aware of
the n-of-1 trail methodologies (46). The outputs from n-of-1
studies are promising ways to advance individualized medicine
and gain insights regarding the comparative treatment effect
among a group of patients (47). The use of n-of-1 trails can

play an important role in facilitating the process of making
individualized diet recommendations as well. This would require
the collection of data for one person every day or periodically
over the duration of months or years. (48). The data collected
from these n-of-1 trials can be mined, analyzed for trends
and pattern unique to an individual (46) and help determine
personal risk factors that is otherwise not possible due to the
averaging of data that may come from the analysis of a group
of individuals. Such inclusion of n-of-1 data in the personalized
nutrition infrastructure development can benefit researchers,
stakeholders, clinicians, and policy makers by providing access
to individual health data and knowledge. The infrastructure can
facilitate evidence based research by increasing access to the
data derived from successfully implemented nutrition strategies
(49). The increased access to data can provide opportunities for
transdisciplinary collaboration between industrial and academic
institutions and help in creating public and private partnerships.

The core requirement of the infrastructure is that it needs to
be classified and identified as a food and health infrastructure
(FHI). The need for research infrastructures in the specific
areas of food and nutrition area were recently highlighted by
the EuroDISH project (44) which mapped the existing research
infrastructures and identified the gaps. The project emphasized
the need for infrastructure in the Determinants of food choice,
Intake of foods and nutrients, Status and functional markers of
nutritional health and Health and disease risk (DISH model)
(49). The management and implementation of the FHIs should
be driven from the user level and comprise of (i) nutrition
bioinformatics structures including nutrition databases for e.g.,
the Nutritional phenotype database (43) that is designed to
facilitate the storage of biologically relevant, preprocessed –omics
as well as descriptive and study participant phenotype data;
(ii) data management; (iii) data processing; (iv) data sharing
capabilities; and (v) platforms for publishing the data derived
from the studies to a bigger community for e.g., web portals.
The FHIs should aim to develop methods related to dietary
assessments of the food intake and accommodate the user input
regarding the daily food intake in an electronic format. The
FHIs should be adaptive such that the statistical effects of the
nutritional interventions can be evaluated on a continuous basis
since the earlier stages.

Nutrition quality is influenced by the environment, how
and where the food is grown, transported and stored (45).
Additionally, the responses to diet, micro- and macronutrients
differ and results from interactions of individual genetic makeup
and the environment (50). These interactions between nutrition
and environmental factors emphasizes the need to collect a
wide variety of measures of environmental variables across the
globe known alter the health outcomes. The added information
about environmental variables to the FHI databases will help in
understanding how the interactions between diet and human and
microbial genetic diversity is affected under the environmental
influence. Further, the chemical constituents in the diet are
known to alter the—omics and microbial profile in humans
and animal studies which emphasizes the need to include that
information in the databases (45). Therefore, the establishment
of a FHI will ensure that the data related to food constituents,

Frontiers in Nutrition | www.frontiersin.org 6 November 2018 | Volume 5 | Article 117

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Verma et al. Challenges in Personalized Nutrition and Health

intake, environmental variables, health determinant data, energy
expenditure, and disease risk are all in one place. This FHI
data can help reveal the determinants of behavior which can
be utilized in the development of nutritional interventions
(49). The above mentioned added measures of environmental
variables and the integration of data with prior knowledge of the
health relevant interactions will ultimately aid novel hypothesis
generation, interpretation, and validation of results (9, 45).
It is important to note that the standardization of collected
data and usage of a FHI could facilitate the integration of an
individual’s data from other settings including the outpatient,
follow-up evaluations, and discharge (51). Overall it will aid the
understanding of personalized health and well-being, and predict
the disease risk based on the environment, current eating habits,
and health status.

The utilization of data from already existing infrastructures
that can be applied and extended to the food, nutrition, and
health interface is crucial. These include the application based
infrastructures provided by LabKey (used to store laboratory
based research projects) and REDCap (used to store patient
oriented research) that can be utilized to build data linkages
related to food and nutrition (5). Adherence to data standards
and quality control is essential for data sharing, integration,
reproducibility, and reduced query response times (5). An ideal
infrastructure for personalized nutrition should standardize data
formats, use standard vocabulary, and ontology. Therefore, it is
crucial to develop data and software platforms that collect the
food consumption data in a standardized format such as the
EuroFIR (eurofir.org) (49). Further, the infrastructure should be
interoperable, regularly maintained and the tools and software
need to be updated with new versions. Finally, the infrastructure
build should provide technical support, documentation and
training to facilitate its utility.

Challenge 3: Data Standardization and the
Requirement for Training Individuals
Standardization of the Data
The use of EHRs and FHIs could ease the accessibility to
patient health records that contain information determining
patient care. The transition of patient records from paper to
electronic format maintained in EHRs is beneficial in terms
of proper diagnoses based on the patient history and cost
saving thereby giving rise to better patient outcome and
healthcare decisions. However, digitization in electronic format
can cause—(i) improper standardization formats, (ii) erroneous
documentation of diagnostic codes resulting into incorrect
reporting and denial from insurance companies, (iii) lack of user
engagement if not trained and additionally (iv) poorly designed
technology can lead to error and give rise to issues that can
cause the insufficiencies within the EHRs (52). Furthermore,
the healthcare providers may report the diagnostic and billing
codes inappropriately to ensure the insurance coverage for
the services otherwise considered medically unnecessary by
the medical insurance policy. Despite the worldwide adoption
of EHR systems the processes of (i) extracting the data and
transforming into standard formats, (ii) loading data from the
EHRs, and (iii) reporting data to the billing department are

not standardized (23, 53). It is imperative that the organization
works toward—(i) standardizing the data formats, (ii) ensuring
transparent communication between the physicians and billers,
(iii) providing the billing staff access to provider’s documentation
to investigate the diagnostic codes in case of discrepancy (52).
These practices would reduce the chances of medical errors
and help maintain the regulatory standards. Also, the patient
data sets in the records should be dynamic to facilitate the
regular review and modification upon availability of additional
information. Processing the data in a standard format would help
the organization in the data retrieval process and is essential
to streamline the process of clinical data collection to derive
predictive insights. Another advantage of data standardization
is that it will aid the communication across different hospitals,
physicians, research institutions, and data scientists analyzing
the data. The common format would ease the understanding
of patient data emerging from different sources including the
inpatient, outpatient or clinic and office visits for regular check-
ups. Other advantages include consistent and easy identification
ofmissing data information across different patients. Finally, data
standardization across the healthcare institutions will ensure the
quality of patient health care and help keep track of their records
facilitating evidence based recommendations. Although, there
are some initiatives including the electronic medical records and
genomics that mapped phenotypic information from the EHR
data to standardized formats and mapped clinical data to single
nucleotide polymorphisms (54, 55).

Making Sense of the Data and Training of the

Individuals
With the emergence of the new data driven technologies,
the demand for individuals trained at the interface between
computational and clinical or translational approaches has risen
exponentially. Application of variety data analysis skill sets are
required to interpret large and complex databases which would
not only include EHRs but also external data such as claims data,
public repositories, and curated data sources such as ClinVar
(56) among others. In spite of the availability of open source
frameworks and tools, numerous challenges are encountered in
the installation, configuration, and administration of services
included in the data analytics pipelines (20). The training of
the individuals with integrated data science skills knowledge
of biology, nutrition, biomedicine, computer science, statistics,
and mathematics is required. The training curriculum for
students, trainees and employees in the field of data science
that is comprised of concepts from statistics, ML, bioinformatics,
mathematics, and computer science needs to be regularly
updated.

In 2014, under the Modeling Immunity to Enteric Pathogens
project, a summer school and symposium on computational
immunity was organized to provide experiential learning
to individuals from varying backgrounds ranging from
experimentalists, mathematicians, bioengineers, physicist,
and nutritionists (5). The participants learned how to employ
computational tools and mathematical models to deepen
their analysis of the experimental data and derive new non-
intuitive novel insights. Furthermore, similar regular educational
boot camps, and training programs, should be organized for
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physicians, clinicians, nutritionists, and dieticians who will
directly interact with the patients. These workshops and training
session will bring researchers from a diverse background and
perspectives and aid in the improvement of the predictability of
the responses (28). The training of the new professionals should
reflect the cutting-edge knowledge guided by the change in day
to day informatics challenges (57). The training, tutorial and
boot camp sessions can aid the trainers by providing them an
overview of the latest technology available, data standards and
the methodologies used to use the infrastructure services (49).

Although, the AI technologies are revolutionizing it is
crucial to understand that it is a means to an end (or tools
to facilitate and enable decision making) as opposed to a
replacement for the human experts. The most important part
of the system is the “user” that is required to make sense
of large complex datasets. Humans and their expertise would
be an integral part of the data knowledge discovery process.
Thus, in order to utilize the advanced predictive capabilities
of the AI system, a partnership of the experts with AI
advanced capabilities is crucial. These can include experts in the
fields of nutrition, bioinformatics, computer science, statistics,
immunology, biochemistry, physiology, endocrinology, exercise
science, and mathematics. Further, since the predictive models
are trained on data that needs to be cleaned before the analysis,
domain specific knowledge experts are an inevitable part of the
discovery process. The AI technologies have accelerated to a
point where it should be accessible to all (58). There are systems,
such as the PennAI that provide a user-friendly interface ranging
from uploading datasets, running ML analyses, visualizing the
results in an intuitive manner and using the results to refine
the knowledge derived. Thus, an availability of these interactive
discovery environment can give access to ML technologies to
health practitioners, healthcare providers, and researchers that
can aid the users in understanding the data (58). However, it is
important to note that these web tools will not replace the human
interface.

Challenge 4: Data Sparsity and Need for
Improved Methods
When handling clinical data pertaining to EHR, one of the main
challenges is the high dimensionality and sparsity of the data. The
EHR store every clinical event during patient visit or stay in the
hospital. Zeevi et al. examined the fluctuation in glucose levels
in response to nutrition, physical activity, and sleep; with a high-
density data matrix on glucose levels that was available through
continuous glucose monitoring (15). However, often times there
are missing data in the EHRs, the types of data available in
EHRs are heterogeneous, complex, and are in a mixed format of
structured and unstructured form. The structured data includes
data entry in template information such as patient’s demographic
information, clinical measurements, drug prescription, diagnoses
whereas unstructured data included physicians handwritten
notes. The reasons why the data are missing are classified into
three major categories: missing completely at random, missing
at random, and missing not at random (59). The missing
completely at random arise when the differences betweenmissing
and observed values are negligible, this could be due missed
measurements due to medical device breakdown. The missing

at random arises when there is a systematic difference between
the missing and observed values and the predicted value may
be higher than actual measurement if the factors such as age
or gender is not taken into account. The data are classified as
missing not at random when the patients miss the appointment
due to ill health or they expire. The duplications in the data
can arise due to a patient experiencing the same event multiple
times and being prescribed the same drug. Thus, multiple
challenges stem not only from analyzing the EHR data but
also from the sparsity and duplicated values in the available
information. Dealing with the missing data is important as the
missingness can lead to biased and misleading results. In cases
where there are no missing values, regressions, and principal
component analysis methods are used. The implementation of
these methods removes variables with missing values or remove
patient datasets with missing values only when the number
of missing data patients is a small number. The employed
estimation of missing value comprises of deterministic methods
such as mean or median imputation, K-nearest neighbors (60),
and stochastic methods such as the multiple imputation using
chained equations process methods (60–62).

The imputation with mean and mean is easy to implement
wherein the missing values are substituted with the mean or
median values from the distribution of data, however, that
introduces biases, and large errors if the missing value belonged
to the tail of the distribution (60). In case of the K-nearest
neighbors, the values of the missing data can be estimated based
on the values from the individuals that are clustered together in
a group (60). The values from the grouped individuals can be
averaged and assigned to the missing variable. However, the K-
nearest neighbors methods may fail in cases where individuals
cannot be well separated in groups based on their clinical
record values (60). The stochastic method including the multiple
imputation by chained equations, is a framework for applying
various imputation algorithms. The missing value of a variable
for an individual is imputed by considering the value of other
observed variables within the individual dataset, the relation
between the variables and the value of the variable of interest
observed in other individuals. The process is repeated for number
of iterations and the imputed values are used as training set
to update the estimates for second iteration (60). Lastly, it is
important to remember that the stochastic processes are not free
of biases as well. The assumption inmultiple imputationmethods
is that the data are considered to be normally distributed,
thus excluding non-normally distributed variables can add bias
(59). Further, multiple imputation methods are computationally
intensive and the algorithms require the run length proportional
to the volume of missing data (59). The decision making process
involved in selecting the data imputation method comprises
of the data dimensionality, number of individuals, relationship
among the variable, amount, and pattern of missingness time and
performance of a method (60).

Since, the high dimensionality and rich volume of EHR data
are valuable for personalized nutrition research it is crucial to
develop improved methods to deal with the missingness. The
currently available imputationmethods introduce bias errors and
are computational intensive. Also, the required run time for the
imputation methods increases with the volume of data. Along
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with improved methods, better documentation along with well-
versed knowledge in statistical methods regarding missing data
can help.

CONCLUDING REMARKS

An individual’s nutritional status can be determined by
the integration of various factors including food intake,
physiological health, diet, and nutrition, -omics, metabolism,
and physical activity measures. To make accurate personalized
nutrition recommendations and accelerate the goal of better
and health well-being, advanced computational technologies
such as AI, ML, and deep learning are promising in terms of
providing an integrated framework. The use of data-driven
methods will require the development of a personalized food
and health infrastructure system comprised of advanced

computational technologies with data storage, processing
and sharing capabilities. The integrated and standardized
infrastructure system will strengthen and enhance the patient

care based on the collection of longitudinal data related to
physiological measures, gut microbiome and other relevant
biomarker measures. From legal and ethical consideration, it is
important to take into who will have access to an individual’s
personal data. It is important to protect the privacy of data
and prevent discrimination in terms of—eligibility for health
insurance from the insurance companies, services from the
hospitals and hiring decisions or terms from the employers.
Overall, the standardized personalized nutrition framework
approaches with protection of patient privacy can help establish
preventive and predictive guidelines for promotion of health and
better disease management.

AUTHOR CONTRIBUTIONS

MV, RH, VA, and JB-R designed the architecture of the review.
MV, NT-J, RH, and JB-R performed the searches for the review.
MV, VA, RH, and JB-R helped with the edits. MV and JB-R wrote
the manuscript.

REFERENCES

1. Betts J, Gonzalez J. Personalised nutrition: what makes you so special? Nutri

Bull. (2016) 41:353–9. doi: 10.1111/nbu.12238

2. Celis-Morales C, Lara J, Mathers JC. Personalising nutritional guidance

for more effective behaviour change. Proc Nutri Soc. (2015) 74:130–8.

doi: 10.1017/S0029665114001633

3. Qi L. Personalized nutrition and obesity. Ann Med. (2014) 46:247–52.

doi: 10.3109/07853890.2014.891802

4. Hammond RA, Dube L. A systems science perspective and transdisciplinary

models for food and nutrition security. Proc Natl Acad Sci USA. (2012)

109:12356–63. doi: 10.1073/pnas.0913003109

5. Bassaganya-Riera J. Computational Immunology: Models and Tools.Academic

Press (2015).

6. Verma M, Hontecillas R, Abedi V, Leber A, Tubau-Juni N, Bassaganya-

Riera C, et al. Modeling-enabled systems nutritional immunology. Front Nutr.

(2016) 3:5. doi: 10.3389/fnut.2016.00005

7. van Ommen B, Keijer J, Kleemann R, Elliott R, Drevon CA,

Muller H, et al. The challenges for molecular nutrition research 2:

quantification of the nutritional phenotype. Genes Nutr. (2008) 3:51–9.

doi: 10.1007/s12263-008-0084-3

8. Hood L, Heath, JR, Phelps ME, Lin B. Systems biology and new technologies

enable predictive and preventative medicine. Science (2004) 306:640–3.

doi: 10.1126/science.1104635

9. Kaput J, van Ommen B, Kremer B, Priami C, Monteiro JP, West M. et al

Consensus statement understanding health and malnutrition through a

systems approach: the ENOUGH program for early life. Genes Nutr. (2014)

9:378. doi: 10.1007/s12263-013-0378-y

10. Morine MJ, McMonagle J, Toomey S, Reynolds CM, Moloney AP, Roche IC,

et al. Bi-directional gene set enrichment and canonical correlation analysis

identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

BMC Bioinform. (2010)11:499. doi: 10.1186/1471-2105-11-499

11. Morine MJ, Tierney AC, van Ommen B, Daniel H, Toomey S, Roche

IM. Transcriptomic coordination in the human metabolic network reveals

links between n-3 fat intake, adipose tissue gene expression and metabolic

health. PLoS Comput Biol. (2011) 7:e1002223. doi: 10.1371/journal.pcbi.10

02223

12. Morine MJ, Toomey S, McGillicuddy FC, Reynolds CM, Power KA,

Roche JA, et al. Network analysis of adipose tissue gene expression

highlights altered metabolic and regulatory transcriptomic activity in high-

fat-diet-fed IL-1RI knockout mice. J Nutr Biochem. (2013) 24:788–95.

doi: 10.1016/j.jnutbio.2012.04.012

13. Afacan NJ, Fjell CD, Hancock RE. A systems biology approach to nutritional

immunology–focus on innate immunity. Mol Aspects Med. (2012) 33:14–25.

doi: 10.1016/j.mam.2011.10.013

14. Corella D, Coltell O, Mattingley G, Sorlí JV, Ordovas JM. Utilizing nutritional

genomics to tailor diets for the prevention of cardiovascular disease: a guide

for upcoming studies and implementations. Expert Rev Mol Diagn. (2017)

17:495–513. doi: 10.1080/14737159.2017.1311208

15. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Segal A. Personalized

nutrition by prediction of glycemic responses. Cell (2015) 163:1079–94.

doi: 10.1016/j.cell.2015.11.001

16. Celis-Morales C, Livingstone KM, Marsaux CF, Macready AL, Fallaize R,

Mathers CB, et al. Effect of personalized nutrition on health-related behaviour

change: evidence from the Food4Me European randomized controlled trial.

Int J Epidemiol. (2017) 46:578–88. doi: 10.1093/ije/dyw186

17. Forster H, Walsh MC, O’Donovan CB, Woolhead C, McGirr C, Brennan EJ.

A dietary feedback system for the delivery of consistent personalized dietary

advice in the web-basedmulticenter food4me study. J Med Internet Res. (2016)

18:e150. doi: 10.2196/jmir.5620

18. Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-definition

medicine. Cell (2017) 170:828–43. doi: 10.1016/j.cell.2017.08.007

19. Lau EC, Mowat FS, Kelsh MA, Legg JC, Engel-Nitz NM, Whyte HN, et al.

Use of electronic medical records (EMR) for oncology outcomes research:

assessing the comparability of EMR information to patient registry and

health claims data. Clin Epidemiol. (2011) 3:259–72. doi: 10.2147%2FCLEP.S

23690

20. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and

potential. Health Inf Sci Syst. (2014) 2:3. doi: 10.1186/2047-2501-2-3

21. Bush WS, Oetjens MT, Crawford DC. Unravelling the human genome-

phenome relationship using phenome-wide association studies. Nat Rev

Genet. (2016) 17:129–45. doi: 10.1038/nrg.2015.36

22. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic

health records. J Am Med Inform Assoc. (2013) 20:117–21.

doi: 10.1136/amiajnl-2012-001145

23. RossMK,WeiW,Ohno-Machado L. Big data and the electronic health record.

Yearb Med Inform. (2014) 9:97–104. doi: 10.15265/IY-2014-0003

24. Dobkin BH, Dorsch A. The promise of mHealth: daily activity monitoring and

outcome assessments by wearable sensors.Neurorehabil Neural Repair. (2011)

25:788–98. doi: 10.1177/1545968311425908

25. Carlsten C, Brauer M, Brinkman F, Brook J, Daley, D, Denburg K. Genes,

the environment and personalized medicine: we need to harness both

environmental and genetic data to maximize personal and population health.

EMBO Rep. (2014) 15:736–9. doi: 10.15252/embr.201438480

Frontiers in Nutrition | www.frontiersin.org 9 November 2018 | Volume 5 | Article 117

https://doi.org/10.1111/nbu.12238
https://doi.org/10.1017/S0029665114001633
https://doi.org/10.3109/07853890.2014.891802
https://doi.org/10.1073/pnas.0913003109
https://doi.org/10.3389/fnut.2016.00005
https://doi.org/10.1007/s12263-008-0084-3
https://doi.org/10.1126/science.1104635
https://doi.org/10.1007/s12263-013-0378-y
https://doi.org/10.1186/1471-2105-11-499
https://doi.org/10.1371/journal.pcbi.1002223
https://doi.org/10.1016/j.jnutbio.2012.04.012
https://doi.org/10.1016/j.mam.2011.10.013
https://doi.org/10.1080/14737159.2017.1311208
https://doi.org/10.1016/j.cell.2015.11.001
https://doi.org/10.1093/ije/dyw186
https://doi.org/10.2196/jmir.5620
https://doi.org/10.1016/j.cell.2017.08.007
https://doi.org/10.2147%2FCLEP.S23690
https://doi.org/10.1186/2047-2501-2-3
https://doi.org/10.1038/nrg.2015.36
https://doi.org/10.1136/amiajnl-2012-001145
https://doi.org/10.15265/IY-2014-0003
https://doi.org/10.1177/1545968311425908
https://doi.org/10.15252/embr.201438480
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Verma et al. Challenges in Personalized Nutrition and Health

26. Wendelsdorf K, Bassaganya-Riera J, Hontecillas R, Eubank S.Model of colonic

inflammation: immune modulatory mechanisms in inflammatory bowel

disease. J Theor Biol. (2010) 264:1225–39. doi: 10.1016/j.jtbi.2010.03.027

27. Carbo A, Bassaganya-Riera J, Pedragosa M, Viladomiu M, Marathe M,

Hontecillas S. Predictive computational modeling of the mucosal immune

responses during Helicobacter pylori infection. PLoS ONE (2013) 8:e73365.

doi: 10.1371/journal.pone.0073365

28. Vodovotz Y, Xia A, Read, EL, Bassaganya-Riera J, Hafler DA,

Sealfon E. Solving immunology? Trends Immunol. (2017) 38:116–27.

doi: 10.1016/j.it.2016.11.006

29. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and

prospects. Science (2015) 349:255–60. doi: 10.1126/science.aaa8415

30. Abedi V, Lu P, Hontecillas R, Verma M, Vess GA, Bassaganya-Riera CW,

et al. Phase III Placebo-Controlled, Randomized Clinical Trial with Synthetic

Crohn’s disease Patients to Evaluate Treatment Response. In: Arabnia H, Tran

QN. Emerging Trends in Applications and Infrastructures for Computational

Biology, Bioinformatics, and Systems Biology. Boston, MA: Elsevier/MK.

(2016). p. 411–27. doi: 10.1016/B978-0-12-804203-8.00028-6

31. Chakradhar S. Predictable response: finding optimal drugs and doses using

artificial intelligence. Nat Med. (2017) 23:1244. doi: 10.1038/nm1117-1244

32. Leber A, Hontecillas R, Abedi V, Tubau-Juni N, Zoccoli-Rodriguez V,

Bassaganya-Riera C, et al. Modeling new immunoregulatory therapeutics

as antimicrobial alternatives for treating clostridium difficile infection. Artif

Intell Med. (2017) 78:1–13. doi: 10.1016/j.artmed.2017.05.003

33. Leber A, ViladomiuM, Hontecillas R, Abedi V, Philipson C, Bassaganya-Riera

S, et al. Systems modeling of Interactions between mucosal immunity and

the gut microbiome during clostridium difficile Infection. PLoS ONE (2015)

10:e0134849. doi: 10.1371/journal.pone.0134849

34. Mathias MG, Coelho-Landell CA, Scott-Boyer MP, Lacroix S, Morine

MJ, Monteiro RG. Clinical and vitamin response to a short-term multi-

micronutrient intervention in brazilian children and teens: from population

data to interindividual responses. Mol Nutr Food Res. (2018) 62:e1700613.

doi: 10.1002/mnfr.201700613

35. Ravi D,WongC, Deligianni F, BerthelotM, Andreu-Perez J, Yang B, et al. Deep

learning for health informatics. IEEE J Biomed Health Inform. (2017) 21:4–21.

doi: 10.1109/JBHI.2016.2636665

36. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Thrun HM, et al.

Dermatologist-level classification of skin cancer with deep neural networks.

Nature (2017) 542:115–8. doi: 10.1038/nature21056

37. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Webster A, et al.

Development and Validation of a deep learning algorithm for detection of

diabetic retinopathy in retinal fundus photographs. JAMA (2016) 316:2402–

10. doi: 10.1001/jama.2016.17216

38. Chae J, Woo I, Kim S, Maciejewski R, Zhu F, Ebert EJ, et al. Volume

estimation using food specific shape templates in mobile image-based dietary

assessment. Proc SPIE Int Soc Opt Eng. (2011) 7873:78730k. doi: 10.1117/12.8

76669

39. Beijbom O, Joshi N, Morris D, Saponas S, Khullar S. “Menu-match:

restaurant-specific food logging from images,” Applications of Computer

Vision (WACV), 2015 IEEE Winter Conference on, IEEE. (2015).

40. Meyers A, Johnston N, Rathod V, Korattikara A, Gorban A, Murphy N.

“Im2Calories: towards an automated mobile vision food diary,” in Proceedings

of the IEEE International Conference on Computer Vision. (2015).

41. de Toro-Martín J, Arsenault BJ, Després JP, Vohl MC. Precision nutrition:

a review of personalized nutritional approaches for the prevention

and management of metabolic syndrome. Nutrients (2017) 9:913.

doi: 10.3390/nu9080913

42. Bhupathiraju SN, Hu FB. One (small) step towards precision nutrition

by use of metabolomics. Lancet Diabetes Endocrinol. (2017) 5:154–5.

doi: 10.1016/S2213-8587(17)30007-4

43. van Ommen B, Bouwman J, Dragsted LO, Drevon CA, Elliott R, Evelo P,

et al. Challenges of molecular nutrition research 6: the nutritional phenotype

database to store, share and evaluate nutritional systems biology studies.Genes

Nutr. (2010) 5:189–203. doi: 10.1007/s12263-010-0167-9
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