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Background and objective: This study aimed to assess the impact of upsampling
and downsampling techniques on the noise characteristics and similarity metrics
of scintigraphic images in nuclear medical imaging.
Methods: A physical phantom study using dynamic imaging was used to generate
reproducible static images of varying count statistics. Naïve upsampling and
downsampling with linear interpolation were compared against alternative
methods based on the preservation of Poisson count statistics and principles of
nuclear scintigraphic imaging; namely, linear interpolation with a Poisson
resampling correction (upsampling) and a sliding window summation method
(downsampling). For each resizing method, we computed the similarity of resized
images to count-matched images acquired at the target grid size with the
structural similarity index measure and the logarithm of the mean squared error.
These image quality metrics were subsequently compared to those of two
independent count-matched images at the target grid size (representing variance
due to natural noise permutations) as a reference to establish an optimal
resizing method.
Results:Onlyupsampled imageswith thePoisson resamplingcorrectionafter linear
interpolation produced images that were similar to those acquired at the target grid
size. For downsampling, both linear interpolation and sliding window summation
yielded similar outcomes for a reduction factor of 2. However, for a reduction
factor of 4, only sliding window summation resulted in image similarity metrics in
agreement with those at the target grid size.
Conclusions: The study underlines the importance of applying appropriate
resizing techniques in nuclear medical imaging to produce realistic images at
the target grid size.
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Introduction

Image resizing is a common image processing operation to resample an image from

one grid size to another (1). When the image is upsampled (the pixel density

increases), a choice of interpolation methods may be applied, the most common of

which are nearest neighbor, bilinear, bicubic, and b-spline interpolation. When the

image is downsampled (the pixel density decreases), the standard procedure
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recommends applying a low pass filter to prevent aliasing (2).

While each interpolation method tries to maximize the similarity

of the destination to the source image (3), they differ in how the

pixel values in the neighborhood of the source coordinate are

combined to calculate the final value at the destination coordinate.

In almost all imaging modalities, the process of resizing may

not substantially alter the semantic nature of the image (4).

However, in the case of nuclear medicine scintigraphy, where the

native image unit is the number of detected events (i.e., photon

counts) (5), Poisson counting statistics play a visually perceivable

and mathematically significant role in the image noise (6).

As dictated by Poisson counting statistics, the variance in the

signal is equal to the mean (expected true counts) of the sample;

hence, the relative noise decreases as the square root of the mean

counts as shown in Equation 1.

relative noise ¼ standard deviation
mean

¼
ffiffiffiffiffiffiffiffiffiffiffi
mean

p
mean

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
mean

p (1)

Total photon counts, and thus photon density, need to be

conserved if downstream operations are dependent on accurate

photon counts or noise modeling. The advantages of proper

image resizing include the preservation of critical image features

such as photon counts and noise characteristics, which are vital

for accurate diagnoses and clinical decision-making. Since

resizing intrinsically modifies the number of pixels and pixel

spacing (7), the resulting resized image should reflect the

splitting or joining of counts from the original image in the

target image when upsampling or downsampling, respectively.

An accurate accounting of counts models what the image would

have looked like had the image been acquired at the target

spatial grid and corresponding pixel spacing, including the

magnitude of the noise in each pixel (8).

To demonstrate upsampling (Figure 1A), a 2 × 2 grid representing

pixel counts is resized to a 4 × 4 grid using linear interpolation. Each

new pixel value in the 4 × 4 grid is computed as a weighted average

of its neighboring pixels in the original 2 × 2 grid. This process

increases the total number of pixels, but without further correction,

it also inflates the total event counts by a factor of 22 = 4. For

instance, if the original 2 × 2 grid has a total count of 134, the

uncorrected 4 × 4 grid may erroneously display a total count of

134 × 4 = 536 due to the increased pixel density. To address this, a

global scaling correction is applied to the interpolated image,

reducing the pixel values by a factor equal to the ratio of the old

pixel area to the new pixel area [in this case, (2/4)2 = 1/4]. This

ensures that the total counts remain consistent with the original

image. In addition, a Poisson resampling correction may be applied

to reduce the excess photon counts while emulating the natural

Poisson noise associated with the lower counts in each pixel. In fact,

White and Lawson (9) have demonstrated that Poisson resampling

is the appropriate technique for artificially reducing counts in

scintigraphic images. While this technique was originally intended to

generate synthetic low-count scintigraphic images from high-count

ones, this method can be reasonably repurposed to correct the added

collateral counts from upsampling.
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Downsampling, however, is analogous to acquiring an image on a

smaller spatial grid with a larger pixel size. Properly implemented,

this operation effectively corresponds to the summation of photon

counts within a sliding window whose size is given by the

downsampling ratio. This method will necessarily conserve the

count statistics and Poisson noise of the resulting image, mimicking

how a gamma camera would have aggregated photon counts within

a larger pixel size. In Figure 1B, a 4 × 4 grid is resized to a 2 × 2 grid.

Linear interpolation calculates each new pixel value in the 2 × 2 grid

as the average of a 2 × 2 window from the original 4 × 4 grid.

For instance, the original 4 × 4 image contains 318 counts, but the

resampled image obtained through linear interpolation reduces this

to approximately 80 counts—approximately four times fewer.

To address this, a global scaling correction is applied [in this

case (4/2)2 = 4], to restore the total event counts. In more concrete

terms, if we use the example of a 256 × 256 image to be resized

to 128 × 128, the resulting image should be the same as if the

image had been natively acquired on a 128 × 128 imaging grid

(within the acceptable limits of random noise associated with two

independent image samples). Each resulting pixel is thus expected

to have four times more counts (the sum of four pixels sampling the

same corresponding image space) on average than the original

image pixel. By directly summing pixels with an appropriately sized

sliding window, rather than interpolating (averaging) and then

factoring, we can accommodate downsampling by factors greater

than two and avoid precision losses associated with integer

rounding during interpolation.

Joint count and noise preservation are paramount for many

image processing investigations in nuclear medicine (10, 11).

Currently, considering the immense work in artificial intelligence

(AI) model development in medical imaging (12, 13), AI

developers may circumvent the high variability in image sizes

in real-life clinical settings by forcing a model’s input images to

a fixed spatial grid under the assumption that these resized

images reflect natively acquired ones on the destination spatial

grid. This does not pose a problem for modalities such

as magnetic resonance (MR) or computed tomography (CT),

where the content of the image does not change after resizing;

however, such is not the case in nuclear medicine where trivial

resizing operations introduce false pixel count and/or noise

representations in images.

Given the above, we used image data from a physical phantom

to conduct three experiments. First, we generated synthetic low-

count images from higher-count images to simulate varying

levels of count statistics and validated this methodology against

the phantom data. Second, we performed upsampling from low

to high grid sized images using naïve linear interpolation (1) and

Poisson resampling corrections and compared their performance

using the phantom data. Third, we performed downsampling

from high to low grid sized images using linear interpolation

and sliding window summation methods and compared their

performance against the phantom data. Through this study,

we seek to demonstrate inaccuracies that result from naively

applying traditional image resizing methods in nuclear

scintigraphy and to establish a robust standard for scintigraphic

image resizing for future research and developments.
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FIGURE 1

Example of (A) upsampling and (B) downsampling operations on nuclear scintigraphy images (original) with linear interpolation, showing the resulting
images and incorrect total events. “Count-preserved images” obtained with a global scaling correction are contrasted with ideal “Noise and Count-
preserved images” as if they had been acquired by an imaging system with the target pixel sizes and local noise associated with the increased or
decreased counts per pixel. Numbers represent pixel intensity as event counts in the corresponding pixel and are rounded to the nearest integer.
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Method

Phantom

This study uses real planar scintigraphic images acquired

using a physical phantom (Figure 2). The acquisition protocol

was designed to emulate a pulmonary ventilation-perfusion

(V/Q) scintigraphy exam using a specially designed Data

Spectrum Anthropomorphic Torso Phantom with custom

dimensions 45 × 33 cm (left–right × anterior–posterior) that
Frontiers in Nuclear Medicine 03
simulates anatomical structures and physiological parameters

relevant to nuclear lung scans (14). The phantom included

partial (superiorly truncated) lung cavities which were filled with

Styrofoam beads to emulate the low density of air-filled lung

tissue. An amount of 779 MBq of Technetium-99m (99mTc)-

pertechnetate was diluted into approximately 500 ml of tap

water, which was then used to fill the space between the

Styrofoam beads in the lung cavities. All remaining phantom

cavities (thorax and liver) were filled with tap water to emulate

soft-tissue attenuation but no activity.
frontiersin.org

https://doi.org/10.3389/fnume.2024.1505377
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 2

Imaging of the Data Spectrum Anthropomorphic Torso Phantom
inside the Siemens Intevo Bold SPECT/CT. The phantom, tailored
with dimensions of 45 cm × 33 cm, represents larger patient sizes
and anatomical structures pertinent to nuclear lung scans.
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Image acquisition

All acquisitions were performed in quick succession (within 1 h)

to minimize radioactive decay between image sets. Phantom images

were acquired with a zoom factor of 1.45 at different spatial grids of

256 × 256, 128 × 128, and 64 × 64 with pixel spacings of 1.64, 3.29,

and 6.59 mm2, respectively. To easily generate planar images at

various count levels, we performed dynamic acquisitions comprised

of 100 frames of 1 s duration each, resulting in approximately

11 kcnts/image for a total of 1.1 Mcnts over the whole dynamic

acquisition. Dead time was <3% to minimize the impact of count

pile-up. Each of the aforementioned acquisitions was performed for

the typical six views of a V/Q scan: anterior (ANT), posterior

(POST), left anterior oblique (LAO), right posterior oblique (RPO),

left posterior oblique (LPO), and right anterior oblique (RAO). Data

for the study were acquired with a dual head Siemens Intevo Bold

SPECT/CT using low-energy high-resolution collimators (Figure 2).

The energy window was set to 140 keV ± 7.5%, corresponding to the

photon peak energy of 99mTc.
Image similarity metrics

In the evaluation phase of our study, we assessed the fidelity of

resized images compared to their original counterparts acquired at
Frontiers in Nuclear Medicine 04
the target spatial grid size. To achieve this, two metrics were used:

the structural similarity index measure (SSIM) and the logarithm

of the mean squared error (Log MSE) (15, 16). These metrics

serve as the cornerstone of our analysis, allowing us to quantify

the extent to which our resizing methods preserve the intrinsic

properties of the scintigraphic images.

SSIM offers a comprehensive measure that captures the visual

quality of the resized images by evaluating changes in luminance,

contrast, and structure. Given the intricate nature of nuclear

medicine images, where subtle variations can significantly impact

diagnostic outcomes, SSIM’s ability to reflect the human visual

system’s sensitivity to these parameters makes it an invaluable

tool in our analysis. The equation for SSIM is as follows:

SSIM(x, y) ¼ (2mXmY þ c1)(2sXY þ c2)
(m2

X þ m2
Y þ c1)(s2

X þ s2
Y þ c2)

(2)

where X and Y are the two images being compared; mX and mY are

the average of X and Y, respectively; s2
X and s2

Y are the variances of

X and Y, respectively; sXY is the covariances of X and Y; and c1 and

c2 are scalars to prevent division by zero. These are typically scaled

to the dynamic range of the pixel values, L, such that c1 = 0.01 L

and c2 = 0.03 L.

Complementing the SSIM, the Log MSE metric quantifies

the pixel-wise discrepancies between the resized and original

images. By calculating the mean of the squared differences between

corresponding pixel values and then applying a logarithmic

transformation, Log MSE offers a nuanced view of the error

distribution. This transformation is particularly adept at

highlighting both the high-error and low-error regions within the

image, providing a more balanced and interpretable assessment of

the resizing method’s accuracy. In the context of nuclear

scintigraphy, where accurate photon count and noise representation

are crucial, the Log MSE metric allows us to critically evaluate

whether the resized images deviate from the expected count

distribution and noise patterns of the original images.

MSE ¼ 1
MN

XM

i¼1

XN

j¼1

(X(i, j)� Y(i, j))2 (3)

Log MSE ¼ log10(MSE) (4)

where

X and Y are the two images being compared, with X(i, j) and

Y(i, j) denoting the pixel values at position (i, j) in the respective

images; and M and N are the dimensions of the images.

Both SSIM and Log MSE were computed after normalizing

the images to the range of 0–1 by dividing by their maximum

intensity pixel, a step that ensures our evaluation focuses on the

relative changes in image characteristics rather than absolute

count values. This normalization is especially crucial in our

study, as it allows for consistent comparison across images

acquired at different grid sizes and count levels.
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Establishing reference similarity curves as a
function of count level

To evaluate and compare resizing strategies, we postulated the

following: (1) a successfully resized image of an object should

exhibit the same content and noise characteristics as if the image

had been acquired on the target grid size, and (2) two images of

a given object acquired with the same imaging protocol (i.e.,

at the same spatial sampling grid) will both have some intrinsic

noise and therefore be similar up to a certain point; in other

words, the images are not identical, having different

permutations of random noise. Therefore, it follows that the

similarity between a resized image of an object and another

image of the same object at the target grid size should be similar

to that of two independently acquired images of the object at the

target grid size (Figure 3).

It is worth noting that no image acquired at the target spatial

grid size may serve as an absolute reference truth, as each image

has some degree of inherent noise. Hence, our analysis rests

upon measures of similarity between pairs of images throughout

this work. The overall study design is illustrated in Figure 4.
FIGURE 3

Postulation behind the successful resizing of scintigraphic images. The simila
grid size is approximately the same as the similarity between images 1 and
structural similarity index measure.
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To this end, we sought to derive curves establishing reference

measures of similarity achievable between two independent, natively

acquired images of the phantom for various count levels and grid

sizes (Figure 4, blue). Against these reference curves, we could

compare the similarity curves of synthetic low-count, Poisson

resampled images (Figure 4, orange) against those of images

acquired at the target count level (experiment 1). Likewise, we could

then also compare similarity curves between resized images

(Figure 4, green) and those acquired at the target spatial grid size

(experiments 2 and 3 for upsampling and downsampling,

respectively). Consequently, the best resizing method would yield

curves that most closely overlap the reference curves.

Time frames from the dynamic image series, containing

approximately 11 kcnts each, were randomly split and summed to

generate statistically independent images with total counts ranging

from 11 to 550 kcnts (Figure 5). To achieve this, combinations of

frames were randomly selected without repetition, with the number

of frames summed varying depending on the desired total count

level. For instance, summing 2 frames resulted in approximately

22 kcnts, while summing all 50 frames yielded the full-count image

of 550 kcnts. This approach ensured that each count level was

represented by statistically independent images.
rity between the resized image and either image 1 or image 2 at the target
2. If this is the case, then the image has successfully been resized. SSIM,

frontiersin.org

https://doi.org/10.3389/fnume.2024.1505377
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 4

Study design. The first experiment (orange dashed box) evaluated the accuracy of synthetic low-count, Poisson resampled from full-count images (orange
workflow) with respect to low-count imaging on the same spatial grid. The second and third experiments (green dotted box) compared the accuracy of
upsampling or downsampling images (green) with images acquired at the same count level on the target spatial grid (green workflow). For both
experiments, accuracy was evaluated in terms of image-pair similarity metrics SSIM and Log MSE compared to those measured by repeat imaging of the
subject at the same spatial grid and count level (blue workflow). SSIM, structural similarity index measure; MSE, mean squared error.
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Both similarity metrics (SSIM and Log MSE) were calculated

for (1) two images acquired at the same grid size and (2) a

resized image at a target spatial grid compared to another

natively acquired image at the same grid. To generate robust

averages and confidence intervals, we repeated this process with

1,000 independent permutations of randomly selected frame

combinations for each count level. Reference similarity curves

were then generated as a function of the count level between two

images acquired at the same grid size.
Low-count experiment

Wealso derived a second reference curve by first generating pairs of

independent scintigraphic images with the highest possible count value

given our dynamic acquisition (here, 550 kcnts) and then synthesizing

low-count versions of themwithPoisson resampling (Figure 5).While it

has already been demonstrated that Poisson resampling effectively

yields low-count versions of high-count images that preserve the

natural noise characteristics of single-photon emission scintigraphy

(9), we decided to verify that two low-count Poisson resampled

images would also be as similar to each other as two native low-count

planar images. By demonstrating this, we can provide confidence that

Poisson resampling is indeed a reliable technique to simulate low-

count images when dynamic acquisitions are not available—which is

the case in most clinical settings—and that they can be combined

with appropriately resized images from other spatial sampling grids.

Briefly, a Poisson resampling correction comprises resampling all

pixels of the image using a binomial distribution where the initial

pixel value constitutes the number of trials and the probability of
Frontiers in Nuclear Medicine 06
success in our case is given by the rescaling factor. The method is

detailed in the study by White and Lawson (9).
Upsampling experiment

Next, we compared the similarity of upsampled images with

and without Poisson resampling corrections with the images of

matched count level natively acquired on the target grid size

(Figure 6). First, we generated an image at a given count level at the

lower grid size by randomly selecting and summing the appropriate

number of frames from the dynamic sequence at the corresponding

sampling grid. Second, we resized the image to the target sampling

grid using linear interpolation to attain the higher target grid

size. Then, we applied a global scaling correction by a factor

corresponding to the increased pixel density [e.g., for 64 × 64 to

256 × 256 upsampling, the rescaling factor was (64/256)2 = 1/16] so

as to preserve the total number of counts in both images. Third, we

applied a Poisson resampling correction per pixel on the resized

image to simulate the counting statistical noise that would have

been present at the per pixel target count level. A Poisson

resampling correction comprises resampling all pixels of the image

using a binomial distribution where the initial pixel value

constitutes the number of trials and the probability of success in our

case is given by the rescaling factor. Fourth, for each upsampled

image, we computed the image similarity metrics (SSIM and Log

MSE) by comparing it to a corresponding (i.e., same grid size and

counts) natively acquired image at the target grid size. To ensure

statistical robustness, this process was repeated 1,000 times, using

independent permutations of dynamic acquisition images at the
frontiersin.org
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FIGURE 5

Experiment 1: Low-count synthesis. A simulated full dynamic acquisition experiment conducted on a 256 × 256 grid size to create real and synthetic
low-count images.
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lower grid size, to generate confidence intervals for the image

similarity curves as a function of count level.
Downsampling experiment

Like the upsampling experiment, we compared the similarity of

images that were downsampled using either linear interpolation or

a sliding window summation method with images of the matched

count level natively acquired on the target grid size (Figure 7). We

started by producing an image of a given count level by randomly

selecting and summing the appropriate number of frames of the
Frontiers in Nuclear Medicine 07
dynamic acquisition. The first, naïve, method was to downsample

the images by the appropriate factor with linear interpolation to

the lower spatial grid.

The second method was a sliding window summation, where the

size of the window corresponded to the downsampling factor.

Specifically, for a 2× downsampling (e.g., 256 × 256 to 128 × 128), a

2 × 2 non-overlapping sliding window was used to sum the counts

from the higher grid size into the lower grid size. Similarly, for a 4×

downsampling (e.g., 256 × 256 to 64 × 64), a 4 × 4 non-overlapping

sliding window was applied. This approach ensures that the

sampling grid of the target image is exactly aligned with

the sampling grid of the source image, maintaining consistency with
frontiersin.org
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FIGURE 6

Experiment 2: Upsampling. Example of resizing workflow from a 64 × 64 to a 256 × 256 grid size using 2D phantom planar dynamic acquisition. The
similarity metrics of both methods are compared against a pre-determined reference similarity curve at the target (256 × 256) grid size.
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the desired downsampling level and preserving the total counts in the

region sampled by the target pixel.

The image similarity metrics were calculated between each

downsampled image and another randomly reconstructed

native image at the target grid size and counts. To ensure

statistical robustness, this process was repeated 1,000 times, using

independent permutations of dynamic acquisition images at the

higher grid size, to generate confidence intervals for the image

similarity curves as a function of count level.
Results

Low-count experiment

The agreement between similarity curves for real (blue) and

synthetic low-count (red) images is evident in Figure 8 with nearly

perfect overlap across all projections, count levels, and grid sizes,
Frontiers in Nuclear Medicine 08
confirming that the synthesized (count reduced) images accurately

modeled the statistical noise associated with low-count images.

Another general finding was that image similarity increased (i.e.,

higher SSIM and lower MSE) as the spatial sampling grid decreased.
Visual inspection of upsampled and
downsampled images

The top part of Figure 9 (Upsampling) demonstrates the

upsampling of an image from 64 × 64 to 256 × 256 and the effect

of resizing on image similarity. As can be seen, upsampling with

naïve linear interpolation maintains the original (B) contrast of

high- to low-count areas of the lower grid sized image (A),

which is less pronounced on the higher grid sized image (D).

The application of a Poisson resampling correction (C) visually

seems to restore the natural image contrast characteristic Poisson

noise seen in the real image at the target higher grid size (D).
frontiersin.org
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FIGURE 7

Experiment 3: Downsampling. Example of resizing workflow from a 256 × 256 to a 64 × 64 grid size using 2D phantom planar dynamic acquisition. The
similarity metrics of both methods are compared against a pre-determined reference similarity curve at the target (64 × 64) grid size.

Ghassel et al. 10.3389/fnume.2024.1505377
In the bottom part of Figure 9 (Downsampling), the source

image (A) is downsampled from 256 × 256 to 64 × 64 using two

methods: linear interpolation (B) and a sliding window

summation with a 4 × 4 window (C). Both methods appear to

preserve the contrast between high- and low-count areas.

However, the sliding window summation method produces noise

characteristics that more closely resemble the images natively

acquired at the target lower grid (64 × 64) (D).
Effect of resizing methods on
image similarity

Upsampling with naïve linear interpolation yielded image

similarity curves that deviated substantially from the real reference

curve regardless of the source or target spatial grid, count level, and

projection, as shown in Figure 10. In particular, when compared

with scintigraphic images natively acquired on the target spatial

grid, upsampled images with naïve linear interpolation produced
Frontiers in Nuclear Medicine 09
higher SSIM and higher MSE than the real reference curves from

the phantom data. The deviations were more marked (i.e., less

overlap of the confidence intervals) when upsampling from either

64 × 64 or 128 × 128 to the highest grid of 256 × 256, whereas there

was more overlap of the similarity curves when upsampling from

64 × 64 to 128 × 128 (Figure 10, Supplementary Figures S1, S2).

However, following the Poisson resampling correction, the similarity

curves realigned with the reference curve with respect to the means

and confidence intervals for each target spatial grid, count level,

and projection.

With regards to downsampling, the most striking result was that

when resizing by a factor of 2 (i.e., from 256 × 256 to 128 × 128 or

from 128 × 128 to 64 × 64), linear interpolation and sliding window

summation methods yielded similar similarity curves, both of which

overlaid nearly perfectly on the reference curve (Supplementary

Figures S3, S4). However, when downsampling from 256 × 256 to

64 × 64, naïve linear interpolation yielded similarity curves that

significantly deviated from the reference curve (Figure 11). In this

case, when compared with scintigraphic images natively acquired on
frontiersin.org
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FIGURE 8

Evaluating similarity metrics SSIM and Log MSE using a dynamic phantom acquisition on six common 2D planar projections: ANT, anterior; LAO, left
anterior oblique; LPO, left posterior oblique; POST, posterior; RAO, right anterior oblique; and RPO, right posterior oblique on spatial grids of 64, 128,
and 256. Real curves were generated by summing pairs of scintigraphic images up to the highest possible count value of 550 kcnts. Synthetic low-
count curves were created by synthesizing low-count versions of 550 kcnts using Poisson resampling correction.

Ghassel et al. 10.3389/fnume.2024.1505377
the target spatial grid (64 × 64), downsampled imageswithnaïve linear

interpolation resulted in lower values for SSIM and higher MSE with

respect to the reference curve. Sliding window summation, however,

produced a high level of agreement with the real data reference curve.
Discussion

In this study, we conducted three distinct experiments with the

goal of preserving the noise and statistical properties inherent to

scintigraphic images (9). First, we used the phantom data to

establish reference similarity curves for different projections, image

grid sizes, and image count levels. These curves were critical for

validating the statistical properties of subsequent low-count,

upsampling, and downsampling experiments. The first experiment,

the low-count experiment, generated synthetic low-count images

from high-count dynamics and validated their similarity curves

against the reference curves from the phantom. Our findings from

the low-count experiment corroborate the results by White and

Lawson (9), affirming that count statistics in scintigraphic images

are best modeled and preserved using Poisson-based statistics (6).

The second experiment, upsampling, demonstrated that naïve

linear interpolation distorts noise characteristics and fails to

accurately replicate the statistical properties of high grid sized

images. The application of Poisson resampling correction effectively

addressed these limitations, preserving both counts and associated

noise. Finally, the third experiment, downsampling, demonstrated

that sliding window summation consistently preserved total counts

and noise properties, outperforming linear interpolation, especially

at larger downsampling factors.
Frontiers in Nuclear Medicine 10
By examining upsampling and downsampling techniques used

for resizing scintigraphic images and their impact on preserving

image noise properties, our goal was to guide the research

community on proper methodology. While potentially applicable

to many image processing applications, we believe that these

lessons are particularly applicable to nuclear medical imaging

where image pre-processing frequently includes image resizing.
Upsampling

In the case of image upsampling, we demonstrated that the naïve

application of linear interpolation violates inherent noise

characteristics of scintigraphic images. Specifically, as images

undergo greater degrees of upsampling [i.e., from a 64 × 64 to a

256 × 256 (Figure 10) grid as opposed to 128 × 128 to 256 × 256

(Supplementary Figure S1)], the difference in similarity becomes

more evident. These results can be partly explained by the

mechanism by which linear interpolation operates (3). In the

first order, linear interpolation by a factor of 2 averages pixel

intensities in a small vicinity, close to a neighborhood of 2 × 2

pixels. However, as the scaling factor increases (64 × 64 to

256 × 256) (Figure 10), linear interpolation no longer includes in its

average those pixels that are further than in the immediate vicinity

of the center of the interpolated pixel.

Furthermore, it is evident that solely relying on interpolation

does not provide an accurate representation of the target grid

sized image, especially in relation to its noise characteristics. Hence,

the recommended method for image upsampling is as follows:

first, resize the image with linear interpolation to the new sampling
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FIGURE 9

An illustrative example of the effect of the various upsampling (Experiment 2) and downsampling (Experiment 3) methods on image similarity with
respect to real scintigraphic images at approximately 105 kcnts. (Experiment 2) From left to right: (A) a real (64 × 64) image at the source grid
upsampled with only linear interpolation (B) followed by a Poisson resampling correction (C). These were compared with a real (256 × 256) image
at the target grid generated from the raw dynamic acquisition (D). (Experiment 3) From left to right: (A) a real (256 × 256) image at the source grid
downsampled with linear interpolation (B) and a sliding window summation (4 × 4 window) (C). These were compared against a real (64 × 64)
image at the target grid (D) image reconstructed from the dynamic acquisition. All images were rendered in grayscale with their intensity levels
scaled according to their respective minimum and maximum pixel values.
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grid; second, apply a Poisson resampling correction by resampling

the linearly interpolated image, rounded to the nearest integer,

with a binomial distribution where the interpolated integer pixel

value constitutes the number of trials and the probability of success.
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The probability in our case is given by the ratio between the old

and new pixel spacing (9).

Perhaps surprisingly, interpolation-based upsampling resulted

in higher SSIM values (green) than those achieved when
frontiersin.org
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FIGURE 10

Image similarity metrics for 64 × 64 images upsampled to 256 × 256 with a reference curve from the real phantom experiment data. Linear
interpolation + Poisson resampling correction overlays the real reference almost perfectly across all count levels, indicating good agreement, while
the linear interpolation alone does not.

FIGURE 11

Image similarity metrics for 256 × 256 images downsampled to 64× 64with a reference curve from the real phantom experiment data. Real phantom data
and sliding window summation overlay almost perfectly across all count levels, indicating good agreement, while linear interpolation alone does not.
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comparing two images acquired at the target grid size (red), as

shown in Figure 10 and Supplementary Figures S1, S2. This may

be explained by the interpolation being performed from larger

pixels, with more counts and less relative noise being reused to

derive many small pixels in the upsampled image. Consequently,

the local variance component of the SSIM equation in the

upsampled image is reduced (as confirmed in Figure 9,

Upsampling, image B) leading to inflated SSIM measures.

Perhaps, counterintuitively, in this scenario, a higher SSIM does

not correspond to a more realistic upsampled image, simply
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because the SSIM deviates from the SSIM measured between two

images acquired at the target grid size, which goes against our

postulation of a successful resizing.
Downsampling

For downsampling images, we explored two techniques: linear

interpolation (3) and sliding window summation (17). Both

methods yielded similar similarity metrics (and in agreement
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with reference values) when downsampling by a factor of 2 [i.e.,

from 256 × 256 to 128 × 128 (Supplementary Figure S3) or from

128 × 128 to 64 × 64 (Supplementary Figure S4)]. However, when

downsampling images by a larger factor [i.e., from 256 × 256 to

64 × 64 (Figure 11)], linear interpolation deviated from the real

reference curve. The observed outcomes can be attributed, in

part, to the principles governing linear interpolation when

downsampling by a factor of 2. In this scenario, the position of

the pixels in the downsampled image will fall perfectly in the

center of a 2 × 2 window in the original image, resulting in the

average of all four values in the window. By introducing a global

scale correction to the linearly interpolated downsampled image,

we recover the result of using a 2 × 2 sliding window summation.

However, with an increasing scaling factor, linear interpolation

begins to exclude pixels that are not in the immediate proximity

of the center of the interpolated pixel. In contrast, sliding

window summation accounts for all pixels in the window for all

sizes. Furthermore, since summing the original image pixel

values mimics how a gamma camera would have aggregated

photon counts within a larger pixel size, the resulting image

necessarily has preserved total image counts and the correct

noise characteristics. Hence, the recommended procedure for

downsampling nuclear scintigraphic images is to apply sliding

window summation rather than resampling with interpolation.
Implications for nuclear medicine image
processing

One domain where resizing nuclear medicine images can have

a profound impact is AI development. Indeed, there has been a

strong emphasis on leveraging precise and representative data for

AI model training and evaluation. The pitfalls of relying on

inadequately simulated or non-representative data have been

underscored in current literature (18). When machine learning

models are trained on datasets that do not encompass the

complexities of real-world scenarios, there is an inherent risk of

these models yielding untrustworthy or inaccurate results

(19, 20). This disjunction between training data and real-world

samples can severely impede a model’s proficiency in image

interpretation, directly influencing clinical decisions and patient

outcomes. Moreover, models fed with non-representative data

often demonstrate excellent performance during validation

phases using similar datasets, showcasing high accuracy and

precision. However, their efficiency might be compromised in

real-world applications due to overfitting, making them less

versatile and responsive to diverse clinical data (21).

Image resizing can also play an important role in multimodal

co-registration where a source image is often resampled to the

target image’s reference frame and thus pixel/voxel size.

Therefore, in cases where planar scintigraphy images are the

source image, care should be taken to adjust the counts in the

resulting image to account for the change in pixel/voxel spacing.

This could be relevant, for instance, in registering scintigraphy

bone scan data onto x-ray images for anatomical localization of

metabolic abnormalities to harmonize inter-patient observations
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(22). This is especially crucial if photon count statistics (mean,

max, standard deviation, etc.) were to be manually extracted

from these registered images and used as features in a

downstream machine learning or radiomics task (23, 24).
Limitations

Despite our unequivocal results on the proper methods for

resizing nuclear medicine images, our study is not without its

limitations. First, we investigated convenient resizing factors of 2

and 4 on the most commonly used sampling grids in nuclear

medicine scintigraphic applications (i.e., 256 × 256, 128 × 128,

and 64 × 64). While upsampling by non-integer factors can still

be accomplished with the recommended Poisson resampling

correction, the correct procedure for downsampling by non-

integer factors was not demonstrated in our study. Nevertheless,

this work demonstrates the importance, and general concepts, to

be applied for the more general case. Namely, downsampling

requires moving summation windows that represent the image

area covered by each target pixel. In cases where the source and

target grids do not perfectly align, spatially varying weighted

averages may be applied. Alternatively, upsampling followed by

downsampling stages may be combined.

Our study utilized phantom images to simulate a lung perfusion

scan; however, because our methodology was grounded in the

fundamental principles of Poisson counting statistics and

scintigraphy image acquisition, this should carry over to any real-

world clinical applications in nuclear medicine scintigraphy.

While we acknowledge that other interpolation techniques exist, for

the scope of this study, we focused primarily on linear interpolation

due to its prevalent use in the field. Another potential criticism

is that we did not directly assess the potential effects of resizing

on 3D single-photon emission computed tomography (SPECT)

reconstructions, as there are many post-processing steps in

reconstructing tomographic volumes from sinograms (such as

spatial smoothing), that may invalidate our assumptions and

methodology. In the case of positron emission tomography

(PET) imaging, since voxel units are typically Bq/ml, which is a

measure of activity density, they do not directly encode event

count, further complicating the estimation of voxel count statistics.

Furthermore, we did not investigate how to adapt our

recommendations to non-linear registrations where local parts of

the image have shrunk or expanded independently. While in theory,

one could locally apply Poisson resampling corrections in enlarged

areas or sum counts in contracted areas, this technical development

was outside the scope of this study yet merits further attention.

Both SSIM and Log MSE metrics were calculated after

normalizing the images to the range of 0–1, based on their

maximum intensity. This normalization ensured consistent

comparison across images with varying spatial resolutions, grid

sizes, and count levels. While normalization by maximum intensity

is commonly used, we acknowledge it may amplify noise in low-

count regions, potentially affecting similarity metrics. An alternative

approach, such as normalizing by the total counts across the entire

image or a large region, could mitigate such issues.
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While this work was performed using traditional cameras with

scintillation crystals, photomultiplier tubes, and Anger logic, it deals

with scintigraphic images of counted photon events. The same

lessons may be applied to planar images acquired with

semiconductor-based detectors, as these images contain the

information. The pixel statistics in both cases are governed by a

Poisson distribution. On Anger cameras, the grid size is a variable

parameter used to define the pixels into which arbitrarily located

detection events within the crystal are binned. In contrast,

semiconductor detectors have hardware-defined pixel grids. Image

downsampling techniques such as those described in this work (i.e.,

moving summation windows) may be applied to generate images at

grid sizes other than those intrinsic to the hardware.

Finally, the use of a physical phantommay be criticized for lacking

physiologic realism.We partially tried to compensate for this using six

different projections. Nevertheless, having consistent patterns of

activity distribution was fundamental to this research methodology

and, therefore, the use of living subjects, in which tracer distribution

and motion are to be expected, would not be appropriate. Similar

work is possible with numerical phantoms, but the empirical

evidence in our methodology provides greater confidence in its

practical relevance for clinical systems.
Conclusion

Image resizing is a common process in medical imaging,

however, many neglect to reflect on its finer nuances. We make

the case that in the context of nuclear image scintigraphy, one

must take care to adopt methods that preserve total image counts

and maintain realistic image noise properties. We provide a

recipe for simple upsampling and downsampling of scintigraphic

images to enable the scientific community to properly perform

image rescaling operations in practice.
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