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Immunohistochemical basis for
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target across a broad range of
cholangiocarcinoma subtypes
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Purpose: The aims of this study were to evaluate and compare fibroblast activation
protein (FAP) expression and localization in surgically resected cholangiocarcinoma
(CCA), primary and metastatic hepatocellular carcinoma (HCC), hepatocellular
adenoma (HCA), and focal nodular hyperplasia (FNH), and to identify any
association between CCA clinical or pathologic features and FAP expression.
Materials and methods: FAP immunostaining from surgically resected CCA
(N=58), primary intrahepatic and extrahepatic metastatic HCC (N= 148), HCA
(N26), and FNH (N= 19) was scored (negative, weak positive, moderate positive or
strong positive) from tissue microarrays. FAP expression was compared between
groups. CCA FAPexpressionwas compared to clinical and tumor pathology features.
Results: Moderate-strong FAP expression in the tumor stroma was present in
93.1% of CCA, 60.7% of extrahepatic metastatic HCC, 29.6% of primary HCC,
21.1% of FNH, and 11.6% of HCA. Moderate-strong FAP expression in tumor
stroma was significantly more prevalent in CCA than HCC (p < 0.001),
metastatic HCC (p=0.005), HCA (p < 0.001) and FNH (p < 0.001). FAP was
expressed in the stroma of all but one CCA (1.7%), and FAP expression in CCA
tumor stroma was not associated with any clinical or tumor pathology
features (p > 0.05, all).
Conclusion: FAP is expressed in the stroma of a high proportion (93%) of primary
CCA independent of patient clinical or tumor pathology features. As such, these
data provide the tissue basis for systematically evaluating FAP as a theranostic
target across a broad range of CCA subtypes.
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Introduction

Cholangiocarcinomas (CCAs) and gallbladder cancer are known as biliary tract

cancers and account for approximately 3% of all gastrointestinal malignancies (1).

There are approximately 6,100 cases of intrahepatic and 12,000 cases of extrahepatic

cholangiocarcinomas diagnosed annually in the United States (2, 3). There are several
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risk factors for CCAs, mainly primary sclerosing cholangitis,

fibropolycystic liver disease, recurrent pyogenic cholangitis,

chronic liver disease, obesity, and metabolic syndrome; however,

a specific risk factor is often not identified for many patients.

The prognosis for advanced CCA is poor with or without

treatment, with the majority of patients having an overall median

survival of less than 12 months (4, 5), depending on the disease

stage and subtype.

Perihilar tumors comprise about 50% of disease, extrahepatic

40%, and intrahepatic 10% (6). CCAs are adenocarcinomas and

often have a dense desmoplastic reaction. Resectability rates are

low (7). Importantly, the tumor microenvironment has relative

genetic stability and enhances tumor growth, which makes it an

important potential target for therapy, given that it cannot develop

resistance to therapies through mutation as easily compared to

epithelial components (8, 9).

In recent years, fibroblast activation protein (FAP), a cell

membrane bound type II serine protease, has emerged as a marker

for identifying several tumor types due to its presence in the tumor

stroma and has been shown to be associated with worse outcomes

in many tumors (10, 11). FAP is overexpressed in tumors with

robust desmoplastic reactions and has been validated as a target for

molecular diagnostics (12–14). Such desmoplastic reaction is typical

of a majority of CCAs. In fact, prior studies using FAP-inhibitor

positron emission tomography (PET) radiotracers have shown

higher 68Ga-FAPI vs. 18F-FDG uptake in CCA compared to

hepatocellular carcinoma (HCC) (15, 16). This has opened the door

for FAP-inhibitor development for tumor-specific targeting small

molecule inhibitors and radiopharmaceuticals (17–19). Taken

together, FAP may be a candidate theranostic target in CCA with

FAP-targeted PET imaging and theranostics.

The aims of this study were to evaluate and compare the

protein expression and localization of FAP in surgically resected

CCA, primary intrahepatic and extrahepatic metastatic HCC,

hepatocellular adenoma (HCA), and focal nodular hyperplasia

(FNH), and to identify any association between CCA clinical or

pathologic features and FAP expression.
Materials and methods

This HIPAA-compliant study was conducted following

institutional review board (IRB) approval. Tissue Microarrays

(TMAs) were constructed from patients who had authorized use

of their medical record for research purposes. A waiver of

written informed consent was obtained from the IRB.
Tissue microarrays

Previously constructed TMAs were utilized for the current

study and were created using methods previously described (20).

TMAs were constructed using the ISEnet Galileo CK4500

instrument (Integrated Systems Engineering srl, Milan, Italy)

with 1.0 mm cores from formalin-fixed paraffin-embedded donor

blocks stored in the institutional pathology tissue archives selected
Frontiers in Nuclear Medicine 02
by a hepatobiliary pathologist (>22 years of experience). Control

tissues were included within the array and for orientation including

normal prostate, normal liver, ovarian cancer, normal tonsil, and

cervical cancer tissues. TMAs from surgically resected CCA

(n = 58), primary intrahepatic HCC (n = 134), extrahepatic

metastatic HCC (n = 28), HCA (n = 26), and FNH (n = 19) were used.
Immunohistochemical staining:
anti-fibroblast activation protein

Immunohistochemical (IHC) staining was performed at the

Pathology Research Core (Mayo Clinic, Rochester, MN) using

the Leica Bond RX stainer (Leica). TMA sections were cut at

5 microns, mounted on charged slides, and dried overnight. For

staining, slides were retrieved for 20 min using Epitope Retrieval

1 (Citrate; Leica) and incubated in Protein Block (Dako) for

5 min. The FAP primary antibody (Clone: EPR20021; Abcam

ab207178) was diluted to 1:300 in Background Reducing Diluent

(Dako) and incubated for 15 min (21, 22).

The detection system used was Polymer Refine Detection System

(Leica). This system includes a hydrogen peroxidase block, post

primary and polymer reagents, and DAB. Immunostaining

visualization was achieved by incubating slides for 10 min in DAB

and DAB buffer (1:19 mixture) from the Bond Polymer Refine

Detection System. Slides were counterstained for five minutes using

a 1:1 mixture of Schmidt hematoxylin (Mayo DLMP Preparation

and Processing Laboratory) and molecular biology grade water.

Once the immunochemistry process was completed, slides were

removed from the stainer and rinsed in tap water for three

minutes. Slides were dehydrated in increasing concentrations of

ethyl alcohol and cleared in 3 changes of xylene prior to permanent

coverslipping in xylene-based medium. Separate slides were stained

for hematoxylin and eosin (H&E).
Pathology review

All H&E and FAP-stained sections were evaluated in a blinded

and random fashion by a hepatobiliary pathologist (MST).

Histopathology features were analyzed by H&E for tumor grade

(well-differentiated, moderately differentiated, poorly differentiated)

and histological subtype (small, large, mixed). Both FAP staining

intensity and percentage area tumor stroma involved were scored

for the FAP-stained sections. The score was a 2-digit number: one

for intensity and one for tumor stroma percentage staining. A

similar scoring method was previously validated for assessing

prostate-specific membrane agent (PSMA) expression by IHC in

hepatobiliary tumors (20). The intensity was scored as follows:

0 = none, 1 = weak, 2 =moderate, 3 = strong. The FAP-stained score

for percentage staining by area was as follows: 0% staining = 0, 1%–

5% staining = 1, 6%–33% staining = 2, 34%–66% staining = 3, and

67%–100% staining = 4. The final interpretation of these two digits

was obtained by combining the intensity score and tumor stroma

percentage score as follows: 11–12 = negative; 13, 14, 21 = weak

positive; 22, 23 =moderate positive; 24, 31–34 = strong positive.
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CCA demographic and clinical data

Demographic and clinical data for the subset of 58 CCA

patients were extracted from the electronic medical record.
Statistical analyses

Study data were collected and managed using REDCap

electronic data capture tools (23, 24). Data were analyzed using

JMP 16.2.0 (Raleigh, NC). FAP expression by IHC (moderate/

strong vs. weak/none and present vs. absent) was compared

between CCA, HCC, metastatic HCC, HCA, and FNA groups

using Fisher’s exact test. Sub-group analysis of the CCA subjects

was performed. Categorical variables were compared using the chi-

square test or Fisher’s exact test. Continuous variables were

compared using the one-way ANOVA test or Kruskal-Wallis test.

Differences in CCA FAP expression were compared by CCA

pathology features (anatomic class, morphology, cellularity type,

tumor grade, and size of the involved ducts) using Fisher’s

exact test. Differences in CCA tumor size were compared by

fibroblast activation protein inhibitor (FAPI) expression using a

Kruskal-Wallis test. Univariate logistic regression was performed

to assess association between FAPI expression with clinical

characteristics including absence or presence of choledocholithiasis,

cholelithiasis, primary sclerosing cholangitis, cirrhosis, hepatitis B

virus, hepatitis C virus, hemochromatosis, inflammatory bowel

disease, primary biliary cirrhosis, diabetes, hypertension, alcohol use,

cigarette smoking, hyperlipidemia, and asbestos exposure. A p < 0.05

was considered statistically significant.
Results

FAP protein expression and localization by
tumor type

FAP IHC data by tumor type are summarized in Table 1.

Moderate-strong FAP expression in the tumor stroma was

present in 93.1% (54/58) of CCA (Figures 1–3), 60.7% (17/28) of

metastatic HCC (Supplementary Figure S1), 29.6% (42/142) of

primary HCC (Supplementary Figure S2), 21.1% (4/19) of FNH

(Supplementary Figure S3) and 11.6% (3/26) of HCA

(Supplementary Figure S4). FAP expression was not localized to
TABLE 1 FAP immunohistochemistry by tumor type.

Negative Weak
positive

Moderate
positive

Strong
positive

CCA 1 (1.7%) 3 (5.2%) 6 (10.3%) 48 (82.8%)

HCC 81 (57.0%) 19 (13.4%) 8 (5.6%) 34 (24.0%)

mHCC 9 (32.1%) 2 (7.2%) 8 (28.6%) 9 (32.1%)

HCA 20 (76.9%) 3 (11.5%) 0 (0.0%) 3 (11.6%)

FNH 15 (78.9%) 0 (0.0%) 3 (15.8%) 1 (5.3%)

CCA, cholangiocarcinoma; FNH, focal nodular hyperplasia; HCA, hepatocellular adenoma;

HCC, hepatocellular carcinoma; mHCC, metastatic hepatocellular carcinoma.
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the tumor cells and there was no significant FAP expression in

normal background biliary tissue. There was no detectable FAP

expression in only one CCA case (Figure 1A, 1.7%), whereas the

majority of primary HCC, HCA, and FNH had no detectable FAP

expression (57%, 76.9%, and 78.9%, respectively). When

comparing moderate/strong vs. negative/weak staining between

groups, moderate-strong FAP staining was significantly more

prevalent in CCA vs. primary HCC (93.1% v. 29.6%; p < 0.0001),

metastatic HCC lesions (93.1% v. 60.7%; p = 0.0005), FNH (93.1%

v. 21.1% p < 0.0001), and HCA (93.1% v. 11.6%; p < 0.0001),

respectively. Moderate-strong FAP staining was significantly more

prevalent in metastatic HCC compared to primary HCC (60.7%

v. 29.6%; p = 0.0023), FNH (60.7% vs. 21.1%; p = 0.009) and HCA

(60.7% v. 11.6%; p = 0.0002), respectively, but there was no

difference in FAP staining between primary HCC and FNH or

HCA (p = 0.59 and p = 0.089, respectively). There was no

significant difference in FAP expression between FNH and HCA

(p = 0.43). Similar results were found when comparing present vs.

absent FAP staining between groups.
FAP by CCA clinical and tumor pathology
characteristics

CCA patient clinical and tumor pathology data are summarized

in Tables 2 and 3. There was no significant association between FAPI

expression and patient age (p = 0.33), gender (p = 0.76), race

(p = 0.99), ethnicity (p = 0.91), presence of choledocholithiasis

(p = 0.088), cholelithiasis (p = 0.66), primary sclerosing cholangitis

(p = 0.75), cirrhosis (p = 0.49), hepatitis B virus (p = 0.85),

hepatitis C virus (p = 0.053), hereditary hemochromatosis

(p = 0.94), inflammatory bowel disease (p = 0.93), primary biliary

cirrhosis (p = 0.86), diabetes (p = 0.72), obesity (p = 0.41),

hypertension (p = 0.13), alcohol use (p = 0.41), cigarette smoking

(p = 0.52), hyperlipidemia (p = 0.58), or asbestos exposure

(p = 0.83). There was no significant association between FAP

expression and CCA tumor size (p = 0.20), anatomic location

(p = 0.15), morphologic subtype (p= 0.99), cellularity type (p = 0.32),

tumor grade (p= 0.56), or duct size (p = 0.86).
Discussion

The current FAP IHC data confirmed moderate to strong FAP

expression in a significantly higher proportion of CCA (93.1%, 54

of 58 patients) compared to other malignant or benign liver

tumors. Moreover, FAP was expressed in the tumor stroma of

the majority (98.3%, 57 of 58 patients) of CCA, independent of

patient clinical or tumor characteristics. Taken together, these

data provide the tissue basis for systematically evaluating FAP as

a diagnostic and therapeutic target across a broad range of CCA

subtypes using FAP-targeted theranostic radiotracers.

These data add to the growing body of evidence supporting

current and future clinical trials investigating FAP as both a

diagnostic and therapeutic target across multiple tumor types,

including biliary tract cancers (16, 25–33). Several studies have
frontiersin.org
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FIGURE 1

FAP expression in intrahepatic CCA. (A–D) Tumor associated stroma FAP staining: (A) absent staining in a poorly differentiated CCA; (B) weak staining
in a poorly differentiated CCA; (C) moderate staining in a moderately differentiated CCA; and (D) strong staining in a moderately differentiated CCA.
Original magnification (20x).

FIGURE 2

Strong FAP expression in perihilar CCA by tumor grade. (A–C) Tumor associated stroma FAP staining in (A) well-differentiated, (B) moderately
differentiated and (C) poorly differentiated perihilar CCA. Original magnification (20x).
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shown that CCA cancer-associated fibroblasts induce a robust

desmoplastic reaction (34–38). This has in turn supported the

development of FAP-targeted PET tracers, which have been used

to image at least 28 different cancer types in humans, including

CCA (13, 15, 16). When compared to 18F-FDG PET, 68Ga-FAPI

based PET agent performance has been shown to be superior at

discrimination of benign vs. malignant lesions, locating primary
Frontiers in Nuclear Medicine 04
tumors in metastatic disease (15, 16, 31), and has resulted in

restaging in up to 33% of cases (39). Several FAP-targeted PET

agents have been used in clinical trials, including 68Ga-FAPI-02

(18), 68Ga-FAPI-04 (17), 68Ga-FAPI-46 (40, 41), and 68Ga-FAPI-

34 (42). 18F-FDG is limited in its ability to stage CCA due to

suboptimal liver imaging kinetics (43). Despite high glucose

uptake in bile duct epithelial cells, aggressive CCAs are typically
frontiersin.org
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FIGURE 3

FAP expression in distal and mixed CCA. (A) Strong tumor associated stroma FAP staining in a moderately differentiated distal CCA and (B) moderate
tumor associated stroma FAP staining in a poorly differentiated mixed CCA. Original magnification (20x).

TABLE 3 Tumor characteristics of 58 surgically resected CCAs.

Characteristic N (%)
CCA Anatomic Location Intrahepatic 37 (63.8)

Perihilar 19 (32.8)

Distal 1 (1.7)

Mixed 1 (1.7)

CCA Morphology Mass Forming 49 (84.4)

Periductal 1 (1.7)

Intraductal 1 (1.7)

Mixed 6 (10.3)

Tumor Grade Well Differentiated 3 (5.17)

Moderately Differentiated 32 (55.2)

Poorly Differentiated 23 (39.7)

Duct Size Small 25 (43.1)

Large 22 (37.9)

Mixed 8 (13.8)

Other 3 (5.2)

CCA, cholangiocarcinoma.

TABLE 2 Demographic and clinical characteristics of 58 patients with
surgically resected CCA.

Variable N (%)
Gender Female 22 (37.9)

Male 36 (62.1)

Race White 52 (89.6)

Black or African American 4 (6.9)

Asian 1 (1.7)

American Indian/Alaskan Native 0 (0.0)

Hispanic or Latino 5 (9.6)

Unknown/Decline 1 (1.7)

BMI Mean (standard deviation) 27.3 (5.29)*

Age at Surgery Mean (standard deviation) in years 61.8 (12.02)*

Range in years 18.9–84.8**

Clinical Hypertension 29 (50)

Alcohol use 23 (39.7)

Hyperlipidemia 17 (29.3)

Obesity 16 (28)

Smoking 11 (19.0)

Thoratrast exposure 6 (10.3)

Primary sclerosing cholangitis 3 (5.2)

Non-alcoholic fatty liver disease 3 (5.2)

Inflammatory bowel disease 3 (5.2)

Alpha-1-antitrypsin deficiency 2 (3.6)

Aflatoxin 2 (3.6)

Primary biliary cirrhosis 2 (3.4)

Hepatitis B Virus infection 2 (3.4)

Hepatitis C Virus infection 2 (3.4)

Wilson’s disease 1 (1.7)

Liver fluke 1 (1.7)

Hemochromatosis 1 (1.7)

Portal hypertension 1 (1.7)

Asbestos 1 (1.7)

BMI, body mass index.
*Values are mean and (standard deviation).

**Values are a range.
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not FDG-avid (29, 30, 33, 44, 45). Thus, there is a strong unmet

need for improved molecular imaging in CCA.

While a minority of primary HCCs demonstrated moderate

to strong FAP expression, a majority of metastatic HCC
Frontiers in Nuclear Medicine 05
lesions had moderate to strong FAP expression, suggesting

FAP may be a consideration as a theranostic target in

metastatic HCC but less so in primary HCC (15, 28, 43).

Alternatively, PSMA has been shown to be expressed in a high

percentage (>90%) of primary HCCs by IHC, and

subsequently confirmed in patients with 68Ga-PSMA PET

imaging with greater than 70% of HCC demonstrating grade 3

or 4 PSMA uptake at PET (20). Furthermore, a small

percentage of FNH and HCA demonstrated moderate to strong

FAP expression, suggesting the FAP-expressing cancer-

associated fibroblasts are not entirely specific to malignant

lesions. As such, molecular imaging findings will need to be

correlated with contrast-enhanced CT or MRI findings for

these benign liver tumors.

There are limitations to this study. The IHC was evaluated by a

single reader. The correlative data between tissue CCA FAP

expression, demographic data, and tumor characteristics are

based on TMA and not full tissue sections. This study does not

compare FAP expression with CCA genetic mutations or
frontiersin.org
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molecular alterations such as clinically relevant, targetable

mutations in isocitrate dehydrogenase-1 mutations or fibroblast

growth factor receptor-2 fusions or immunotherapy-related

indicators such as PD-L1 expression and effector T cell

infiltration (46, 47). Additionally, only 1.7% of CCAs were distal

in location, and 5% were well-differentiated CCA tumors, thereby

limiting the generalizability to these subtypes. Furthermore, only

one CCA case was completely negative for FAP expression. This

case was a 52-year-old white male with history of cholelithiasis

and hepatitis C virus infection, obesity and smoking with a

4.4 cm moderately differentiated, mass forming intrahepatic CCA

with small duct size. Given the lack of clinical and tumor

features associated with FAP expression in this cohort, the

absence of FAP expression in this case cannot be hypothesized.

Taken together, while the CCA cases herein are representative of

a broad range of CCA subtypes including intrahepatic and

perihilar location, moderately and poorly differentiated grades

and small and large duct size, further work in larger cohorts of

CCA patients will be needed to better understand such outlier

cases. Furthermore, due to the retrospective nature, our study

does not include any FAP-targeted PET imaging to correlate the

degree of FAP expression in the IHC staining data with

diagnostic and potentially prognostic significance. Prior studies

assessing IHC-PET correlation in HCC with PSMA PET imaging

showed that while >90% of HCC were positive for PSMA

expression by IHC, >70% of HCC tumors showed high (i.e.,

grade 3 or 4) uptake at PSMA PET imaging (20). As such,

further work is needed to assess FAP expression by IHC and

tumor uptake at FAPI PET imaging across a range of benign and

malignant liver lesions. Lastly, moderate-strong FAP staining was

significantly more prevalent in metastatic HCC compared to

primary HCC (60.7% v. 29.6%, respectively). One hypothesis is

that there is a greater desmoplastic reaction in the tumor

microenvironment with metastatic extrahepatic HCC compared

to primary HCC in the liver. Nonetheless, while FAP may be a

potential theranostic target in extrahepatic metastatic HCC,

further research is needed across both primary intrahepatic and

extrahepatic metastatic HCC.

In summary, FAP is expressed in a high proportion (93%) of

primary CCA independent of patient clinical or tumor pathology

features. As such, these data provide the tissue basis for future

studies systematically evaluating FAP as a theranostic target across a

broad range of CCA subtypes using paired FAP-targeted PET.

FAP-targeted radioligand therapy represents a novel therapeutic

approach to targeting the CCA tumor microenvironment in FAP

expressing CCA and may be useful in combination with other CCA

molecular-targeted or immunotherapies. Such novel diagnostic and

therapeutic approaches may help improve outcomes for patients

with unresectable CCA.
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SUPPLEMENTAL FIGURE S1

FAP expression in metastatic hepatocellular carcinoma (mHCC) (A-C).
Negative staining (A), weak positive staining (B), strong positive staining (C).
Original magnification (20x).

SUPPLEMENTAL FIGURE S2

FAP expression in hepatocellular carcinoma (HCC) (A-C). Negative staining
(A), weak positive staining (B), strong positive staining (C). Original
magnification (20x).

SUPPLEMENTAL FIGURE S3

FAP expression in fibronodular hyperplasia (A, B). Negative staining (A),
moderate positive staining (B). Original magnification (20x).

SUPPLEMENTAL FIGURE S4

FAP expression in hepatic adenoma (HCA) (A-C). Negative staining (A), weak
positive staining (B), strong positive staining (C). Original magnification (20x).
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