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Introduction: Neural fingerprinting is a technique used to identify individuals
based on their unique brain activity patterns. While deep learning techniques
have been demonstrated to outperform traditional correlation-based methods,
they often require retraining to accommodate new subjects. Furthermore, the
limited availability of samples in neuroscience research can impede the quick
adoption of deep learning methods, presenting a challenge for their broader
application in neural fingerprinting.
Methods: This study addresses these challenges by using contrastive learning to
eliminate the need for retraining with new subjects and developing a data
augmentation methodology to enhance model robustness in limited sample
size conditions. We utilized the LEMON dataset, comprising 3 Tesla MRI and
resting-state fMRI scans from 138 subjects, to compute functional connectivity
as a baseline for fingerprinting performance based on correlation metrics. We
adapted a recent deep learning model by incorporating data augmentation
with short random temporal segments for training and reformulated the
fingerprinting task as a contrastive problem, comparing the efficacy of
contrastive triplet loss against conventional cross-entropy loss.
Results: The results of this study confirm that deep learning methods can
significantly improve fingerprinting performance over correlation-based
methods, achieving an accuracy of about 98% in identifying a single subject
out of 138 subjects utilizing 39 different functional connectivity profiles.
Discussion: The contrastive method showed added value in the “leave subject
out” scenario, demonstrating flexibility comparable to correlation-based
methods and robustness across different data sizes. These findings suggest
that contrastive learning and data augmentation offer a scalable solution for
neural fingerprinting, even with limited sample sizes.
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1 Introduction

Neural fingerprinting is a technique that enables the

identification of individuals based on their unique brain activity

patterns, affording detailed insight into how the brain functions

and processes information and offering applications in

personalized medicine.

Neuroscientific research has demonstrated promise in the

identification of individuals through the inference of their neural

fingerprints using a number of imaging methodologies. Notably

(1), conducted magnetoencephalography (MEG) fingerprinting

using functional and structural connectivity features to successfully

obtain neural fingerprints, while (2) explored the impact of

various frequency bands and brain connections on MEG

functional connectivity (FC) fingerprints, comparing it to

functional magnetic resonance imaging (fMRI) data from the

same subjects. Both studies employed Pearso’s correlation

coefficient as an identifiability measure.

A comprehensive review published by (3) outlined techniques

utilized for extracting neural fingerprints from neuroimaging data.

Although electroencephalography (EEG) was the earliest modality

employed for fingerprinting (2001), MRI-based fingerprinting

studies (starting from 2015) accounted for 38% of the surveyed

published works, suggesting its substantial relevance in the field.

In the context of functional neuroimaging, FC is a commonly

used feature as it provides information about the communication

between brain regions (4). There are several methods for deriving

the FC profiles, depending on the neuroimaging modality. Many

advancements in fMRI FC fingerprinting were made possible

through the data provided by the Human Connectome Project

(HCP) (5). For example, based on rs-fMRI data from the HCP

(6), used a correlation coefficient as a measure of identifiability by

comparing a target FC profile against a sample database of FC

profiles. Amico and Goñi (7) aimed to improve on the results of

this work by reconstructing the functional connectivity profiles

using a principal component analysis (PCA) decomposition

algorithm to extract different components associated with the

whole population and then using the correlation coefficient as the

identifiability measure. A more recent work, which uses the same

HCP data (8), looked into the optimal time scale for identification

by calculating dynamic FC and using edgewise inter-class

correlation (ICC) as a statistical measure to identify individuals. Li

et al. (9) adapted the measure of identifiability used by Finn et al.

(6) and examined the impact of sample size and atlas granularity

on fingerprinting accuracy by presenting a framework for feature

selection designed to extract higher-quality subject-specific FC

information for neural fingerprinting from rs-fMRI.

All of the aforementioned studies utilized correlation matrices

as measures of identification and demonstrated the high accuracy

and robustness of neural fingerprinting on rs-fMRI functional

connectivity. Additionally, Sarar et al. (10) employed shallow

feedforward neural networks on functional connectivity derived

from 20-s rs-fMRI segments, achieving an accuracy of ≥99.5%
across two sets of 100 subjects using 379 regions of interest

(ROIs). This result demonstrates the potential of deep learning

for precise subject identification based on short data segments.
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Recent studies have progressed beyond static FC profiles to

capture the temporal dynamics in neuroimaging data. For instance,

Kampel et al. (11) applied a machine learning algorithm specifically

designed for multivariate time series data for MEG fingerprinting,

enabling for the extraction of temporal features that enhance

identifiability. Similarly, Wang et al. (12) developed a Convolutional

Recurrent Neural Network (ConvRNN) to capture spatio-temporal

information from rs-fMRI, further improving individual

identification by modeling dynamic functional connectivity.

Although deep learning is of great interest in neuroimaging

research due to its unexplored potential, there are many

challenges preventing rapid progress, most notably high

dimensionality (i.e., spatial and temporal dimensions) and low

sample size (13). Additionally, it is a common concern that deep

learning models trained on neuroimaging data suffer from

overfitting (14). Although the acquisition of a large neuroimaging

database could serve as a remedy for most of the challenges,

such databases are not widely accessible. However, one could

artificially augment the size of the training data by means of

slicing long recordings into several smaller ones. Alternatively,

one could employ a deep learning training paradigm that is

better suited for cases where the number of target classification

categories is large compared to the available training samples per

category. Namely, contrastive learning has shown great promise

as a discriminative learning approach when the model is trained

to identify similarities between representations of input pairs that

are contrasted against each other. The work of Hassanzadeh

et al. (15) explored the spatial variability of individuals by

conducting a fingerprinting study using fMRI independent

component analysis (ICA)-based spatial maps. They employed a

3-dimensional convolutional neural network (CNN) as the

embedding network in a siamese neural network framework (16)

with a contrastive loss function. While they had access to a large

database of 12,000 subjects, the contrastive learning paradigm

was convenient for conducting a pairwise comparison study on

spatial network maps for neural fingerprinting. Similarly, to our

study, Wang et al. (17) used fMRI FC in a contrastive deep

learning paradigm. However, in this study, data from 596

patients were used and a graph neural network (GNN) was

applied for population-based fMRI classification. The contrastive

paradigm was utilized in this context to simply explore its

performance for a population-based FC classification with

graph networks.

The objective of our study is to enhance model-based neural

fingerprinting by overcoming two significant challenges: the

necessity for effective model retraining and the constraints of

small datasets. To address the issue of model retraining, we

employed a leave-subject-out approach, which was made possible

by contrastive triplet loss. To offset the impact of limited data,

we incorporated various levels of data augmentation. We

evaluated three distinct model configurations: conventional cross-

entropy loss, contrastive triplet loss, and a leave-subject-out

configuration. For each, we compared it against a baseline

correlation method. Furthermore, we applied different levels of

data augmentation to all configurations to comprehensively

assess their robustness and performance.
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2 Methods

2.1 Dataset

The open-source Mind-Brain-Body Dataset – LEMON from

the Max Planck Institute of Leipzig, Germany (18) was used for

data analysis. The original purpose of the 2019 study was to

investigate the association between psychological factors and

somatic health by acquiring physiological and psychological

assessments, as well as neuroimaging data, to produce the

“Leipzig Study for Mind-Body-Emotion Interactions” (LEMON)

dataset. This LEMON was collected between 2013 and 2015 and

included 227 individuals in total, divided into two groups: young

adults and older adults. The young group had an age range of

20–35 (N = 153, mean age 25.1 ± 3.1, 45 females), and the older

group had an age range of 59–77 (N = 74, mean age 67.6 ± 4.7,

37 females). All participants took part in a pre-screening interview,

a two-day assessment to collect data, and a follow-up (18).

The MRI scanning was carried out on a 3 Tesla scanner

(MAGNETOM Verio, Siemens Healthcare GmbH, Erlangen,

Germany). The imaging protocol lasted for 70 min and included

rs-fMRI, quantitative T1 (MP2RAGE), T2-weighted imaging,

FLAIR, SWI/QSM, and DWI. The rs-fMRI scans were acquired

for a total of 15 min, and the subjects were instructed to remain

at rest with their eyes open. In our study, we selected all subjects

from the LEMON dataset from which four resting-state

recordings, a T1-weighted image, and a low-resolution FLAIR

image was available. This resulted in a subset of 138 subjects.
2.2 Preprocessing

To prepare the rs-fMRI data for analysis, the following series of

preprocessing steps were performed by the owners of the LEMON

dataset according to the pipeline detailed in (19): (i) Motion

Correction, (ii) Distortion Correction, (iii) Coregistration, (iv)

Combined Transformations, (v) Masking, (vi) Nuisance

Regression, (vii) Physiological Noise Removal, (viii) Temporal

Filtering and Normalization, and (ix) Standard Space Projection.

The preprocessed data was made accessible in both the subjects’

original structural space and in Montreal Neurological Institute

(MNI) standard space, alongside the brain mask of the subject

and all pertinent regressors employed for denoising. Following

preprocessing, the data resolution was 2 mm in MNI 152 space,

with each run of rs- fMRI lasting around 15 min.
2.3 Functional connectivity

The pivotal step in the analysis involves computing functional

connectivity matrices, also referred to as connectomes. These

connectomes were derived from the time series data and represent

the temporal dynamics of the neural activity across specific ROIs.

These ROIs were delineated based on the Multi-Subject Dictionary

Learning (MSDL) atlas, which comprehensively maps brain regions

to investigate brain spontaneous activity (20). Utilizing this atlas,
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39 nodes across 17 resting-state networks were identified. For each

subject, the multivariate time series data were bandpass filtered

from (0.01–0.1) Hz and subsequently normalized using z-scores.

The resulting preprocessed time series were then used to (i)

generate functional connectivity matrices through Pearson

correlation, capturing the pairwise correlations among the selected

ROIs and serving as our baseline calculation, and (ii) utilize

the temporal information of each ROI for subsequent deep

learning-based analysis. To facilitate the implementation

process, the Pearson correlation was calculated as a deterministic

operation within the network. This approach enables dynamic

adjustments to varying time series durations and allows for

efficient on-the-fly data augmentation without the need to

precompute connectivity matrices.
2.4 Data splitting

The evaluation of the deep learning models (DLM) investigated

in this study primarily employed two different partitioning scenarios

that we refer to as Leave Run Out (LRO) and Leave Subject Out

(LSO). As observed in related work (10, 12), LRO-based splitting

is commonly used in neural fingerprinting tasks. When applying

LRO partitioning, the data set is split based on runs or sessions

per subject; certain runs for subjects are designated for training,

and the remaining runs for the same subjects are designated for

validation. This approach emphasizes the ability to generalize on

within-subject variations and is, therefore, practical for assessing

temporal changes or session-based variability in the imaging data.

Compared to the widespread use of LRO-splitting in neural

fingerprinting tasks, the adoption of LSO as an alternative data-

splitting method has been notably less common, except in the

work of Hassanzadeh et al. (15). In LSO-splits, the dataset is

divided in a way that all runs associated with a subgroup of

subjects are utilized for training the model, while the remaining

data from unseen subjects are set aside for validation. This

method is advantageous because excluding clusters of related

observations helps minimize bias and improves the

generalizability of the model across various individuals (21).
2.5 Baseline: correlation analysis

To establish a baseline, i.e., a reference, for the deep learning-

based neural fingerprinting, we adopted the classification

procedure described in (6) and used comparisons between FC

vectors derived from all four resting-state sessions. Each

comparison involved a single session, which was identified as the

query, and one or more target sessions. Each FC vector from the

query session was then evaluated against all other vectors from

the target sessions. A Pearso’s correlation was used to quantify

the similarity between FC vector pairs. Correct subject

identification was deemed to be achieved when the query vector

had the highest absolute correlation coefficient to one of its

corresponding target vectors. A correct classification was given a

score of 1, while an incorrect classification was given a score of
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0. The average accuracy was calculated by taking the average of the

scores across all subjects and across all possible comparisons. In the

following, we will refer to this type of classification procedure as the

“baseline” method for comparison, as it is widely used in neural

fingerprinting classification scenarios (6, 9).
2.6 Deep learning-based classification

The architecture of the DLMs employed in this study

comprises two primary components: the backbone and the head

of the model. The backbone serves as the foundational part of

the model structure and is responsible for feature extraction

(Figure 1). It is a feed-forward neural network with its first

hidden layer set to 512 units, configured based on guidelines and

architectures established in previous research (10). To better suit

the specific requirements of our study, an additional second

hidden layer with a size of 256 units was added, both

accompanied by a batch normalization layer (Figure 1).

2.6.1 DLM with cross-entropy loss
The first variant of the model, referred to as “Deep Learning

Method with Cross-Entropy Loss” (DLM-CE), integrates neural

fingerprinting as a multi-class classification task. The binary

cross-entropy loss was used as the objective function and was

coupled with a softmax activation function. All subjects were

represented by a corresponding one-hot coded label. An output

layer equal to the number of subjects to be identified was added

at the end of a backbone architecture (Figure 1). Training was

performed with a batch size of 276.

2.6.2 DLM with contrastive triplet loss
The second DLM variant utilizes a triplet loss function (22) for

classification, with the goal of enhancing the adaptability of the
FIGURE 1

Schematic representation of the processing and model pipeline for neural fi
activation time courses are extracted. A frame overlaid on these courses ind
connectivity matrix, which is then fed into two fully connected layers with su
Softmax activation layer or an L2-normalization layer, depending on the typ
Sections 2.6.1 and 2.6.2).
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classification model in scenarios where the identification of

subjects not encountered during training is facilitated. Here, the

encoder network replicates the backbone architecture of the

DLM-CE, but with L2 normalization applied to the final layer

instead of attaching a class coding layer (Table 1). The DLM

with triplet loss (DLM-TL) is based on contrastive learning and

was designed to calculate a distance metric between any

instances of the input data. The methodology consists of two

distinct steps. First, embeddings are generated using an encoder

network. Then, these embeddings are utilized for classification

based on vector similarity, specifically the distances between

embeddings of FC. This set of embeddings includes an anchor

subject, denoted a ai, a positive instance with FC from the same

subject but from a different run pi, and a negative instance with

FC from a different subject ni. According to Schroff et al. (22),

the formula for the triplet loss is given as shown in Equation 1:

kf (xai )� f (xpi )k22 þ a , kf (xai )� f (xni )k22 (1)

Here, α represents a margin enforced between positive and

negative pairs, while f denotes the embedding function. The overall

loss, L, to be minimized is expressed as shown in Equation 2:

L ¼
XN

i
[k f (xai )� f (xpi )k22 � kf (xai )� f (xni )k22 þ a]þ (2)

with N representing the total number of triplets in the training set.

Essentially, the model attempts to minimize the distance between

the anchor and the positive examples while maximizing the

distance between the anchor and the negative examples (22). A

semi-hard triplet mining strategy was used in conjunction with the

ADAM optimizer to train the model (23).

In order to ensure accurate classification using triplet loss, it is

necessary for the model to have access to at least two recordings per
ngerprinting. Starting with MSDL-defined brain networks, regional brain
icates data augmentation. The time courses are then transformed into a
bsequent batch normalization. The output layer is then passed through a
e of model configuration used, i.e., LRO or LSO-based classification (see
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TABLE 1 Model components and settings employed in the deep learning-based models used for neural fingerprinting.

Generalization Model type Size of last layer Conditioning Loss function
LRO DLM-CE 138 Softmax activation Cross entropy loss

LRO, LSO DLM-TL 256 L2 normalisation Triplet loss
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subject. The model generates embeddings for these recordings, and

classification is considered successful when the distance between

the anchor embedding and the positive embedding is smaller

than the distance between the anchor embedding and any other

negative embeddings in the set. This approach allows for the

determination of accuracy not only for subjects seen during

training (LRO) but also for subjects not seen during training

(LSO), as long as there are at least two recordings available per

subject in both the training and test sets.
2.7 UMAP visualization

To visualize the high-dimensional embeddings derived from

our LSO_DML_TL model, we employed Uniform Manifold

Approximation and Projection (UMAP) (24). The rationale behind

using UMAP was to project the 256-dimensional embedding

vectors into a two-dimensional space, facilitating the examination

of the arrangement of subjects in the embedding space and the

evaluation of clustering improvements for both training and

unseen test subjects. Unlike demographic-based clustering

approaches (e.g., grouping by age or gender), our analysis focuses

on clustering recordings within the same individual. This approach

enables us to assess the consistency and stability of neural

fingerprints across multiple sessions. The UMAP configuration was

established with the default parameters of the umap-learn 0.5.3

package (n_neighbors = 15, n_components = 2, metric = “euclidean”,

and learning_rate = 1) to ensure an optimal balance between local

and global structure preservation in the embeddings (24).
2.8 Cross-validation

Given the limited data set, it was deemed impractical to divide

the data into the conventional three splits: training, validation, and

test sets.

Instead, the following cross-validation schemes were used

unless otherwise noted: For the DLM-CE method with LRO

splitting (LRO_DLM-CE), models were trained on data from two

out of the four available resting-state sessions and then evaluated

on the remaining two. This process was performed iteratively for

all six possible combinations of training and test sets. Accuracy

was used as the primary performance measure. Each

combination was repeated 10 times resulting in 60 calculations to

account for variability introduced by factors such as data

augmentation and initial weight settings.

To enhance the assessment of the LSO scenario in the DLM-TL

method (LSO_DLM-TL), additional evaluation metrics were

included. Specifically, in addition to accuracy, precision, recall,

and F1 score were also calculated to provide a more
Frontiers in Nuclear Medicine 05
comprehensive understanding of the mode’s performance. Each

possible evaluation was also repeated 10 times.
2.9 Data augmentation

To mitigate the risk of over-fitting, we used a data

augmentation scheme specifically designed to introduce

variability into the training data set, thereby improving the

mode’s ability to generalize to unseen data. In this approach,

each training batch consisted of short, randomly selected time

segments extracted from the entire time series data. For example,

during each training run, a 3-min segment was randomly chosen

from the entire 15-min resting state run. This random selection

and subsequent computation of functional connectivity were

done in real-time. This method enables the model to analyze

distinct, smaller portions of the data in each training batch.

In order to determine the optimal duration of these time

segments, we conducted a series of experiments. We varied the

segment duration in increments of 90 s, and subsequently

evaluated the performance of all model configurations using the

metrics described in the previous section. To further measure the

variability introduced by this random selection process, each

training run was repeated ten times, allowing us to measure

variations in the classification accuracy.

Moreover, a permutation t-test (25), as implemented in (26),

was utilized to ascertain whether the methods exhibited

significant differences. Both LRO_DLM_TL and LSO_DLM_TL

were compared against LRO_DLM-CE, with the significance of

each augmentation step being evaluated separately. To ensure

robust statistical analysis, 100,000 repetitions were employed.
2.10 Split ratios

In a low sample size data regime, the ratio of data for the

training and validation sets need to be chosen carefully. In this

study, we examined the impact of the split ratio on performance

by varying the proportion of subjects in the training and

validation sets. Previous studies suggest that a smaller validation

set may improve accuracy (9). To test this dependency within an

LSO splitting, the LSO_DLM-TL classification performance was

evaluated over 19 different training and validation set ratios,

ranging from 5% to 95% with respect to the total number of

subjects. Each proportion was tested ten times to control for

variables such as subject randomization, weight initialization,

and data augmentation. For data augmentation, the segment size

was set to 270 s, as this parameter yielded optimal results

(cf. Section 3.1). For comparison, accuracies were also calculated

using correlation-based methods on the same data.
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2.11 Sensitivity analysis for dataset size

To examine the influence of the sample size on the

performance, we employed a fixed ratio of 2/3 for training to

validation sets using the LSO_DLM-TL method. The evaluation

began with 92 subjects for the training set and 46 subjects for

the validation set. These numbers were then reduced in 10%

increments until a minimum of eight subjects for the training set

and four subjects for the validation set was reached. Each sample

size condition was replicated 10 times in order to calculate the

mean and standard deviation of model performance. Similarly to

the previous section, the segment size for data augmentation was

set to 270 s to optimize performance. In accordance with Section

2.10 accuracies were also computed using the baseline methods

on the same subsets of data.
3 Results

3.1 Impact on the size of data augmentation

Our analysis, utilizing various data lengths for data

augmentation, shows a significant impact on model performance

across all deep learning-based methods. Increasing the intensity

of augmentation by reducing the size of the time segment led to

notable improvements in identification accuracy and its variance.
FIGURE 2

Classification performance depending on the length of the ROI time course.
seconds) and the achieved classification accuracy for the LRO_DLM-CE mod
(light green line), with their respective standard deviations from 60 repetitio
accuracy utilizing correlation to compute the accuracy. Note that the x-axi
data augmentation by using shorter but many more time segments.
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Figure 2 demonstrates that as data segment sizes decrease, model

performance enhances, emphasizing its sensitivity to the duration

and variability of the input data.

The classification results shown in Figure 2 indicate that all

deep learning models benefit from the random selection of

shorter time segments, leading to a consistent increase in

accuracy. The models achieve the highest performance under

maximum augmentation, which involves selecting a larger

number of time segments of 90 s duration randomly.

In contrast to the classical cross-entropy loss method

(LRO_DLM-CE), both triplet loss-based models (LRO_DLM-TL

and LSO_DLM-TL) showed improvements even for larger time

segments with fewer data augmentation steps. Particularly, the

LSO_DLM-TL method exhibited the best classification results,

maintaining high accuracy across all levels of data augmentation.

The classification results of the LSO_DLM-TL method also

demonstrated to have the lowest variance across 60 repetitions

among the methods and is the only one among the three that

offers generalization capabilities.

The results of the applied permutation t-test revealed

that the utilization of the triplet loss function leads to

significant improvements (p < 0.01) across nearly all

augmentation levels compared to the LRO_DLM-CE method.

The only exceptions were observed in the shortest (90 s) and

longest (875 s) time segments, with p-values of 0.099 and

0.753, respectively.
The graph illustrates the relationship between different segment sizes (in
el (blue line), LRO_DLM-TL model (green line), and LSO_DLM-TL model
ns shaded accordingly. The orange dashed line represents the baseline
s is inverted, as smaller segment sizes corresponding to higher levels of
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3.2 Performance benchmarking for
LRO splitting

We investigated various LRO-split scenarios by examining the

performance under two edge cases: minimum and maximum

augmentation. The baseline accuracy in identifying subjects based

on FC was found to be 79.3%. In contrast, the deep learning

model utilizing cross-entropy loss (LRO_DLM-CE) demonstrated

an average identification accuracy of 90.3% ± 1.8%, representing

an improvement of approximately 11% over the baseline. The

variant of the deep learning model using triplet loss (LRO_DLM-

TL) also achieved high accuracies, with a mean accuracy of

91.7% ± 3.6%.

When the input data was augmented using a random time

segment of 90 s, both models demonstrated improved

performance. Specifically, the LRO_DLM-CE model achieved an

accuracy of 98.1% ± 0.7%, while the LRO_DLM-TL model

achieved an accuracy of 97.8% ± 1.4%. Table 2 presents the

performance outcomes of the LRO_DLM-CE and LRO_DLM-TL

models with and without data augmentation. While the

LRO_DLM-TL and LRO_DLM-CE models exhibited comparable

performance in edge cases, both models demonstrated superior

performance to the correlation-based method, particularly when

data augmentation was applied.
3.3 Performance benchmarking for
LSO splitting

In the LSO scenario, the LSO_DLM-TL model demonstrated

significant generalization capabilities. Using a fixed 270-s data

augmentation segment size and a six-fold cross-validation

protocol, the analysis was repeated 10 times, which is consistent

with the LRO approach. The model achieved an accuracy of

99.7 ± 0.5. It is worth noting that this high accuracy was achieved

using a steep split ratio of 1/6, with 23 subjects in the test set

and 138 in the training set. To provide a comprehensive

overview of the mode’s performance under those optimal

conditions, key metrics are summarized in Table 3.

As illustrated in Figure 3, the UMAP visualization provides a

two-dimensional representation of the 256-dimensional

embeddings obtained from the LSO_DLM_TL model using 270-s
TABLE 2 Identification accuracy in leave-run-out (LRO) scenarios.

Method Accuracy
Baseline 0.793

LRO_DLM-CE 0.903 ± 0.018

LRO_DLM-TL 0.917 ± 0.036

LRO_DLM-CE (augmented 90 s) 0.981 ± 0.007

LRO_DLM-TL (augmented 90 s) 0.978 ± 0.014

TABLE 3 Performance metrics for DLM-TL in LSO splitting with six-fold cros

Method Accuracy Precision
LSO_DLM-TL (augmented 270 s) 0.997 ± 0.005 0.998 ± 0.004
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data segments. In this visualization, training data is denoted by

crosses, and test data by circles, with different colors representing

different subject IDs. The visualization illustrates a discernible

clustering of subjects, indicating that the mode’s embeddings can

effectively capture subject-specific features. It is noteworthy that

training and test subjects from the same class tend to cluster

closely, demonstrating the mode’s ability to generalize well across

both sets. For clarity, only 10 exemplary subjects from each set

are shown.
3.3.1 Influence of the split ratio
The relationship between classification performance and

different sample sizes in the training and validation sets is

illustrated in Figure 4. As the number of training subjects

increases, there is a noticeable improvement in model accuracy,

reaching a plateau near the size of the full dataset. A decrease

in standard deviation with larger training sizes indicates

increased model stability. The deep learning approach

outperforms the correlation-based baseline when at least 41

subjects, or approximately 30% of the dataset, are used for

training. Two primary observations can be made from this

data. First, a larger training dataset can improve accuracy and

give a more consistent performance across different dataset

splits. Second, the increase in correlation performance may be

due to the reduced number of subjects in the validation set,

while the improvement in model performance is influenced by

both the reduction in validation subjects and the addition of

more training data.
3.3.2 Impact of dataset size
Figure 5 shows that the LSO-DLM-TL model demonstrates

superior performance compared to the correlation-based

approach when the dataset size reaches 40 subjects. As the

number of subjects increases, the accuracy of the model

stabilizes, achieving a mean of 97.1% ± 0.8% at 138 subjects

(46 of which were used for validation). Convergence is

observed around 82 subjects, accompanied by a reduction in

the standard deviation. The model exhibits its least

optimal performance at 90% ± 11.8% with 12 subjects (4 used

for validation).

The figure also illustrates that the correlation-based approach

demonstrates optimal performance on very small datasets,

achieving an accuracy of 96.4% ± 5.1% with four validation

subjects. However, its performance declines monotonically as the

dataset size increases, with its poorest performance at 85.6% ±

2.8% when 46 subjects are used for validation. The LSO-DLM-

TL model demonstrates a consistent performance advantage over

the correlation approach for datasets of 40 subjects or more,

while the correlation approach exhibits a decline in performance

as the dataset grows.
s-validation and data augmentation (270 s).

Recall F1 - score N-subjects train/test-
0.997 ± 0.005 0.997 ± 0.005 115/23
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FIGURE 3

UMAP Visualization of the 256-dimensional embeddings generated by the LSO_DLM_TL model, trained on 270-s data segments over a total of 50
epochs. The plot illustrates a two-dimensional projection at epoch 37, chosen for its lowest validation loss. Each point on the plot represents data
from an individual subject. Training and test set data are indicated by crosses and circles, respectively, while different colors correspond to
different subject IDs, facilitating the observation of clustering patterns. To enhance visual clarity, only 10 exemplary subjects from each set are
displayed. A more comprehensive analysis, including the evolution of all 137 subjects over multiple epochs, is provided in the Supplementary Material.
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4 Discussion

The primary objective of this study was to address key challenges

in neural fingerprinting, particularly the necessity for model

retraining and the constraints posed by small datasets. By

employing a contrastive learning approach and implementing a

data augmentation technique to introduce more variability to the

model, we demonstrated the potential of deep learning models to

significantly improve subject identification accuracy, even under

limited data conditions. Our findings indicate that the LSO_DLM-

TL model not only enhances performance but also generalizes well

across different subjects without the need for extensive retraining.

The contrastive triplet loss model demonstrated robust

performance in the leave-subject-out scenario, aligning well with

the flexibility of correlation-based methods by offering adaptability

to new subjects. These advancements underscore the feasibility of

using deep learning for neural fingerprinting in practical settings,

where data availability is often limited.

As a reference for the identification performance, we utilized

the commonly employed method of correlation analysis as a
Frontiers in Nuclear Medicine 08
baseline for classifying subjects according to their functional

connectivity profiles. Although the correlation-based accuracy is

relatively low compared to previous publications (6, 8, 9),

ranging from 93% to 98%, it must be interpreted in relation to

the number of subjects and the number of parcellations used.

According to Li et al. (9), these two variables have opposite

influences on classification accuracy: an increased number of

parcellations potentially increases accuracy, while a larger sample

size tends to decrease accuracy.

We further investigated the identification performance using a

classical multi-class deep learning-based classification paradigm.

To facilitate comparison with other studies, the network

architecture was adapted from the current state-of-the-art

fingerprinting classification on FC profiles using resting-state

functional magnetic resonance imaging (rs-fMRI). In this model,

a feed-forward network is employed (10). For the dataset we

used in this study, this architecture using binary cross-entropy

loss achieved a mean accuracy of 90.3 ± 1.8%. This approach, as

anticipated, markedly enhanced the baseline performance by

approximately 11%. However, the results did not achieve the
frontiersin.org
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FIGURE 4

Impact on the identification accuracy with varying split ratios for the training and validation set (indicated by the two x-axes). The performance of the
LSO_DLM-TL model (green) is compared against the correlation-based identification (orange). The accuracy is shown for the validation set, except for
the baseline (dashed line), which uses Perso’s correlation on the full data set. The shaded regions represent the standard deviation for each method.

FIGURE 5

The performance of the LSO_DLM-TL model (green) is compared against the correlation-based identification (orange). The accuracy is shown for the
validation set, except for the baseline (dashed line), which uses Perso’s correlation on the full data set. The shaded areas represent the standard
deviation for each method.
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same level of performance as those reported in other models

discussed in the current literature (10, 12), especially without the

use of data augmentation. Even after adjusting the

hyperparameters, we were unable to achieve the same level of

accuracy as compared to previous studies (10, 12) on the

LEMON dataset using only 39 parcellations. A possible

explanation for this may be due to the fact that the number of

parcellations in previous studies was higher compared to our

study (Table 4). This supports that both the choice of

parcellation and the number of subjects is crucial to performance.

While Li et al. (9) explored the impact of subject number and

parcellation on fingerprinting, and Sarar et al. (10) looked into the

influence of time points and parcellation on feed-forward models

for fingerprinting, we extend their work by demonstrating the

effectiveness of augmenting temporal information to compensate

for limited spatial information. We applied data augmentation by

cropping time segments and observed a significant increase in

accuracy without the need to increase the partition size. It was

found that the fingerprinting accuracy with the LRO_DLM-CE

was highest when using FC derived from the shortest time

segment of 90 s. Reducing the segment size further resulted in

negligible changes in accuracy, based on our empirical

observations. However, this finding suggests that considering

treating time segment size as a hyperparameter for the DL model

could improve the results.

Furthermore, we reformulated the neural fingerprint

classification task as a similarity learning task by applying a

contrastive learning paradigm (see Section 2.6.2). The DLM-TL

models utilize a triplet of FC profiles, comprising an anchor, a

positive, and a negative data sample, to assess similarities (i.e.,

classification) among the FC profiles. A comparison of the

performance of contrastive learning (i.e., LRO_DLM-TL) with

the classification performance using cross-entropy loss

(LRO_DLM-CE) with and without maximally augmented data,

revealed that both models yielded comparable results when tested

under the usual LRO splitting scenario. Notably, the

parameterization with triplet loss (LRO_DLM_TL) demonstrated

a substantial improvement in performance, even when only

relatively minor augmentation was applied (Figure 2).

Nevertheless, contrastive learning is particularly advantageous for

LSO re-sampling and allows for learning generalizability to

classify unseen classes (i.e., subjects). In contrast to the widely

recognized acknowledgment that deep learning-based models

perform better with larger data, the contrastive learning

paradigm with LSO sampling presented comparable performance

to the state-of-the-art (10) with a much smaller parcellation size

and a moderately larger set of subjects.
TABLE 4 Comparative analysis of fingerprinting accuracy between augme
approaches (1, 7, 12).

Study DL model Accuracy Da
Ours LRO_DLM-CE 0.981 ± 0.007 LE

LRO_DLM-TL 0.978 ± 0.014 LE

(12) ConvRNN 0.985 H

(10) corrNN
normNN

0.996–0.998 H
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4.1 Influence of dataset size

In contrast with the prevailing assumption that extensive

datasets are necessary for the optimal functioning of deep learning

models, our experimental setup (comprising 39 ROIs and 15 min

of resting-state data) has yielded notable enhancements in model-

based fingerprinting relative to conventional correlation-based

techniques, with datasets comprising a minimum of about 80

subjects. We attribute this outcome to the intrinsic stability of the

fingerprinting process. Two opposing factors influence the

accuracy of the model with respect to dataset reduction. First, as

the number of subjects in the training set decreases, the mode’s

ability to learn inter-individual differences from the training data

and generalize these differences to new individuals is

compromised. Conversely, this decline in performance is

compensated by the associated simplification of the multi-class

classification problem when the number of subjects in the

validation set decreases at a similar rate (Figure 5). This latter

effect mirrors its counterpart in correlation-based methods and is

consistent with the observations of Li and colleagues who found

that a decrease in the number of subjects led to less cluttering of

functional connectivity in a high-dimensional space (9). This

robustness may prove advantageous in scenarios where collecting

large amounts of data is either impractical or cost prohibitive.

When evaluating the accuracy of fingerprinting in the LSO

context, both of these factors deserve attention due to their

combined effect on the sensitivity of the model to different split

ratios. Our analysis reveals that commonly used split ratios in the

range of 2/3–3/4 offer significant accuracy improvements in

comparison to the correlation-based approach (Figure 4). In

addition, accurate determination of the most appropriate split

ratios can improve the effectiveness of model training, allowing

researchers to make full use of existing data.
4.2 Potential applications

The integration of a contrastive learning framework enhances

the flexibility of deep learning models for the LSO-split use case.

Through a single training session, the model can effectively

acquire the ability to condense raw connectivity data into reusable

embeddings, which may be considered as fingerprints. While the

current study utilized these embeddings solely for identification,

future investigations could explore their potential to capture

diverse subject characteristics and function as potential

biomarkers. Although the present study employed these

embeddings exclusively for identification purposes, future research

could investigate whether they can capture various characteristics
nted LRO_DLM-CE and LRO_DLM-TL models and prior deep learning

taset N subjects Parcellation size
MON 138 39

MON 138 39

CP 100 236

CP 100 379
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of a subject and serve as potential biomarkers. If validated, training

identity as a pretext task within a large-scale transfer learning

context would present an appealing opportunity. This approach

would leverage a significant amount of publicly available data,

containing subject identifiers in their original form, for the

purpose of semi-supervised training. A potential clinical

application might involve utilizing consecutive annual functional

measurements to monitor consistency (self-similarity) and identify

early signs of disease or cognitive decline.

The study investigates a generic augmentation method that

demonstrates adaptability and potential extension to other

neuroimaging modalities. This approach effectively addresses the

trade-off between spatial and temporal resolutions, enhancing

model performance to meet specific needs. The flexibility of this

approach enables the model to analyze a wide range of spatio-

temporal data types at various levels. This versatility is essential

for models to generalize effectively across diverse and smaller

datasets, facilitating their application in various research settings.

The integration of contrastive learning and data augmentation

techniques has been shown to improve the adaptability and

generalization capabilities of deep learning models in

neuroimaging. This has significant potential for applications

across a wide range of modalities.
4.3 Limitations and future directions

The principal limitation of this study (n = 138) is its

generalizability. In the context of this study, the term

“generalizability” refers to the mode’s ability to distinguish

between subjects who were not included in the training dataset

with high accuracy. It is important to clarify that this definition

does not encompass the mode’s capability to generalize to data

from various sites or sources. Furthermore, the longevity of

neural fingerprints was not evaluated over extended periods, as

the dataset lacked longitudinal scans. This presents a significant

limitation, as exploring inter-subject variability over time would

provide insights into the long-term stability of neural fingerprints

and their reliability in fingerprinting tasks.

A crucial consideration is the relationship between data size and

model performance. It is commonly suggested that deep learning

models exhibit improved performance when exposed to larger

datasets. However, it is important to differentiate between wide

data, which refers to a greater number of recordings, and large data,

which includes a larger number of subjects. This differentiation is

especially pertinent when assessing the accuracy of a model in the

fingerprinting task, particularly when introducing new subjects. Our

findings indicate that as the complexity of the classification problem

increases, the challenge of achieving high performance in neural

fingerprinting tasks also escalates. In conclusion, while our model

can differentiate between unseen subjects, its ability to generalize to

other datasets or sites remains untested and is potentially limited.

Future research should prioritize on evaluating model performance

across diverse datasets and sources to enhance our comprehension

of its generalizability across datasets and potential applications in

broader contexts.
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5 Conclusion

In conclusion, we have successfully employed contrastive

learning and data augmentation techniques in a deep

learning-based data analysis to overcome limitations caused by a

limited data pool, resulting in robust identification performance.

Specifically, we focused on its utility in multi-class classification

scenarios, such as neural fingerprinting, as well as in data analysis

settings with small sample sizes or specific re-sampling scenarios

(LRO, LSO). Through data augmentation and a contrastive

learning technique, we have achieved an accuracy of about 98% in

identifying a single subject out of 138 subjects from 39 different

functional connectivity profiles and have demonstrated the

potential of the method for generalization to unseen subjects or

data. This approach could, for example, be used in the future to

estimate the similarity of data from a new subject (unknown to

the model) to data representing the control (normal data) or

experimental (e.g., abnormal data) group. The measure of

similarity is, in principle, adaptable and flexible across different

data types and neuroimaging modalities.
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SUPPLEMENTARY FIGURE S1

UMAP projections of the 256-dimensional embeddings generated by the
LSO_DLM_TL model for selected subjects across three epochs (3, 15, and
37) are presented. Each plot illustrates a two-dimensional projection of the
embeddings derived from 90-second rs-fMRI data segments. Individual
points represent data from subjects, with training set data indicated by
crosses and test set data indicated by circles. Different colors correspond
to different subject IDs, facilitating the visualization of clustering patterns
for each subject. The evolution of the clustering is depicted from the early
training stages (epoch 3) through intermediate training (epoch 15) to near
completion (epoch 37), highlighting how the model’s improving ability to
differentiate between subjects over time.
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