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Radiation therapy (RT) is a pillar of cancer therapy used by more than half of all
cancer patients. Clinically, RT is mostly delivered as external beam radiation
therapy (EBRT). However, the scope of EBRT is limited in the metastatic
setting, where all sites of disease need to be irradiated. Such a limitation is
attributed to radiation-induced toxicities, for example on bone marrow and
hematologic toxicities, resulting from a large EBRT field. Radiopharmaceutical
therapy (RPT) has emerged as an alternative to EBRT for the irradiation of all
sites of metastatic disease. While RPT can reduce tumor burden, it can also
impact the immune system and anti-tumor immunity. Understanding these
effects is crucial for predicting and managing treatment-related hematological
toxicities and optimizing their integration with other therapeutic modalities,
such as immunotherapies. Here, we review the immunomodulatory effects of
α- and β-particle emitter-based RPT on various immune cell lines, such as
CD8+ and CD4+ T cells, natural killer (NK) cells, and regulatory T (Treg) cells.
We briefly discuss Auger electron-emitter (AEE)-based RPT, and finally, we
highlight the combination of RPT with immune checkpoint inhibitors, which
may offer potential therapeutic synergies for patients with metastatic cancers.
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1 Introduction

The intricate interplay between radiation-induced DNA damage and immune

response underscores the evolving understanding of the impact of RT on tumor control.

Historically, radiation-induced DNA damage has been regarded as the primary

mechanism by which most solid tumors respond to ionizing radiation. This damage

leads to various cellular responses, such as apoptosis, senescence, and autophagy,

ultimately resulting in tumor control (1–3). Since these cytotoxic effects can also have

deleterious effects on bone marrow and systemic immune cell populations, RT has been

considered immunosuppressive (4, 5). Yet, emerging data suggests that RT has the

potential to elicit a favorable immune response by stimulating the immune system,

which in turn contributes to tumor eradication (6–8). However, harnessing these

therapeutic benefits hinges on preserving the function of effector immune cells amidst

the deleterious effects of radiation (8–10). Recent advances in diagnostic imaging,

tumor delineation, and motion management have resulted in the accurate delivery of

radiation to the tumor while sparing healthy organs and minimizing hematological

toxicities, including immune cell depletion (11). Despite these advances, EBRT cannot
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effectively be used to irradiate all disease sites in patients with

widespread metastatic disease due to radiation-induced toxicity,

including bone marrow and hematologic toxicities (12). In

contrast to EBRT, RPT combines a radionuclide (radioactive

isotope) with a tumor-targeting agent (e.g., antibody, peptide,

small molecule) that can potentially deliver systemic radiation to

all tumor sites. Although RPT shows considerable potential in

the oncology field, it faces numerous limitations, including the

restricted availability of certain radionuclides and biodistribution

(13–15). Additionally, RPT can also have dose-limiting toxicities.

In this review, we will cover the two most common groups of

therapeutic radionuclides: alpha (α) and beta (β−) emitters.

While the effects of EBRT on the immune system and healthy

tissues are beginning to be understood and are still being

explored, we are only starting to understand the effects of RPT

on the various immune cell lineages. Here, we summarize

existing pre-clinical and clinical data describing the impact of

RPT on CD8+ T cells, CD4+ T cells, NK cells, and Treg cells.
2 Immunomodulatory effects of
radiation therapy

Clinically, RT is delivered by EBRT or brachytherapy, with

EBRT representing the more commonly used treatment modality

(16–18). EBRT is a mainstay of oncological care and has been a

pillar of cancer therapy for more than a century (19). As such,

the majority of the described immunomodulatory effects of RT

have been gleaned from radiation delivered by EBRT (6, 20, 21).

In addition to inducing lethal DNA damage resulting in cell

death, RT can induce immunogenic cell death (ICD) of tumor

cells, which is characterized by the extracellular release of

adenosine triphosphate (ATP) and high-mobility group box 1

protein (HMGB1) (22–25). RT can also induce calreticulin

translocation from the endoplasmic reticulum onto the cell

surface, which can result in immune cell recognition, infiltration

in the tumor microenvironment (TME), and activation (26–30).

RT-induced ICD can stimulate antigen presentation by dendritic

cells (DCs), activating cytotoxic effector cells like CD8+ T cells

(31). Additionally, RT sensitizes tumor cells to immune-cell-

mediated killing by upregulating MHC-1 expression and

inducing the release of pro-inflammatory cytokines via a type 1

interferon (IFN) response, which further stimulates CD8+ T cells

(7, 32–36). While the immunomodulatory effects of RT delivered

by EBRT are being elucidated, RT can also be detrimental to

healthy cells, including immune cells (12, 37, 38). These effects

are of increased concern with large radiation fields, such as those

that would be needed to treat all lesions in patients with widely

metastatic cancer.
3 Limitations of RT delivered as EBRT

EBRT can cause potentially harmful side effects on the healthy

tissue surrounding the tumor (11, 18, 39). In addition,

lymphopenia is a concerning side effect of radiation observed in
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several solid tumors, such as high-grade glioma, head and neck,

lung, esophageal, pancreatic, and cervical cancers treated with

EBRT (40–48). The observed lymphopenia appears to correlate

with not only the size of the radiation field, but also the

radiation dose delivered to lymphoid organs such as the spleen

and lymph nodes (49, 50). Moreover, exposure to therapeutic

radiation can lead to the development of secondary malignancies

(51). The risk of such secondary malignancies is also associated

with the size of the radiation field (52). Furthermore, EBRT

cannot effectively target radiographically occult lesions. Thus, it

is generally not used when there is a need to irradiate all tumor

sites in patients with metastatic cancers (Figure 1). In these

instances, RPT is an attractive therapeutic option that can deliver

radiation systematically to all metastatic lesions (15, 53).
4 Radiopharmaceutical therapy: an
alternative to EBRT in metastatic
disease

RPT is a growing class of cancer therapeutics in which a

radionuclide is linked to a ligand such as a small molecule,

peptide, or antibody directed toward a cell surface antigen

upregulated on malignant cells (15, 54) (Figure 2). Following the

intravenous administration of a radiopharmaceutical agent, it

selectively accumulates in the tumor and the TME, thus sparing

healthy tissues that do not express the targeted antigens and

allowing the targeted delivery of radiation to malignant cells.

This makes RPT particularly attractive for the treatment of

metastatic and microscopic tumors (15, 55–57). Indeed, several

radiopharmaceutical agents have been shown to increase the

survival of patients with metastatic diseases, for example prostate

cancer and neuroendocrine cancer (58–60).

The recent approvals by the FDA of 223Ra-dichloride (223RaCl2;

Xofigo®) for the treatment of castration-resistant prostate cancer

with symptomatic bone metastases, 177Lu-DOTATATE

(Lutathera®) for gastroenteropancreatic neuroendocrine tumors

(GEP-NET), and 177Lu-PSMA-167 (Pluvicto®) for metastatic

castration-resistant prostate cancer (mCRPC) have resulted

in a renewed enthusiasm for the development of novel RPT

agents (61–63).

Radionuclides used for RPT can emit different forms of

therapeutic radiation, for example α-particles, β-particles, γ-rays,

and Auger electrons. Often, a given radionuclide will emit

multiple forms of radiation before decaying to a non-radioactive

element. Each form of emitted radiation is characterized by

unique properties, including range in biological tissues, relative

biological effectiveness (RBE), physical half-life, and linear energy

transfer (LET), which is the energy released per unit of distance

(54, 55, 64). While RPT offers the advantage of targeted

radiation delivery to tumor cells, it can induce dose-limiting

toxicities including bone marrow and hematologic toxicity,

nephrotoxicity, neurotoxicity, and hepatotoxicity (65–69).

β-particle emitters, which include Lutetium-177 (177Lu),

Yttrium-90 (90Y), and Iodine-131 (131I) are currently the most

commonly used radionuclides employed in RPT. β-particles have a
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FIGURE 1

Radiopharmaceutical therapy delivers radiation to all sites of disease with potentially less toxicity compared to external beam radiation therapy in
widely metastatic disease. (A) To irradiate all sites of disease in patients with widely metastatic disease, including microscopic disease using EBRT,
a large radiation field is needed, thus increasing the risk of toxicity. (B) In contrast to EBRT, due to the molecular targeting in RPT, radiation is
delivered to malignant cells expressing the target, while irradiation to healthy tissue is minimized due to the differential expression of the target.
Made with Biorender.com.
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low LET (∼0.2 keV/µm), and their range in biological tissue is

several millimeters (up to 12 mm) (54, 70), making them well-

suited for the irradiation of large tumors and tumors with

heterogeneous expression of the RPT antigen target. Due to their

low LET, β-emitters induce single-stranded DNA breaks, DNA

base modifications, and DNA-protein crosslinks, which are

more readily repairable compared to double-stranded DNA

breaks (71, 72).

α-particle emitters include radionuclides such as Radium-223

(223Ra), Actinium-225 (225Ac), and Astatine-211 (211At). They

have a short tissue range (50–100 µm), making them suitable for

the treatment of micrometastases, and a high LET (50–230 keV/

µm), thus making them highly cytotoxic (54, 71, 73). α-particles

mostly induce clusters of DNA damage, including double-

stranded DNA breaks, which are difficult to repair (54). The

relative biological effectiveness (RBE) for α-particles is 5-fold that

of β particles, highlighting the higher therapeutic potential of α-

emitters compared to β-emitters (74).

Auger electron emitters include radionuclides such as Iodine-

123 (123I), Iodine-125 (125I), and Indium-111 (111In). While they

have a very short range in tissue (< 1 µm), they possess a
Frontiers in Nuclear Medicine 03
medium to high LET (4–26 keV/µm) (54, 57, 73). Because of the

short range, therapeutic benefits may be achieved with AEEs

when they are in proximity of a sensitive cellular target such as

nuclear DNA.

The majority of β-particle emitters and AEEs can also emit γ

rays as they decay, which can be used for imaging purposes (75).

The utilization of γ rays for imaging to assess the distribution of

the uptake RPT is crucial for verifying that the uptake pattern

aligns with the intended therapeutic target and for estimating the

absorbed doses in both the target tissue and organs at risk. For

example, γ rays emitted by 177Lu and 131I can be used to

monitor in vivo biodistribution (76, 77). In some instances, data

subsequently gleaned from such biodistribution can be

used to increase the radiation dose and enhance therapeutic

benefits (78, 79).
5 Immunomodulatory effects of RPT

Similar to EBRT, RPT may also influence the immune system’s

response to tumors (7, 8, 80–86). This can be achieved through the
frontiersin.org
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FIGURE 2

Pharmacophoric model of a radiopharmaceutical agent. The therapeutic effect of a radiopharmaceutical is impacted by the properties of the various
domains of the pharmacophoric model, including the radionuclide, chelating agent, linker, and targeting molecule or moiety. Made with Biorender.com.
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direct or indirect irradiation of immune cells in the TME (87)

(Figure 3). The latter, known as the “bystander effect”, refers to

the phenomenon where cells that are not directly exposed to

radiation exhibit biological responses as a result of signals

emitted by neighboring irradiated cells (88, 89). However, in the

context of RPT, this classic definition has been challenged.

Emerging data, such as those by Leung et al., suggest that

bystander cells include irradiated and non-irradiated cells, while

the bystander effect emanates from irradiated cells, and this

contributes to the mechanism by which 223Ra is able to delay the

development of metastatic lesions (90–92). Indeed, signaling

molecules released from irradiated cells may not only affect

non-irradiated adjacent cells, but may also affect irradiated cells

in the vicinity. Moreover, the abscopal effect, defined as tumor

regression outside the irradiated region, is also thought to be

involved in the biological effects of RPT (87). However, because

of the different physical properties of the radionuclides, the

effects of RPT on immune cells may differ. Here, we provide a

summary of relevant studies evaluating the immunomodulatory

effects of α-emitter, β-emitter, and AEE-based RPT.
5.1 Effects of β-particle-emitter-based RPT
on immune cells

5.1.1 Preclinical studies
177Lu and 131I are examples of radionuclides that emit

β-particles and γ rays, while 90Y is an example of an almost pure

β-emitting radionuclides. With the recent FDA approval of
Frontiers in Nuclear Medicine 04
177Lu-based RPTs Lutathera® and Pluvicto®, there has been an

increased and renewed interest in not only understanding the

mechanism of action on the TME but also the hematological side

effects of RPT and dose-dependent toxicities in the clinic (59, 60,

62, 63). Several studies have evaluated the safety and

immunomodulatory effects of β-particle RPT in the preclinical

setting (7, 8, 81, 93, 94). β-particle RPT can indirectly regulate

the function of immune cells in the TME through anti-tumor

response. For example, 90Y-NM600 (a radiolabeled tumor-

targeting alkylphosphocholine analog) triggers a type 1 interferon

response in irradiated malignant cells (7, 8). Furthermore,

β-particle RPT can also induce ICD in tumor cells (15, 64).

Rouanet and colleagues demonstrated that 131ICF01012 induced

the release of damage-associated molecular patterns (DAMPs)

such as HMGB1 and ATP into the extracellular milieu.
131ICF01012 also induced cell surface translocation of

calreticulin, along with the secretion of type I IFN (80). Here, we

will discuss the direct effects of β-particle-emitter RPT on

specific immune cell populations.

5.1.1.1 Regulatory T (Treg) cells
Following administration of 90Y-based RPT, FOXP3+

immunohistochemistry (IHC) staining revealed a notable

reduction of Treg cells in the TME of tumors generated by the

EL4 lymphoma cell line in murine syngeneic models (81).

5.1.1.2 CD4+ T cells
In murine models of medullary breast adenocarcinoma, Vito and

colleagues observed that while the 177Lu-BSA-tetrazine RPT did not
frontiersin.org
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FIGURE 3

Systemic radiopharmaceutical treatment may have direct and indirect effects on the tumor microenvironment and immune cells. Preclinical data
suggests that RPT with α-particles or β-particles has an immunostimulatory effect, such as an increase in type 1 interferon response, a decrease in
regulatory T cells (Tregs), and an increase in immunogenic cell death.
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significantly impact the level of CD4+ T cells in the peripheral blood

after 4 days, an analysis of the TME by IHC demonstrated a

significant decrease in intratumoral CD4+ T cells (95). Notably,

Vito et al. did not analyze the CD4+ T cell subset to determine if

they were specifically Tregs, however, Tregs are defined as CD4

+/Foxp3+, indicating that this treatment combination effectively

diminished nearly all CD4+ T cells. Similar to the observations of

Hernandez et al., the findings by Vito et al. suggest that this

treatment reduces the immunosuppressive tumor environment. In

addition to this direct effect of 177Lu RPT reported by Vito et al.,

another study highlighted the indirect effect of 90Y-NM600 RPT

on CD4+ T cells. Jagodinsky and colleagues co-cultured murine

B16 melanoma or MOC2 head and neck squamous cell carcinoma

cells in 90Y-NM600 until the tumor cells received a cumulative

radiation dose of 6 Gy. They found that the viability of CD4+ T

cells in the presence of 90Y-NM600 was enhanced when co-

cultured with previously irradiated MOC2 and B16 tumor cells.

Whereas in the absence of tumor cells, irradiation of CD4+ T cells

with 90Y-NM600 significantly reduced their viability. They also

investigated the expression of the immune checkpoint marker

CTLA-4 and the immune activation signal IFN-γ on the T cell

surface. They found that CTLA-4 was significantly upregulated on

the CD4+ T cells in the presence of 90Y-NM600-treated MOC2 or
90Y-NM600-treated B16 cells, compared to the untreated controls.
Frontiers in Nuclear Medicine 05
Additionally, they found that in the same experiment, IFN-γ was

not significantly changed (7). This suggests that RPT to tumor cells

induces signaling to CD4+ T cells that increases viability, but also

increases immune inhibitory signals, potentially indicating a

need for immunotherapy to block the upregulated immune

checkpoint pathways.

5.1.1.3 CD8+ T cells
Following treatment with 90Y-NM600 RPT, mice bearing EL4

lymphoma tumors revealed not only an increased infiltration of

CD8+ T cells in the TME but also a significant activation of

these infiltrated CD8+ T cells (81). Conversely, in a murine

model of medullary breast adenocarcinoma, intratumorally

delivered 177Lu-BSA-tetrazine RPT significantly decreased CD8+

T cells in the TME; however, this decrease was not seen in the

CD8+ T cells in the peripheral blood (95). This was likely due to

the targeting agent that was used, as in another experiment they

found that intravenous administration of 177Lu-BSA-tetrazine

RPT had poor tumor retention and high uptake in other tissues.

Intratumoral delivery of 177Lu-BSA-tetrazine RPT allowed for

local treatment while minimizing the systemic effect on

peripheral CD8+ T cells. As described for CD4+ T cells, co-

culture of CD8+ T cells with MOC2 or B16 tumor cells

previously irradiated with 90Y-NM600 RPT indirectly enhanced
frontiersin.org
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the proliferation and activation of CD8+ T cells as demonstrated by

increased viability and an increased secretion of IFN-γ. Moreover,

CTLA-4 was similarly upregulated on the CD8+ T cells (7). In a

murine model of prostate cancer, Potluri et al. observed that 90Y-

NM600 RPT increased the infiltration of CD8+ T cells in the

TME. However, similar to the observations by Jagodinsky et al.,

immune checkpoints including PD-1, CTLA-4, LAG-3, and

VISTA were upregulated on the CD8+ T cells. They also revealed

that the CD8+ T cell compartment showed an early increase in

effector memory CD8+ T cells, with no increase in either the

central memory, resident memory, or short-lived effector cells

(93). While Hernandez et al. did not quantify specifically the

memory populations following 90Y-NM600 treatment of EL4

tumors, they found in a rechallenge experiment that previously

treated complete responder mice inoculated again with

EL4 did not grow tumors, suggesting that RPT can induce

memory formation (81).

5.1.1.4 Natural killer (NK) cells
Patel et al. found that NK cell numbers were significantly

increased in the TME of B78 tumors, a murine melanoma

model, following 90Y-NM600 (8). A similar effect on NK cells

was noted when a murine model of human neuroendocrine

tumors was treated with 177Lu-based RPT. Additionally, such

treatment enhances the activation of the status of infiltrated NK

cells, as demonstrated by their expression of Fas ligand (FasL) (96).

5.1.1.5 Dendritic cells and macrophages
Several preclinical studies have reported a decrease in

macrophages in the TME following 177Lu-based RPT (81, 95). By

staining for the macrophage F4/80 antigen, it was found that
177Lu-BSA-tetrazine RPT moderately decreased the infiltration of

macrophages in the TME of medullary breast adenocarcinoma

(95). Potluri et al. showed that 3 days after 90Y-based RPT,

dendritic cells (DCs) from a murine prostate cancer model showed

a non-significant increase in PD-L1 expression (93). Wu et al.

demonstrated that 177Lu-DOTATATE increased the infiltration of

antigen-presenting cells expressing CD86+ within the TME of a

murine model of a human neuroendocrine tumor (96).

Through these preclinical studies, it has become clear that

systemically delivered RPT has dynamic effects on the immune

cells present in the TME. In several of the aforementioned

studies, RPT monotherapy did not elicit a complete tumor

response. As such, many included a combination with immune

checkpoint inhibition (ICI) to synergize the immunomodulatory

effects of the RPT (7, 8, 81, 93). This indicates a need for careful

study of the immune cell types present in the TME, along with

the activation and exhaustion status, to determine which, if any,

tumor models will benefit from RPT monotherapy or require

combinations with other therapies, such as immunotherapy, to

increase the effectiveness of the RPT.

5.1.2 Clinical studies
Peptide receptor radionuclide therapy (PRRT) has been

clinically employed for nearly two decades for the management of

selected malignancies (97). PRRT is safe and considered to be an
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effective treatment for two types of solid tumors: neuroendocrine

tumors (NET) and gastroenteropancreatic neuroendocrine

neoplasms (NENs). 90Y-octreotide and 177Lu-ocreotate are the

two most common PRRTs used for NETs and NENs (98, 99).

Clinically, these β-particle-emitter-based PRRT agents show that

less than 13% of patients exhibit grade 3 or higher hematological

toxicities. However, in rare cases, myelodysplastic syndromes or

acute leukemia have been reported. Although the expected

absorbed doses were below the conventional toxicity threshold,

the persistence of acute and long-lasting bone marrow toxicities

still raises concerns, especially with repeated administration of

PRRT (97). Phase 1 studies have suggested that the upper limit of

total activity per cycle of 90Y to minimize hematological toxicity

is 5.18 GBq (98). The rate of hematological toxicity is further

increased in patients who received cytotoxic chemotherapy prior

to PRRT agents. To this end, Kwekkeboom et al. showed that the

rate of grade 2 or 3 leukocytopenia or thrombocytopenia was

67% in patients with a history of chemotherapy prior to
177Lu-based PRRT compared to 22% in patients without

prior chemotherapy (100).

Two seminal phase 3 trials led to the FDA approval of 177Lu-

DOTATATE and 177Lu-PSMA-617. In the NETTER-1 trial, 116

patients were administered 7.4 GBq 177Lu-DOTATATE every 8

weeks for 4 cycles. In total, 9% of patients had a grade 3 or higher

lymphopenia (60). In the phase 3 VISION trial, which enrolled

831 patients with mCRPC, patients received either standard of

care only or standard of care plus 177Lu-PSMA-617. Compared to

the standard of care-only group, there was a 38% reduction in the

risk of death and a 60% decrease in disease progression with the

addition of 177Lu-PSMA-617 to the standard of care. Although

side effects were reported, these did not impact the quality of life

of the patients (59). Further analysis of the VISION trial indicated

that the average total absorbed dose for 6 × 7.4 GBq (44.4 GBq)

was 1.5 Gy (±0.9) in the bone marrow (101). Moreover, in the

cohort receiving 177Lu-PSMA-617, the rate of hematological

toxicity correlated with the extent of bony metastatic disease

burden, as the absorption in these metastatic sites resulted in the

irradiation of adjacent bone marrow (102).

Clinically, the β-particle emitter radioisotopes have been shown

to be well tolerated and safe. The renewed interest in the field has

inspired new clinical trials and unique approaches to better target

tumors. However, many of the clinical trials’ primary outcomes is

overall survival or disease-free progression, with few analyzing the

effects on the systemic immune system, only on the hematologic

toxicities of the radionuclides. Understanding the effects and

limits of each of these RPTs in the TME and on the immune

cells present will be critical to determining optimal combinations

of RPTs and immunotherapy, including ICI, in the future.

5.1.3 Toxicities induced by β-particle-emitter-
based RPT

Because damage induced by β-particle emitters may be easily

repaired, higher doses may be necessary to achieve a therapeutic

response, which can paradoxically lead to more treatment-related

toxicities. Bone marrow and hematologic toxicity, such as

anemia, leukopenia, and thrombocytopenia, are the frequent side
frontiersin.org
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TABLE 2 Summary of clinical toxicities of β-particle-emitter-based RPT:
lutetium-117-dotatate (60).

Radionuclide Lutetium-117
Targeting agent Dotatate

Clinical indication Metastatic midgut neuroendocrine tumors

Treatment arm Octreotide alone 177Lu-Dotatate +Octreotide

Patients (%) N = 110 (100%) N = 111 (100%)

Shea et al. 10.3389/fnume.2024.1331364
effects of β-particle emitter-based RPT (103). Furthermore, some

β-emitting radiopharmaceuticals are excreted through the

kidneys, posing a risk of nephrotoxicity (104). We have

summarized the major clinical toxicities observed during the

phase 3 trials that led to FDA approval of 177Lu-PSMA-617 in

mCRPC (Table 1) and of 177Lu-DOTATATE for metastatic

midgut neuroendocrine tumors (Table 2).

Adverse event All grades Grade ≥3 All grades Grade ≥3
Hematologic

• Anemia 6 (5) 0 (0) 16 (14) 0 (0)

• Thrombocytopenia 1 (1) 0 (0) 28 (25) 2 (2)

• Neutropenia 6 (5) 1 (1) 6 (5) 1 (1)

• Lymphopenia 2 (2) 0 (0) 20 (18) 10 (9)

Non-hematologic

• Constipation NR NR NR NR

• Diarrhea 21 (19) 2 (2) 32 (29) 3 (3)

• Nausea 13 (12) 2 (2) 65 (59) 4 (4)

• Vomiting 11 (10) 1 (1) 52 (47) 8 (7)

• Fatigue 28 (25) 2 (2) 44 (40) 2 (2)

NR, not reported.
5.2 Effect of α-particle-emitter-based RPT
on immune cells

5.2.1 Preclinical studies
The advantages of α-particles resulting from their physical

properties (short tissue range and high LET) and the regulatory

approval of 223RaCl2 for patients with mCRPC have stimulated

the development of several α-particle-emitter-based RPTs. Several

reports indicate that α-particle irradiation elicits immune

activation (82, 84, 105). Here, we will discuss some preclinical

studies that have evaluated the effects of α-particles on specific

immune cell populations.

5.2.1.1 Regulatory T (Treg) cells
Ferreira et al. showed that 225Ac-NM600 abrogated the infiltration

of Treg cells in the TME of murine prostate cancer (105). In this

study, they compared the anti-tumor and immune modulatory

effects of 225Ac-NM600 and 177Lu-NM600 in two different

immunocompetent prostate cancer models: MyC-Cap in FVB/NJ

mice and Tramp-C1 in C57BL/6 mice. They injected these mice

intravenously with either 7.4 or 18.5 kBq of 225Ac-NM600, or 5.5

or 18.5 MBq of 177Lu-NM600. After demonstrating the higher

anti-tumor effect of 225Ac-NM600 compared to 177Lu-NM600,

the immune response was compared. Immunophenotyping of the

TME revealed that 7.4 or 18.5 kBq of 225Ac-NM600 resulted in a

significant decrease of Tregs at 28 days post-injection in the
TABLE 1 Summary of clinical toxicities of β-particle-emitter-based RPT:
lutetium-117-PSMA-617 (59).

Radionuclide Lutetium-117
Targeting agent PSMA-617

Clinical indication Metastatic castration-resistant prostate cancer

Treatment arm Standard of care alone 177Lu-PSMA-617 +
standard of care

Patients (%) N = 205 (100%) N = 529 (100%)

Adverse event All grades Grade ≥3 All grades Grade ≥3
Hematologic

• Anemia 27 (13) 10 (5) 168 (32) 68 (13)

• Thrombocytopenia 9 (4) 2 (1) 91 (17) 42 (8)

• Neutropenia NR NR NR NR

• Lymphopenia 8 (4) 1 (0.5) 75 (14) 41 (8)

Non-hematologic

• Constipation 23 (11) 1 (0.5) 107 (20) 6 (1)

• Diarrhea 6 (3) 1 (0.5) 100 (19) 4 (1)

• Nausea 34 (17) 1 (0.5) 187 (36) 7 (1)

• Vomiting 13 (6) 1 (0.5) 100 (19) 5 (1)

• Fatigue 47 (23) 3 (1.5) 228 (43) 31 (6)

NR, not reported.
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Tramp-C1 TME and at 7-, 14-, and 28-days post-injection in the

MyC-Cap TME, whereas 177Lu-NM600 had no effect. As Tregs

are immunosuppressive cells, their decrease in the TME is

beneficial for the anti-tumor response and could explain the

superior anti-tumor effect observed with 225Ac-NM600 compared

to 177Lu-NM600.

5.2.1.2 CD8+ T cells
Malamas et al. reported the immunomodulation in tumor cells

exposed to 223Ra and demonstrated that 223Ra enhanced T cell-

mediated lysis of tumor cells by CD8+ T cells (82). In this study,

breast (MDA-MB-231, ZR75-1), prostate (LNCaP, PC3), and

lung (H1703, H441) carcinoma cells were first exposed for 96 h

to 223Ra, delivering a radiation dose of 4 or 10 Gy. After

establishing that there was no substantial tumor cell death,

treated cells were co-cultured with CD8+ T cells specific for

CEA, MUC, and brachyury epitopes. Their result showed a

significant increase in T cell-mediated killing of all the cancer

cells tested after 4 or 10 Gy of 223Ra. They concluded that

sublethal doses of 223Ra enhance HLA-restricted, antigen-specific,

CTL-mediated lysis of various human carcinomas and that such

killing can be achieved by targeting a broad repertoire of tumor-

associated antigens (82).

Leung et al. reported that 223RaCl2 decreased the splenic CD8+

T cells in Swiss mice (106). Their study aimed to determine the

effect of 223RaCl2 on splenic immune cell population size and

function. Three groups of mice received intravenously 0, 50, or

600 kBq/kg of 223RaCl2, and the spleens were harvested at days 5,

12, and 19 post-injections for analysis. Compared with the

0 kBq/kg group, there was no significant difference in the total

number of harvested splenocytes in the 50 and 600 kBq/kg

treated groups at all time points. However, treatment with

600 kBq/kg of 223RaCl2 was found to decrease splenic CD8+ T

cells (p = 0.043) significantly and the 50 kBq/kg-treated group

approached significance (p = 0.059) at day 19 post-treatment. In

contrast, a very slight decrease in CD8+ T cells was observed
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before 19 days. Based on these results, they concluded that the

effect of 223Ra on splenic cells is time- and dose-dependent.

Ferreira et al. observed a dose- and time-dependent decrease in

the frequency of CD8+ T cells in the MyC-Cap TME of mice

injected with 7.4 (∼300 kBq/kg) or 18.5 kBq (∼700 kBq/kg) of
25Ac-NM600, with the highest decrease in CD8+ T cells at

28 days post-injection with approximately 700 kBq/kg (69). They

observed the highest decrease in CD8+ T cells at 19 days post-

injection with 600 kBq/kg. However, no significant decrease in

CD8+ T cells was observed in the Tramp-C1 TME after injection

with 7.4 (∼300 kBq/kg) or 18.5 kBq (∼700 kBq/kg) of 225Ac-

NM600 (105). Moreover, 225Ac-NM600 promoted a more active

CD8+ T cell repertoire with increased expression of activation

and proliferation markers such as CD44+, CD69+, and Ki67+ on

CD8+ T cells, suggesting the induction of an immunogenic TME

by 225Ac-NM600, which could be responsible for the anti-tumor

response. However, no difference in tumor growth delay was

observed after treatment with 18.5 kBq of 225Ac-NM600 + anti-

CD8 antibody injected twice a week (for depletion of CD8 +

cells). This indicated that the anti-tumor effect observed with
225Ac-NM600 did not depend on CD8+ T cell infiltration or

stimulation but instead on Treg cell decrease in the TME (105).

5.2.1.3 Natural killer (NK) cells
Leung et al., after investigating the effect of 223RaCl2 on splenic

immune cell population size and function in Swiss Webster mice

(106), reported a constant decrease in NK cell population at 5,

12, and 19 days post-injection of 600 kBq/kg of 223RaCl2, while

50 kBq/kg had no effect on NK cell population. As NK cells are

a vital part of the immune cells to eliminate cancer cells, a

decreased level of NK cells is counter-beneficial for anti-tumor

immunity. Furthermore, the cytotoxic activity of NK cells in

mice treated with 50 kBq/kg was significantly increased on day

12, while only a marginal increase in cytotoxicity was noted in

the group treated with 600 kBq/kg. Based on these results, Leung

et al. suggested that low activity of 223Ra would be beneficial to

avoid a steady decrease in the NK cell population while

potentiating their immune response (106).

5.2.1.4 Dendritic cells
Gorin et al. studied the immunogenicity of bismuth-213 (213Bi)

in mice with MC-38 adenocarcinoma using a vaccination approach

(84). Mice were vaccinated 7 days before MC38 engraftment by

subcutaneous injection of 213Bi-irradiated MC-38 cells (6-h

incubation with 2.22 MBq/mL). Only 12% (3 of 25) of vaccinated

mice developed tumors, compared to 84% (21 of 25) in the

control group (non-vaccinated mice), suggesting that 213Bi-

treated MC-38 cells are highly immunogenic and can elicit a

robust anti-tumor response in vivo. Therefore, they explored in

vitro the mechanisms supporting the α-particle-induced anti-

tumor immune response by analyzing the immature bone

marrow-derived dendritic cell (BMDC) phenotype after 48 h of

incubation with conditioned medium from control or 213Bi-

treated MC-38. Their results revealed that conditioned medium

from 213Bi-treated MC-38 elicited a significant increase of 32% in

CD40 expression, 44.8% in CD86 expression, and a non-
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significant upward trend of 4.4% in CD80 expression on

BMDCs. The increased expression of these costimulatory

molecules (CD40, CD80, and CD86 on the surface of BMDCs) is

a characteristic of DC activation. However, no activation was

observed when immature BMDCs were co-cultured with control

media. These results suggest that 213Bi induces the release of

soluble agents from MC-38 that are capable of activating DCs in

vitro.

Furthermore, 213Bi increased the release of DAMPs such as

HMGB1 and Hsp70 in the conditioned medium from treated

MC-38 cells, which may contribute to the anti-tumor response

by activating DCs (84). Similarly, Hagemann et al. demonstrated

that the thorium-227 (227Th)-conjugate BAY2287411 targeting

mesothelin induced an upregulation of DAMPs (83). After the

exposure of OVCAR-3 cells to BAY2287411, upregulation of the

DAMPs, calreticulin, HSP70, HSP90, and HMGB1 was observed.

Another study also confirmed the upregulation of DAMPs after

exposure of MC-38 hMSLN cells to thorium-227 delivered by a

mesothelin-targeting compound, resulting in the subsequent

activation of dendritic cells (107).

5.2.2 Clinical studies
Only a few clinical studies have assessed the immunomodulatory

effects of α-particle emitter-based RPT. Some are translational

observational studies, and others investigate the clinical benefits of

treatment combinations. Here, we will discuss the two primary

studies that have evaluated the immunological changes in 223RaCl2-

treated mCRPC patients by phenotyping the peripheral blood

mononuclear cells (PBMCs) during 223Ra-treatment.

5.2.2.1 CD8+ T cells
In a study reported in 2017, Kim et al. collected PBMCs before

and 3–4 weeks after treatment with 223RaCl2 in 15 men with

mCRPC and analyzed the CD8+ T cell population along with

their subsets (naive, central memory, and effector memory) by

flow cytometry (108). After IV administration of 50 kBq/kg, there

was no change in the CD8+ T cell population. However, the

proportion of effector memory CD8+ T cells expressing PD-1

was significantly reduced from 20.6% to 14.6% (108).

To better understand the immunological effects of 223Ra,

Creemers et al. investigated the composition and abundance of

circulating PBMCs in mCRPC patients before, during, and

after treatment with 223RaCl2 (109). A total of 30 patients with

mCRPC had their PBMCs collected, and longitudinal alterations

in circulating immune cell populations were examined through

immunophenotyping analysis. Patients received 6 monthly

injections of 55 kBq/kg of 223RaCl2. They reported an increase in

the proportion of CD8+ T cells expressing the immune

checkpoint molecules PD-L1, ICOS, PD-1, or TIM-3, while the

percentage of T cells within the PBMC population decreased

during 223RaCl2 treatment. Their study was not limited to CD8+

T cells. They also reported a decrease in the total lymphocyte

counts by approximately a factor of 2 during treatment, while

monocyte counts remained relatively stable during this time. In

addition to an increase in the proportion of T cells expressing

inhibitory checkpoint molecules (PD-L1, PD-1, and TIM-3), an
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TABLE 3 Summary of clinical toxicities of α-particle-emitter-based
RPT (58).

Radionuclide Radium-223
Clinical indication Metastatic prostate cancer

Targeting agent None

Treatment arm Placebo Radium-223

Patients (%) N = 301 (100%) N = 600 (100%)

Adverse event All grades Grade ≥3 All grades Grade ≥3
Hematologic

• Anemia 92 (31) 40 (13) 187 (31) 76 (13)

• Thrombocytopenia 17 (6) 6 (2) 69 (12) 39 (6)

• Neutropenia 3 (1) 2 (1) 30 (5) 13 (3)

• Lymphopenia NR NR NR NR

Non-hematologic

• Constipation 64 (21) 4 (1) 108 (18) 6 (1)

• Diarrhea 45 (15) 5 (2) 151 (25) 9 (2)

• Nausea 104 (35) 5 (2) 213 (36) 10 (2)

• Vomiting 41 (14) 7 (2) 111 (18) 10 (2)

• Fatigue 77 (26) 18 (6) 154 (26) 24 (5)

NR, not reported.
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increase in the proportion of Treg and myeloid-derived suppressor

cells (MDSC), two immunosuppressive subsets, was also observed

during 223RaCl2 treatment. While no previous data on the effect

of 223RaCl2 on Tregs or MDSCs are available, these findings are

supported by several other studies reporting that ionizing

radiation can lead to the accumulation of circulating and tumor-

infiltrating Tregs (110–112) and MDSCs (113). A mechanistic

understanding of the cause of this observation might be helpful

to stimulate the immune system and optimize combined

treatment approaches with RPT and immunotherapies.

α-particle emitters have diverse, profound, and unique

immunostimulatory effects. The use of α-particle emitters as

radiopharmaceuticals offers several advantages. α-particles have

high linear energy transfer and a short path length, making them

effective in killing cancer cells while minimizing damage to

surrounding healthy tissue. α-particles may also be more effective

in treating radioresistant tumors, providing an alternative option

for patients who may not respond well to other forms of

radiation therapy. This may be due to some of the

immunomodulation occurring with the use of α-particle RPT. As

interest increases in the field, it will be just as critical to

determine the timing and dosing of α-particle RPT

administration as it will be to investigate which immune

populations are critical to achieving a complete response.

Understanding the impact of α-RPT on immune cell populations

is essential to elucidating the mechanisms behind its

immunostimulatory effects. Such insights could pave the way for

the development of combination therapies that act synergistically

with α-RPT, potentially promoting tumor elimination and

improving treatment outcomes for cancer patients.

5.2.3 Toxicities induced by α-particle-emitter-
based RPT

α-particle-emitting RPT can lead to hematologic toxicity,

including anemia, lymphocytopenia, leukopenia, thrombocytopenia,

and neutropenia. However, due to the shorter path length of

α-particles, these toxicities tend to be less severe compared to

those induced by β-particle emitters (115, 115). Table 3

summarizes the key hematological and non-hematological

toxicities observed during the phase 3 trial evaluating the safety

and efficacy of 223RaCl2 vs. placebo in patients with mCRPC

and bone metastases.
5.3 Effect of Auger electron-emitter-based
RPT on immune cells

The probability of AE hitting immune cells present in the

TME is very low because of their short range (< 1 µm). Even at

the cellular level, AE ionization is so localized that AEEs must

be delivered close to a sensitive cellular target (i.e., nuclear

DNA, mitochondria, or cell membrane) to maximize their

efficacy. For this reason, the immunomodulatory effect of AEE-

RPT is the least explored among the forms of emitted radiation

from RPT. Only two studies have investigated the effectiveness
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of AEE radioimmunoconjugates in eradicating the leukemic

stem cell population in acute myeloid leukemia or in

eliminating myeloid leukemia cells (116, 117). However, these

studies are outside the scope of the present report. On the

other hand, AEEs are also responsible for non-targeted

bystander effects occurring in non-irradiated cells (57, 118). As

more efforts are needed to elucidate the immune effects of

AEE-based RPT, understanding the AE-induced bystander

effects will be critical. This bystander effect involves

communication between irradiated and non-irradiated cells

through gap junctions or releasing cytokine signals to the

extracellular matrix (119, 120). Signals mediated by the

bystander effect include cell death, genomic instability, cell

cycle, proliferation, and responses to radiation, including

radionuclides (56). Both in vitro and in vivo models have been

used to experimentally demonstrate the bystander effect with

AEE. Using deoxyuridine labeled with the AEE 125I (125IUdR),

Howell et al. labeled 50% and 10% of V79 cells, and after

replating the cells for clonogenic survival, the observed cell

viability in both groups was lower than predicted, implying the

existence of intercellular communication between irradiated and

non-irradiated cells (121). Using a xenograft model of human

colon adenocarcinoma in nude mice and the AEE (125IUdR),

Xue et al. demonstrated the bystander response in an in vivo

model (122). While the bystander effect occurs with various

radionuclides, it is crucial for the therapeutic effect of AEE due

to their very short range in tissue. The bystander effect may

also be mediated by exosomes, which have emerged as one of

the most attractive and promising candidates to initiate

bystander effects (123, 124). Double-stranded DNA contained

in the exosomes is increasingly recognized for triggering

immune responses by acting as DAMP signals (125–129).

Taken together, these findings suggest the need for additional

studies exploring AE-RPT-induced immune response.
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5.3.1 Toxicities induced by Auger electron-
emitter-based RPT

AEEs are often considered to be less toxic compared to α- and

β- emitters due to their short range in tissues, which limits their

ability to traverse cellular membranes and cause widespread

damage (130, 131). However, it is important to note that the

emission of other radiation types, such as gamma rays or

conversion electrons, in non-pure AEEs like 111In and 195mPt

could contribute to toxicity and should be investigated.
5.4 Combination of RPT with immune
checkpoint inhibitors (ICI)

Given the abundance of preclinical evidence suggesting the

immunostimulatory effects of RPT, the potential benefits of

combining RPT with ICI was investigated. Whether using β- or α-

particle-emitter-based-RPT in combination with ICI, preclinical

studies have reported mixed results, with various studies reporting

the therapeutic benefit of such combination therapy while others

have reported no benefit over RPT or ICI monotherapy (133).

While some of the results have been mixed, there has been a

promising positive trend with these combinations. Several studies

have shown the efficacy and safety of RPT and ICI combination

therapy, along with publishing the immunostimulatory effects of

the combinations (7, 8, 93). For example, a lower dose outside the

typical therapeutic range of 90Y was used to improve tumor

response, reduce spontaneously arising metastatic tumor burden,

increase complete response rates, and prolong overall survival

compared to ICIs or RPT alone (8). This study also focused on

the inherent characteristics of 90Y for dosimetric guidance during

treatment. Indeed, other groups have also begun to investigate the

therapeutic benefits of combining RPT and ICI while

simultaneously using RPT for imaging and dosimetry.

Kleinendorst et al. suggested the incorporation of dosimetric tools

to correlate the absorbed radiation dose with the immunological

effects (133). Other parameters such as the characteristics of the

TME, such as tumor metabolism, hypoxia, and immunogenicity,

may impact the immunomodulatory effects of RPT agents and the

response to ICI. Thus, a better understanding of these parameters

in the context of a therapeutic combination with RPT will be

critical to harnessing a potential clinical therapeutic benefit. The

selection of the optimal pairing of RPT (β- or α-particle emitters)

and ICI (PD-1/PD-L1 inhibitors or CTLA-4 inhibitors) will also

be crucial in implementing an effective therapeutic combination,

as several studies have shown the upregulation of immune

susceptibility markers following RPT (7, 93). As with any

combination therapy, determining the optimal timing of the

combination will also be critical.
6 Conclusion

RPT is revolutionizing cancer management, especially for

patients with metastatic disease. In addition to its direct cytotoxic
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effects on tumor viability through DNA damage, RPT has the

ability to indirectly affect tumor burden by altering the immune

system response. This modulation involves various mechanisms

including, but not limited to, induction of ICD, alteration of the

TME, and enhancement of antigen presentation. These immune-

mediated effects contribute to a comprehensive response against

cancer, highlighting the multifaceted nature of RPT’s therapeutic

impact. Understanding these dual mechanisms of action is

essential for harnessing the full potential of RPT in cancer

treatment strategies. In this review, we have covered several

avenues that can be addressed, including a better understanding

of the immune cells that play a role in the anti-tumor activity

following RPT. Elucidating the mechanisms of RPT-mediated

immune response, incorporating RPT dosimetry, selecting the

optimal ICI and radionuclide for RPT, and determining the

optimal timing, dose, and fractionation of RPT for the

therapeutic combination with ICI will be critical to fully

harnessing the therapeutic benefits of RPT while minimizing the

toxicities, especially in patients with metastatic disease. Through

dedicated exploration of these research paths, we can unveil the

full therapeutic potential of RPT and pave the way for tailored,

life-prolonging treatments for patients battling metastatic cancer.

This proactive approach not only fosters a deeper understanding

of RPT’s mechanisms of action but also enables the development

of novel strategies for optimizing treatment efficacy and

minimizing adverse effects. Ultimately, these endeavors hold the

promise of revolutionizing cancer care by offering personalized

therapeutic solutions that address the unique needs of each patient.
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