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Positron Emission Tomography (PET) is a powerful medical imaging technique
widely used for detection and monitoring of disease. However, PET imaging
can be adversely affected by patient motion, leading to degraded image
quality and diagnostic capability. Hence, motion gating schemes have been
developed to monitor various motion sources including head motion,
respiratory motion, and cardiac motion. The approaches for these techniques
have commonly come in the form of hardware-driven gating and data-driven
gating, where the distinguishing aspect is the use of external hardware to
make motion measurements vs. deriving these measures from the data itself.
The implementation of these techniques helps correct for motion artifacts and
improves tracer uptake measurements. With the great impact that these
methods have on the diagnostic and quantitative quality of PET images, much
research has been performed in this area, and this paper outlines the various
approaches that have been developed as applied to whole-body PET imaging.
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1 Introduction

Positron emission tomography (PET) imaging has been widely used medically, with its

most predominant use in oncologic imaging (1). Here, PET can be used as a tool for

whole-body examinations to assess cancer growth or spread. Additionally, PET imaging

has clinical applications in cardiology, neurology, and psychiatry (2). However, an

unavoidable issue in PET imaging stems from its time-resolved nature of acquisition

and thus its inherent sensitivity to subject motion occurring during image acquisition.

Image artifacts due to motion can significantly degrade image quality and compromise

diagnostic accuracy. Motion can stem from a multitude of physiological sources

including respiration, cardiac motion, and bulk patient motion.

Motion can cause both emission-emission misalignment and transmission-emission

misalignment in PET imaging (3). A transmission scan is typically acquired for

attenuation correction, but the introduction of motion can cause a misalignment

between transmission and emission scans, leading to incorrect attenuation correction

factors being applied. Emission-emission misalignments stem from motion occurring

either within or between emission scans which can lead to additional complications
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such as errors in physiological parameters. Getting accurate values

is especially important when it comes to quantitative kinetic

modeling. The presence of motion-induced blurring can lead to

errors in ROI definition. Tracer distribution changes over time,

and motion can disrupt the natural flow, thereby affecting the

reliability of kinetic modeling. When incorrect physiological

parameters are used in the kinetic modeling process, such as in

the Patlak analysis, it can lead to inaccurate and unreliable

results; changes to kinetic modeling parameters such as

distribution volume ratio or metabolic flux can significantly

impact the reliability of the analysis (3, 4). Hence, motion

correction is a crucial step for PET to improve the quality and

accuracy of the obtained images, especially with the development

of long axial field of view PET scanners with near or complete

total body coverage.

Various techniques have been employed and proposed to

minimize the effects of different sources of motion (5). Subject

motion can be categorized as either voluntary or involuntary.

One technique that is used to restrict voluntary motion is the use

of physical constraints, a commonly used approach across

multiple imaging modalities that constricts the movement of

subjects with physical padding and straps (6). However, this

method alone can be inadequate in keeping a subject from

inadvertently making small involuntary movements that can still

adversely affect the image quality. The severity of motion

artifacts is also dependent on the scanner that is being used.

Whole-body scanners are able to achieve shorter scan times and

thereby reduce motion blurring (7). This would mainly impact

bulk motion and respiratory motion (typically 12–18 breaths per

minute) and not cardiac motion (typically 60–100 beats per

minute), since the cardiac rate is still much higher than the

acquisition rate. Furthermore, multiple types of motion can occur

simultaneously within the single field of view (e.g., bulk head

motion and cardiac motion), which may require multiple,

simultaneous gating schemes.

As such, one of the essential techniques employed in PET

imaging is gating, which helps further minimize motion artifacts

caused by involuntary patient movement (5, 8). This technique

allows patients to breathe freely and increase comfort and

accessibility (9). Furthermore, this technique can be applied in

conjunction with physical constraints to help improve image

quality. Two main approaches have been explored to address this

challenge: hardware-driven gating and data-driven gating.

Hardware-driven gating uses sensors distinct from the PET

imaging system. The signals acquired from these devices are what

allow for prospective and retrospective motion correction across

medical imaging devices such as MRI and CT. The prospective

approach is achieved by synchronizing image acquisition with the

patient’s measured physiological signals, such as respiration or

cardiac activity, to reconstruct images at specific phases or

amplitudes in the respective motion cycles. Although prospective

gating is possible for PET imaging, retrospective gating is most

commonly utilized due to its greater flexibility in modern PET

scanners that utilize list-mode acquisition (10). Hardware-driven

retrospective gating approaches are achieved by combining

externally measured signals with the raw PET data after
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acquisition. On the other hand, data-driven gating retrospectively

analyzes the raw PET data to extract motion information rather

than obtaining this information from an external device. Each of

these approaches has its advantages and limitations, especially

when considering specific regions of the body being imaged. By

combining these approaches, motion correction in PET imaging

can be optimized to achieve superior quantitative and qualitative

images and relevant measures.
1.1 Technical foundations and clinical
applications of PET imaging

PET imaging targets a wide range of molecular and

physiological processes, providing valuable diagnostic and

prognostic information in various clinical applications. However,

there are fundamental limits that come with PET imaging that

impact the spatial resolution of acquired images. There are three

main factors that affect PET resolution: detector geometry,

annihilation photon acollinearity, and positron range (11).

PET scanners operate by having an array of detectors in a ring

to capture the emitted annihilation photons resulting from

positron emitting radioactive tracers. Each element of the

detectors used in the ring must be large enough so that it can be

sensitive enough to detect the incoming gamma rays. Having

smaller detectors could provide better spatial resolution and help

minimize parallax error, but it would come with the fundamental

trade-off of noise (12). Acollinearity is also an inherent issue in

PET imaging that arises from the electron-positron annihilation

process not being emitted at exactly 180° (1). With the line of

responses not intersecting at the right location, this can

introduce blurring and distortions. However, these issues are

relatively fixed per system and can be minimized by using a

small-ring detector setup (11). The positron annihilation range is

an inherent uncertainty that stems from positrons having their

annihilation events at a distance away from the source. This

leads to a spatial blurring effect that scales with higher positron

energies that can travel further before undergoing annihilation.

As such, the radionuclide used as a tracer for PET imaging not

only has a direct impact on the biological location of radiotracer

uptake but also on the image resolution. Hence, there are a wide

variety of radiotracers available that can be chosen depending on

the specific clinical application and the biological process being

investigated. Fluorine-18 is the most commonly used isotope in

PET scans and is used extensively in oncology as 18F-FDG

(fluorodeoxyglucose) (13). This isotope not only has a long half-

life of approximately 110 min, but also emits low-energy

positrons which effectively create a positron range (FWHM) of

0.54 mm (13, 14). With a small positron range, 18F can provide

high image resolution. These isotopes can be used in different

compounds as PET radiotracers such as FDG, NaF, FDDNP, and

FDOPA. FDG is widely used in oncology since it is a glucose

analog and able to be used to detect increased glucose

metabolism by cancer cells. Although 18F is an ideal radionuclide

for PET imaging, there is a codependence when developing

radiotracers, so other isotopes have also been explored such as
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11C, 89Zr, 124I, 68Fa, and 90Y (15). The initial development of

radiotracers looked at elements commonly found in the human

body, which resulted in 15O, 13N, and 11C being used as isotopes.

Novel PET radiotracers continue to be developed using a variety

of radioisotopes for an ever-growing number of applications.
1.2 Commonly imaged body regions and
motion

Medical imaging often focuses on specific regions of the body.

Common categorizations of general imaging targets are brain,

head/neck, chest, abdomen, spine, upper limbs, and lower limbs.

From each of these categories, PET imaging finds its use

particularly in the head, chest, and abdomen to evaluate specific

organs of interest such as the brain, lung, heart, and liver. Recent

developments in PET imaging have enabled total body

simultaneous imaging capability, making motion correction of

the entire body critical. However, due to the different types of
FIGURE 1

Diagram of techniques used to correct for head motion, respiratory motio
developed based on the specific application when imaging certain ana
the motion source that they are addressing. The left column shows a l
driven techniques.
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motion present in various regions of the body, motion needs to

be specifically considered for each region, as depicted in Figure 1.

Subject motion can be categorized as voluntary or involuntary.

Some common forms of voluntary motion are speaking and

moving of the limbs due to patient non-compliance. Voluntary

forms of motion are generally not an issue for PET imaging

because they can typically be addressed by asking the subject to

avoid movement. However, non-compliance (e.g., pediatric or

dementia patients) or patients who experience severe discomfort

can lead to voluntary motion. Involuntary motion sources are

typically the main ones that are considered when designing

motion correction strategies. The primary sources of motion that

are taken into consideration in whole-body PET imaging are

respiratory motion, cardiac motion, and bulk motion. While

respiratory motion and cardiac motion only results from

breathing and the beating of the heart, bulk motion encompasses

any large-scale movements, such as moving of the arms or legs.

When specifically imaging the chest or the abdomen, bowel

activity and peristaltic motion are sometimes also considered as

variables for motion correction. These motion sources can be
n, and cardiac motion for PET imaging. Multiple techniques have been
tomical areas, thus these techniques can be categorized based on
ist of hardware driven techniques, and the right column shows data
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further categorized as rigid or non-rigid motion. Rigid motion

involves simple translation or rotation, hence head motion is

commonly considered as rigid motion. On the other hand, non-

rigid motion involves more complex motion that could include

twisting or bending (5). As such, cardiac, respiratory, peristalsis,

and bulk motion are all forms of non-rigid motion. From all

these sources of motion, their impact varies depending on the

body region.

The head serves as a crucial target for PET motion correction.

The head, being the region of primary interest in many PET

studies, is particularly susceptible to motion artifacts due to its

anatomical complexity. Involuntary movements of the head can

introduce unwanted artifacts, distortions, or inaccuracies in the

resulting images. Motion correction methods aim to mitigate

these issues by compensating for head motion and restoring the

integrity of the acquired data. These methods employ

sophisticated algorithms and techniques to estimate and correct

the motion, ensuring that the resulting data or images accurately

represent the intended information. By addressing head motion,

motion correction methods enhance the quality and reliability of

various applications, enabling more accurate analysis, diagnosis,

and interpretation of the collected data. These head motion

correction methods can be classified into categories such as

image-based methods, sensory-based methods, retrospective

methods, prospective methods, and hybrid methods. Chest and

abdominal imaging are generally considered to have the highest

need for motion correction (8); the presence of cardiac,

respiratory, and peristatic motion can cause substantial

displacement and deformation. Furthermore, bulk patient motion

in combination with the previously mentioned motion sources

span a variety of temporal patterns which makes image

alignment and correction for this target anatomy challenging.
2 Hardware gating

Hardware-driven gating methods are commonly employed in

PET imaging to address the challenges posed by respiratory

motion. There are also other systems available to track other

sources of motion or multiple sources of motion simultaneously.

These hardware-based methods utilize external sensors or devices

to track the patient’s respiratory cycle and synchronize the PET

data acquisition accordingly. Several hardware-driven gating

techniques have been developed to correct for motion artifacts in

PET imaging. The majority of these techniques are applied as

retrospective gating approaches.
2.1 Head motion

Due to the nature of head motion, there are limited hardware-

based techniques that can be utilized. One option is the use of

optical-based tracking systems. These systems use cameras to

track head motion and observe mostly rigid motions of

displacement and rotation. This is often achieved with markers

being fixed to the subject and having the camera track the
Frontiers in Nuclear Medicine 04
motion of these markers. Camera-based methods can also be

achieved without the use of markers; they instead use facial

features as markers for motion tracking (16). The use of this

system is not limited to just correcting PET data but also sees

use with other imaging modalities and multi-modality cases such

as PET/MRI acquisitions. This technique has been demonstrated

on Alzheimer’s disease patients and is able to improve the

accuracy and reliability of PET/MR imaging for clinical

populations (17). However, as a hardware-based system, the

cameras used for motion tracking need to be set up prior to

scanning and can be quite intrusive. The setup for the additional

specialized equipment can increase scan time and introduce

other errors stemming from the camera acquisition in the

reconstructed images.

The rigid head motion can also be estimated using inertia

measurement units (IMUs). Similar to applying a marker for

tracking, IMUs can also be attached to subjects and be used to

make motion measurements (18). An IMU is a sensor composed

of an accelerometer and a gyroscope that makes real-time triaxial

acceleration and velocity measurements. In some cases, a

magnetometer is also included as a component to make magnetic

field measurements and increase the degrees of freedom from six

to nine. The use of this device was used in a study involving

patients with cerebral palsy and found that the IMU was highly

correlated with craniocervical movement for both healthy and

cerebral palsy subjects (19). Although IMUs can be used for

making motion measurements and has seen concurrent use for

correcting cardiac and respiratory motion with PET imaging, few

reports have utilized it concurrently with head imaging (20).
2.2 Cardiac motion

When it comes to chest and cardiac imaging, cardiac motion is

the major motion source that needs to be addressed, in particular

to ensure quantitative accuracy of tracer distribution (21). The

conventional way to measure heart signal is through the use of a

measured electrocardiogram (ECG) and then performing gating

based upon that signal (22). Nonradiopaque electrodes are placed

on the patient for continuous monitoring of ECG over the entire

duration of a given scan protocol, the ECG signal then being

stored serves as a basis for gating of associated scan data as it is

acquired over time. ECG gating of cardiac image data allows

accurate quantitative analysis of cardiac structure and function

(23). The desire for a single static image with quantitative

accuracy for analysis has resulted in several motion-correction

methods being implemented. One such method is including left-

ventricular (LV) segmentation plus motion vector tracking,

which has demonstrated reduced myocardium thickness in static

image reconstruction following adjustment of all cardiac phases

to the end-diastolic motion state (24). Additionally, image

registration between gated cardiac images has been explored;

nonlinear registration has shown particularly promising results,

resulting in a 46% reduction in noise in recent published work

(21). Motion correction methods have been explored in greater

depth when implemented during post-reconstruction processing,
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including the aforementioned works; however, implementation

during the reconstruction process has shown promise in offering

improved SNR and overall image quality, such as recent work

using mass-preserving optical flow motion vectors calculated

post-reconstruction and subsequently implemented into the

reconstruction process (25, 26). The consideration of respiratory

motion in cardiac imaging is also pertinent to image quality

and has been implemented in dual-gated motion correction

schemes (27).
2.3 Respiratory motion

Respiratory motion can introduce relatively large motions into

PET imaging. Hence, many methods have been explored to address

this motion source. To make respiratory motion measurements, a

couple of different camera setups have been explored: marker

tracking, depth profiling, and thermal imaging. The marker

tracker is a simple setup involving a camera capturing the

movements of a tracker, often reflective, fixed to a position on

the subject. For depth profiling, two cameras are spatially

calibrated for triangulation so that 3D profiling can be achieved

(5, 28). Two optical cameras (Kinect, Microsoft Corporation,

Redmond, Washington) were used in one study on ten patients

and were able to achieve an average Pearson correlation

coefficient of 0.74 between the measured abdominal signal and

the data-driven signals (28). For thermal imaging, a thermal/

infrared camera is used to capture patient breathing and used for

breathing evaluation (29). Optical lasers have also been used as

displacement sensors. Like optical cameras, this approach

requires the subject’s abdomen to be exposed so that the

respiratory motion can be captured (30). When comparing these

methods with a respiratory belt, another hardware-based gating

method, it has been shown that all these methods are well

correlated and can generate motion or respiratory signals. One of

the challenges with these methods, especially for thermal

cameras, is the extensive processing of these images to make

consistent and repeatable measurements. One commonly used

form of an optical system for PET imaging are the Real-time

Position Management (RPM) and Respiratory Gating for
FIGURE 2

Implementing hardware-driven gating can provide drastic improvement to PE
motion artifacts. Abdominal PET images of the liver and kidneys are shown
distinct motion artifact adjacent to an FDG-avid lesion in the ungated imag
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Scanners (RGSC) systems (Varian Medical Systems, Palo Alto,

California). The RGSC system is able to provide more accurate

3D positions of markers with more robust spatial information

compared to the 2D capabilities of RPM. The RGSC system uses

a shielded camera, which helps eliminate background noise and

stabilize the camera. Although the RGSC system proved to be as

effective as RPM for patients with regular breathing patterns, or

motion periods between 3 and 10 s, there are doubts surrounding

its effectiveness with irregular breathing patterns. From testing

the RGSC system, it achieved a 76% agreement within a ± 5%

tolerance, matching the programmed “ground truth” data. In

comparison, the RPM system had a 66% agreement within the

±5% tolerance, and the RGSC system had a 65% agreement

when compared to the RPM measurements (31).

A more common approach for measuring respiratory motion is

the use of a respiratory belt (also known as a respiratory inductance

plethysmography belt). This non-invasive device is placed around

the patient’s chest or abdomen and measures the expansion and

contraction of the thoracic or abdominal region during

breathing. In some cases, this device is set up in a dual band

mode for rib cage and abdominal signals. The strain gauge in

this device can transmit real-time signals to the PET scanners

and other imaging modalities, which will allow for the option for

respiratory-triggered gating. This makes the respiratory belt a

qualitative measure of the volume change correlated with

breathing. This method has been accepted to be sufficiently

accurate for estimating the respiratory rate. In one study the belt

was reported to produce a signal reliability of 98.5%–98.8% (32).

The simplicity of its setup and non-invasive nature makes this

method popular clinically. However, its use is dependent on

properly securing the belt in the correct position. Shallow

breathing or improper placement can cause the belt’s accuracy to

drop. An example of a respiratory gating using the respiratory

belt can be seen in Figure 2.

The respiratory spirometric gating device is a more direct

approach that operates by taking the breaths of the patient

through a face mask to track the volume of air associated with

inhalations and exhalations to determine the respiratory volume

change. The spirometer can make high temporal resolution

measurements and even operate effectively under abnormal
T images by reducing motion artifacts. It helps improve SNR and remove
with (A) no gating and (B) respiratory belt gating. The red arrow shows a
e.
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breathing conditions. Although this device can provide accurate

measurements, it does require some setup that can contribute to

subject discomfort. Some spirometer setups utilize a mouthpiece

instead of a face mask that forces breathing only through the

mouth. Furthermore, an issue that can arise from this device is a

drift of the volume baseline which can stem from flow

measurement errors. Aside from this, it was found to be able to

perform better than the RPM by being able to improve the

detection of peak inhalation by 8% and reducing time lag by

260 ms (33).

IMUs have been applied to respiratory tracking but also have

seen applications with dual gating cardiac and respiratory (34). A

recently developed method using an inertial measurement unit

based on microelectromechanical systems (MEMS) is used to

make local measurements and estimate motion for different parts

of the body. As it is a sensitive, accurate, and low-cost method, it

can also make multiple measurements across the body. It was

found to be able to achieve a mean absolute breathing error rate

of 0.44 per minute and a low amplitude error of 0.24 cm (35).

However, one of the inherent drawbacks of IMUs is the sensor’s

susceptibility to accumulating errors over time.

Sensors of all sorts can be used to make motion measurements.

Another strategy that is used to capture motion makes use of

electromagnetic fields. For this system to work, a transmitter and

receiver is necessary to observe the changes in the field due to

motion. Since these types of sensors use electromagnetic fields, it

has an advantage of being immune to occlusion but is

susceptible to metallic objects that can distort electromagnetic

fields. One implementation of this method makes use of

continuous wave radar to produce 24 GHz electromagnetic

waves. The 24 GHz frequency was chosen to allow for the EM

waves to propagate through clothing, blankets, and other plastic

coverings but will experience absorption and reflection once the

wave reaches materials with high water content. These properties

enable the use of continuous wave radar to track respiratory-

related movements. Although it was unable to detect

displacements smaller than 25μm, the device was able to achieve

high Pearson correlation coefficients when compared to a

respiratory belt and a depth camera with values between 0.69

and 0.99 (36).
2.4 Multi-Modality approaches

Some acquisitions for PET are acquired in conjunction with

other imaging modalities such as MRI, CT, or ultrasound. The

use of multi-modality acquisition is rapidly increasing because

other imaging modalities can provide more information at higher

spatial and temporal resolutions that are not observed in PET.

These other imaging modalities can also be used to extract

motion information from multiple motion sources for motion

correction in PET. As such, data-driven techniques are needed to

analyze the other modalities’ image data to derive motion

parameters or to generate a motion model.

MR-informed motion correction (MR navigation) is performed

using a rigid-body co-registration of high framerate MRI such as
Frontiers in Nuclear Medicine 06
echo planar imaging (EPI) that can be acquired periodically

through a hybrid imaging protocol. The resulting motion

parameters can then be used to correct motion in the PET data

acquisition by realignment of PET frames. Motion estimates

derived from the fMRI raw data were used to correct the PET

data before image reconstruction using either a single-pass or

two-pass reconstruction. The images blurring due to subject

motion is reduced and the FDG uptake in the cortical region

ribbon can be better appreciated qualitatively after motion

correction. A mean relative change of ∼4% in the regional SUVR

was observed after motion correction even at the group level

(37). Paired t-tests of the mean SUVR were performed showing

that the measured difference was significant (37). The application

of these methods is not limited to just human subjects but also

find use in animal studies such as rabbits and primates. MRI

data acquired is able to be used as a registration target to be

incorporated into the PET list-mode reconstruction and

correcting attenuation correction maps (38). MR navigators have

varied approaches and successful commercial and research

implementations have been studied in PET/MR (38).

A dual-gated approach was applied for PET using CT data to

correct for respiratory and cardiac motion. The motion correction

of the PET images was achieved by generating a model based on

the CT data. This technique was ultimately able to reduce motion

artifacts and increase SNR and CNR. SNR increased to 27.5 from

20.3 and CNR increased to 14.5 from 11.1 when compared to

more traditional hardware-based dual-gating approaches. Although

significance tests show no significant difference in the

myocardium, significance was found in the blood pool (39).

In another implementation, the size of hot spots, on average,

decreased by 49.7% after applying the correction (40).

Ultrasound can also be used to capture motion data,

specifically breathing motion. The displacement of internal

organs can be captured using ultrasound as “organ configuration

motion” (OCM) sensors. These sensors would have to be

attached to the skin to generate motion-resolved images. This

technique was tested on phantoms and two patients with small

and large lesions. With these test cases, images were able to be

generated using phase-based gating. Development on alternative

strategies of applying the ultrasound data to improve the gating

process could further improve the quality of the motion-

corrected image (41).
2.5 Post-processing

The equipment mentioned earlier, which includes cameras,

respiratory belt, spirometer, ECG, and IMU devices, provides the

capability to track motion in real time. The signals generated by

these tools can be utilized to prompt the collection of PET data

at specific intervals within cycles. To decide which region of the

acquired data is usable for image reconstruction, phase-based

motion gating and amplitude-based motion gating are both post-

processing techniques used to address the issue of respiratory or

cardiac motion in PET data acquisition and reconstruction.
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2.5.1 Phase-based motion gating
The workflow for phase-based motion gating (PBG) typically

starts with defining a periodic motion cycle, which could be a

cardiac or respiratory cycle, depending on the organ of interest.

Subsequently, a physiological signal that mirrors this motion is

recorded and synchronized with the imaging data. Following

synchronization, the motion cycle is divided into several distinct

phases, and the imaging data is sorted accordingly into these

phases, with each phase representing a unique gate. An example

of this phase-based gating process can be seen in Figure 3A
FIGURE 3

Phase-based and amplitude-based gating are two ways to process motion s
image reconstruction. (A) Phase-based gating divides the motion signal into
used for image reconstruction. Using this method, multiple images can be g
the motion signal based on the amplitude of motion. The PET data with
reconstruction. Data with motion that is outside of the amplitude band is d
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where the motion signals are partitioned into sections and only

the regions with the red line are kept for image reconstruction.

In the PBG approach, not all gates are considered equally

suitable. Some may not accurately represent the phase of the

physiological motion being studied and are therefore discarded.

Only those gates that meet specific criteria and accurately

represent the phase of motion are retained for image

reconstruction (42). The choice of appropriate phases or gates in

PBG is a critical aspect and is heavily influenced by various

factors. For instance, in respiratory motion gating, a phase where
ignals for motion gating. The red components represent regions used for
gates. Specific gates can be chosen for the corresponding PET data to be
enerated based on each phase gate. (B) Amplitude-based gating divides
motion that is within the specified amplitude band is kept for image
iscarded.

frontiersin.org

https://doi.org/10.3389/fnume.2024.1257880
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fnume.2024.1257880
the patient’s breathing is relatively stable will be preferred to

minimize motion blur. This phase often corresponds to the end

of exhalation, a point where breathing is typically most stable.

Using data from this phase can provide clear, high-quality

images with reduced motion artifacts.
FIGURE 4

The application of data-driven gating can vastly improve image
quality of PET images. (A) Uncorrected images can show lots of
blurring and other motion artifacts. (B) Data-driven motion
correction using an image registration approach was applied to
this brain image and shows much greater clarity than the
uncorrected version.
2.5.2 Amplitude-based motion gating
Amplitude-based motion gating (ABG) is a specialized

technique utilized in PET/CT imaging to account for the

variability introduced by respiratory motion. In contrast to

phase-based gating, which segments the motion cycle into time-

based intervals, ABG considers the displacement or amplitude of

the physiological motion itself (42). This approach entails

identifying a specific segment within the amplitude range of the

respiratory signal to be used for image reconstruction. Rather

than encompassing the entire breathing cycle, this selection often

targets a narrow range that corresponds to a significant phase of

respiration, such as the lung’s contraction phase. By

concentrating on a specific state, ABG aims to maintain

consistency in the shape and position of the imaged organs

throughout the scanning process. This method helps minimize

motion-induced artifacts in the resulting scans, thereby

enhancing image clarity and accuracy. This effect can be seen in

Figure 3B where an amplitude band was selected to keep most of

the end of exhalation; some components that went below the

amplitude band were discarded. Phase-based motion gating

would be a more appropriate choice for cardiac imaging or cyclic

respiratory movements (43, 44). This is because, in such

instances, the movement is patterned cyclically. Therefore, a

specific segment of the cycle consistently represents the same

phase of the heartbeat or respiratory cycle, which results in a

stable shape of the organs involved. On the other hand,

amplitude-based gating may be better suited for imaging when

the motion is less predictable, especially in situations with

varying amplitude or a changing baseline from multiple motion

sources (43, 44). Under these circumstances, ABG often

outperforms PBG, providing more accurate results due to its

ability to better handle these irregularities.
3 Data-driven gating

Unlike hardware-driven gating, data-driven gating methods

utilize the PET data itself to retrospectively identify motion and

make image corrections accordingly. These techniques involve

analyzing the acquired PET data to extract motion information,

such as using motion estimation algorithms or registration

algorithms to align the dynamic PET frames. By retrospectively

identifying and correcting for motion in the data, data-driven

gating techniques enable improved image quality and quantitative

accuracy in PET imaging, offering an additional approach that

can be used with hardware-driven gating approaches to mitigate

the effects of motion artifacts. An example of the impact that

data-driven gating can have on brain images can be seen in Figure 4.
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3.1 Head motion

One data-driven method used to address head motion is 3D

center of mass (COM), which is a technique that can

automatically detect head motion during PET scans without the

need for external tracking devices. This algorithm uses all three

dimensions of the center of tracer distribution trace and self-

adaptive to noise levels. COM is shown to be effective in

detecting radical translation motion errors in slowly varying

tracer distribution caused by the motion tracking hardware and

can be used to compare different motion estimation methods

(45). Also, from studies it was found that the results of this

method are very comparable to belt-based gating. The results

found from both methods were highly correlated, with 0.99 in

phantom and 0.94–0.97 in clinical patients (45). Similar results

were also found when compared with optical hardware-based

motion tracking. SUV differences were found to be 1.0%±3.2%

across 290 subjects (23 datasets) in gray matter regions (46).

Testing on simulated and real human datasets showed that 3D

COM outperformed other motion correction methods, including

one-direction COM and frame-based image registration, and

yielded comparable results to gold standard hardware-based

motion tracking method. The algorithm has the potential to

improve the image quality and accuracy of PET scans,

particularly for clinical populations where head motion can be a

significant challenge, but further validation in larger and more

diverse patient populations is needed. This proposed motion

correction method yielded −0.3±2.8% and −0.4±3.2% brain

region error for 18F-FDG and 11C-RAC, respectively, across 10

subjects with larger head motions for each tracer (47).

Registration is also a simple approach that can be used to

estimate motion. Prior to applying registration, PET images

undergo ultrafast reconstruction using very short frames that are

automatically set and adjusted at each frame to ensure consistent

and scattering events pre-frame were performed for the entire
frontiersin.org

https://doi.org/10.3389/fnume.2024.1257880
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fnume.2024.1257880
scan duration. Following this, image-based registration is

performed on these frames to estimate motion. Rigid registration

was performed using least-square metric and gradient descent

optimization. The 6 degrees of freedom of motion were

estimated, with an accuracy of less than 1 mm. The reference

non-AC emission frame for image registration is selected for

alignment between PET reconstruction and the attenuation map

(3). The maximum difference in SUV max of the parietal lobe

between motion-corrected and non-motion-corrected

reconstructions is 1.5%±2.7%, with a maximum discrepancy of

6.6% (48). To obtain high enough SNR, data frames are often

sampled at lower temporal resolutions, but it has been found that

very short frames of less than 1s can be used to provide accurate

and quick motion estimates (49). Alternatively, a data-driven

approach utilizing Time-of-Flight (TOF) weighted positron

emission particle tracking algorithms enables fully automated

head motion detection. The TOF-PET algorithm has been

validated to detect motion using a 500 ms window. The use of

event-based correction yields motion artifact-free images. A

frame-by-frame image registration-based gold standard, created

for this study, and the automated Line of Response (LOR)-based

correction demonstrate similar results, with Jaccard similarity

indices in the range of 92.5%±4.8% for the former and 93.2%

±4.5% for the latter (6). The Jaccard similarity index is defined

as the intersection over the union between transformed images

and reference images.

Dimensional reduction, specifically principal component

analysis (PCA), has seen use as a method for making head

motion correction. PCA can decompose PET data into its

principal components to isolate head motion. This method was

validated using phantom and patient acquisitions and were found

to be effective in identifying motion occurrences and producing

motion-free images with increased sharpness compared to fixed-

framed approaches. Image sharpness of the non-corrected images

ranged from 79%–82% of the motion-free image sharpness and

PCA frames increased sharpness to 97.9% for both acquisition

and containing movement. This technique not only increases the

average image sharpness by the same amount as the fixed frame

approach, but it reduced the number of reconstruction and

registrations by a factor of 3.4 on average. The proposed method

offers the advantage of retrospective motion estimation and

potentially reduces motion for long PET frames, improving the

accuracy and reliability of PET imaging for brain disorders (50).

Modeling motion is a strategy that is also used to characterize

motion which can be implemented into kinetic modeling. This

direct reconstruction approach utilizes an expectation

maximization algorithm that assumes emission data is Poisson

distributed. This implementation was able to decrease the

coefficient of variation in a simulated set by 35%–48%, in a [11C]

AFM set by 39%–43%, and in a [11C]UCB-J set by 30%–36%

(51). To achieve motion gating, deep learning models can also be

used for correcting head motion. One example of a deep learning

model for head motion correction is the DL-HMC methodology

that consists of three components: (i) PET input data encoder

layers, (ii) regression layers to estimate the six rigid motion

transformation parameters, and (iii) feature-wise transformation
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(FWT) layers to condition the network to tracer time-activity.

The input of DL-HMC is sampled pairs of one-second 3D cloud

representations of the PET data and the output is the prediction

of six rigid transformation motion parameters. The network was

trained in a supervised manner using optical motion tracking

information as gold standard. The algorithm quantitatively

evaluated DL-HMC by comparing to gold-standard optical

measurements and qualitatively evaluated the reconstructed

images as well as performed region of interest standard uptake

value (SUV) measurements. The network was trained by

minimizing the network’s mean square error (MSE) between the

predicted motion estimate θ and optical reference θ using Adam

optimization with initial learning rate 5e-4, γ=0.98, and

exponential decay with step size 200. Because of GPU and CPU

memory constraints, a smart caching dataset was used to replace

25% of the data (1,024 samples) for each epoch with new

samples (52).

Another developed motion-correction approach is aided by

conditional generative adversarial network (cGAN) methodology

that allows reliable, data-driven determination of involuntary

subject motion during dynamic 18F-FDG brain studies. The GAN

was trained using 70% of the total datasets, which were corrected

for motion using MR navigators. The estimated motion

parameters were then used to extract the Image Delivered Input

Function (IDIF) from the motion-corrected dynamic sequence.

The resulting cGAN mappings were then applied to the test

datasets, producing artificially generated low-noise images from

early high-noise PET frames. These low-noise images were then

co-registered to the reference frame, yielding 3-dimensional

motion vectors (53).
3.2 Cardiac and respiratory motion

Due to the close proximity of cardiac and respiratory motion,

especially when performing chest or abdominal imaging, many

data-driven gating approaches are implemented as either dual-

gating approaches that account for both motion sources or as

respiratory-only approaches. An example of the impact that dual

gating can have on cardiac images can be seen in Figure 5.

One technique that is very similar to hardware-driven

techniques is the positron emission tracking (PeTrack) method.

PeTrack operates by tracking a positron emission source as a

marker and uses the motion of this marker to generate

respiratory motion signals from dynamic 4D PET data. PeTrack

demonstrates potential in situations where there are irregular

breathing patterns and provides a relatively simply patient setup

process. Despite this, PeTrack still has challenges, such as the

potential interference from high count rates of

radiopharmaceutical tracers and additional radiation exposure.

Further studies are needed to optimize its performance under

various imaging conditions (54).

Dimensional reduction is a data-driven gating strategy that is

often used for addressing cardiac and respiratory motion

correction. Two main approaches that fall under this category are

principal component analysis (PCA) and Laplacian eigenmaps.
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FIGURE 5

Cardiac gating must take into account the different phases of the
cardiac cycle. (A) This outline shows the different sections of the
cardiac cycle with the PQRST peaks and how different stages
could affect cardiac outlines. (B) Sample images shown here are
non-gated, EKG-gated, cardiac-gated, and dual-gated from left to
right.
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Both methods can be used to identify the dominant patterns of

variability associated with motion in a dynamic 4D PET dataset.

By decomposing the PET data into its principal components, the

data can be classified into different motion bins and

reconstructed as motion-corrected images based on the identified

patterns. The distinguishing difference between PCA and

Laplacian eigenmaps is that PCA operates on a linear basis while

Laplacian operates as a nonlinear manifold learning method. By

applying PCA for motion correction, one study was able to

improve lesion SUV max values from 7.9 to 9.0 (55). By

combining the sensitivity profile with PCA and Laplacian

eigenmaps, another study was able to increase correlation with

MR data to from 0.58 to 0.74 using PCA and from 0.42 to 0.7

using Laplacian eigenmaps respectively (56).

An alternative approach in data-driven gating is to evaluate the

counts acquired in the raw PET data. Hence this process would

occur before the reconstruction step and look for changes

associated with motion in raw PET data. Motion would create

variations in the PET data that can be correlated with external

motion signals. Assuming motion is consistent and its

fluctuations are mostly comprised in a range of frequencies,

gating can be performed based on the periodicity associated with

the frequency of motion. Applying a frequency analysis for

gating resulted in an increase of the SUV max in lesions by

28.6% compared to an ungated approach (57). A more advanced

approach to this method is to apply multi-binning or adaptive

binning. Multi-binning performs gating on the PET data into

different phases which would result in multiple images that can

be reconstructed. This would allow for further evaluation and

comparison of the images to determine which is the best. The
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performance of the multi-bin respiratory gating was found to be

more effective in motion correction than applying end-

respiratory gating (58). The adaptive binning method decides

which components are to be gated out based on the local motion

amplitude while no gating is applied in static regions. The

application of this approach was able to reduce noise when

compared to conventional gating reconstructions and make a

better trade-off between resolution and noise (59). An inherent

issue with gating is that it would throw away data that is not in

the proper bins, which would increase the noise in the

reconstructed image.

COM techniques can be used to calculate the position of

the center of mass of the tracer uptake distribution within the

acquired PET data at different respiratory phases. By tracking the

movement of the COM, the respiratory motion can be estimated

and used to gate the PET data during image reconstruction. The

COM method in one study was able to achieve a correlation of

0.85 with device-based signals (60). Compared specifically with

respiratory belts, correlation coefficients were found ranging from

63% to 89% (61). Based on the gated images, this data-driven

approach was able to improve lesion contrast compared to the

uncorrected image and produced comparable quality to the

device-based corrected images. In an alternative implementation

where COM was combined with a frequency filter, comparisons

with simulations showed that there was a higher probability that

the addition of this filter was able to improve the COM method

and increase the probability that the voxel values are accurate (62).

Another commonly used technique to address respiratory and

cardiac motion is registration. Registration is utilized to generate a

set of reconstructed images at different motion states to estimate

the motion experienced. Various methods for image registration

and implementation have been published, falling into two broad

types of registration: rigid and nonrigid (63). Rigid motion

registration consists of generating some non-anatomy-deforming

transformation for a given motion state relative to a selected

target motion state. This transformation accounts for

translational and rotational motion in the X, Y, and Z directions,

and is considered suitable for motion correction of brain PET

images (63, 64), but it is not likely to be sufficient for other

regions of the body. Nonrigid registration produces a deforming

or anatomy-warping transformation map for each image motion

state in relation to the chosen target motion state (64). Also

known as elastic image registration, this general category of

registration algorithm is considered suitable for and has been

applied in image data with cardiac and respiratory motion

present (64). One example of an elastic algorithm implemented

commercially is Q.Freeze (GE Healthcare, Chicago, Illinois)

which reconstructs multi-bin respiratory gating images, followed

by nonrigid registration, and averaging into a single volume (65).

Image registration for motion correction can be implemented

either during the image reconstruction process or after

reconstructing a set of images at different motion states. The

latter approach involves registration and the application of

transformation maps to combine the images into a single static

motion-corrected image. An example of an implementation of

the former approach is OncoFreeze (Siemens Healthcare,
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Erlangen, Germany) which derives a blurring kernel from sub-

images to be employed during the image reconstruction process

to generate a motion-corrected image (66).

In recent years, machine learning models and networks have

emerged as powerful tools for data-driven gating in PET

imaging. These models can learn complex motion patterns from

the acquired PET data and predict motion information that is

then used to guide the image reconstruction process. Machine

learning-based data-driven gating approaches have shown

promising results in improving PET image quality and accuracy.

It was found from one deep learning model that the normalized

root-mean-square error of the deep learning model, iterative

registration, and ungated methods was 24.3%, 31.1%, and 41.9%,

respectively (67). This shows that this particular deep learning

model was able to further improve the accuracy of the resulting

image beyond that achieved from iterative registration.
4 Applications and challenges in
parametric dynamic whole-body PET

While the methods previously mentioned have been shown to

work in conventional PET imaging, the applications of these

methods are not trivial when it comes to implementing them in

dynamic whole-body PET imaging. Dynamic whole-body PET

acquisitions can be divided into two categories: short axial FOV

and long axial FOV. Dynamic acquisitions on short axial FOV

PET systems have previously been confined to single bed

protocols, but recent clinical implementations have been using

multi-bed protocols (68, 69). Whole-body PET imaging is more

susceptible to motion artifacts from various sources due to

extended imaging coverage. With longer axial coverage from a

whole-body (or nearly whole-body) PET acquisition, images can

simultaneously include multiple regions of interest and would

provide comprehensive coverage with substantially higher

temporal resolution. However, the inherent drawback from a

longer axial acquisition would be multiple motion sources that

have unique impacts in different regions of the body. Periodic

patient movements in each PET bed during these acquisitions

can be mitigated with gating but would have trouble with

irregular body motions, leading to smearing and partial volume

effects (68, 70). A mixed approach using motion-tracking

hardware or other imaging modalities along with simple data-

driven techniques such as registration can be used to address

motion. This process can improve the precise alignment of the

data acquired and thereby significantly improving the delineation

of ROIs, leading to more accurate and accurate kinetic

parameters (71). The Patlak correlation-coefficient could be used

for voxel-wise thresholding to filter out motion-corrupted data

during parameter estimation (69).

At the time of publication of this review, few studies have

studied long axial FOV whole-body in PET imaging due to

conventional PET scanners requiring a multi-bed protocol and

therefore not able to acquire truly simultaneous whole-body data

(72). Simultaneous PET/MRI acquisitions are also not feasible

since current systems do not have a long enough axial coverage
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and would also require a multi-bed protocol. Motion tracking

that has previously locally worked on brain and respiratory

motion may struggle with complex whole-body motion.

However, without adequately accounting for motion, significant

errors could arise in critical kinetic quantifications (i.e., SUV)

essential for parametric PET analysis and kinetic modeling,

especially for prolonged acquisitions longer than 60 min (73).

Therefore, body-region specific reconstruction with motion-

correction may be necessary, even in whole body acquisitions.

The primary approaches are largely data-driven techniques as

detailed herein. Image-based registration approaches have also

found success, improving SUVmean values up to 12.89% (72).

While motion tracking hardware and data-driven methods have

been able to correct for motion, deep learning approaches have

been increasingly showing an advantage in applying a non-rigid

correction that can improve kinetic modeling in total-body

dynamic PET imaging (74).
5 Discussion

The choice between hardware-driven and data-driven gating

techniques in PET imaging is an important consideration in

addressing motion artifacts. Both approaches have their

advantages and limitations, and selecting the most appropriate

method depends on several factors, including the specific

imaging setup, available resources, biological region of interest,

and the expected motion information that will be captured.

Choosing different methods can result in different processes

needed to analyze the acquired data. A simplified outline of this

process can be seen in the flowchart in Figure 6. From Figure 1,

a categorization is provided of some of the many methods that

have been explored in this paper and includes the biological

regions in which these methods could be used for motion gating.

Although many methods listed in Figure 1 show promise in

addressing motion, their performance could change as PET

scanners increase in capability and resolution. As such, future

PET scanners would require re-evaluations of these techniques to

determine any changes in efficacy. Comparisons between each

method can be difficult due to the multitude of available

methods and the metrics used to evaluate success. Often,

statistics used to evaluate these gating methods are Pearson

correlation coefficient, standard uptake value (SUV), signal-to-

noise ratio (SNR), contrast-to-noise ratio (CNR), target volume

change, image clarity score, structural similarity index measure

(SSIM), mean squared error (MSE), and mean absolute error

(MAE). The expectation from applying these motion gating

schemes is a decrease of motion artifacts which would lead to

apparent lesion volumes (target volumes) to decrease. As such,

there would be an increase in image clarity, SNR/CNR, and

accuracy of SUV. Under the scope of oncology, it is expected

that the application of these methods would increase the SUV in

lesions, which tend to be blurred or smeared as a result of

motion. Ultimately, the application of these methods is expected

to decrease the error statistics derived from MSE or MAE.
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FIGURE 6

Processing flowchart for hardware-driven and data-driven gating. The red pathway represents processing pipelines of motion gating stemming from
multi-modality PET imaging which can include images or data acquired from other sources such as MRI, CT, or ultrasound. The blue pathway
represents the general processing pipeline for hardware-driven gating.
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Hardware-driven gating methods, such as phase-based gating

and amplitude-based gating, utilize external sensors or devices to

track patient motion and synchronize PET data acquisition

accordingly. These techniques have the advantage of real-time

motion monitoring, providing immediate feedback on the

patient’s respiratory or cardiac cycle. Hardware-driven gating is

particularly effective in scenarios where precise real-time motion

tracking is critical, such as in dynamic or time-sensitive imaging

protocols. It allows for accurate gating based on external

measurements, reducing the impact of motion artifacts.

On the other hand, data-driven gating techniques, including

motion estimation algorithms and registration algorithms, rely

on the PET data itself to retrospectively identify and correct for

motion. These techniques analyze the acquired PET data to

extract motion information, enabling retrospective gating based

on the inherent motion patterns within the data. Data-driven

gating has the advantage of not requiring additional hardware

or sensors, making it more cost-effective and versatile. It can

also provide more comprehensive motion information by

accounting for multiple sources of motion such as respiratory

and cardiac motion captured within the PET data. Data-driven

gating is particularly beneficial when external motion tracking

devices are not available or when more detailed motion analysis

is desired.

However, it is important to acknowledge the limitations of each

approach. Hardware-driven gating techniques rely on the accuracy
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and reliability of the external sensors or devices used for motion

tracking. Factors such as patient compliance, shallow breathing,

or irregular motion patterns can introduce errors or limitations

in hardware-driven gating. Furthermore, hardware-driven gating

may not capture all sources of motion, such as internal organ

motion or bulk motion, which can still impact image quality.

The number of hardware-based techniques are also all localized

based on the region of interest and are not able to address

bulk motion.

Data-driven gating techniques depend on the quality and

fidelity of the acquired PET data. The accuracy of motion

estimation algorithms and registration techniques can be

influenced by factors such as image noise, tracer uptake

variations, or the presence of motion artifacts themselves. One

challenge for whole body PET imaging is that the field of view

includes multiple organs and therefore multiple motion sources.

This means that algorithms developed for specific organs or

applications may not have a trivial adaptation to whole-body

imaging. Careful optimization and validation of data-driven

gating algorithms are essential to ensure accurate motion

estimation and reliable motion correction. If the patient’s motion

consists of gradual drifts or frequent and rapid displacements,

external motion tracking methods are generally more suitable

since they offer a higher sampling frequency (>30 Hz) and better

spatial sensitivity (<1 mm). The development of long axial field

of view PET scanners with extremely high sensitivity relative to
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conventional scanners will only make data-driven gating

approaches more viable.

The future of motion correction strategies in PET imaging

is increasingly promising. With continuous advancements in

hardware- and data-driven gating techniques, the field is

observing novel methods being developed that can provide more

options with higher accuracy to address specific motion sources.

Further developments in this field, including the utilization of

inertial measurement units and the optimization of motion

modeling through machine learning and deep learning, are

poised for improvements in accuracy, efficiency, and practicality.

These improvements will ultimately pave the way for

enhancements in image quality, diagnostic precision, and

quantitative measurements.
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