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Introduction: The optimal strategy for differentiated thyroid cancer (DTC) patients
treated with radioiodine (RAI) following thyroidectomy remains controversial.
Multi-centre clinical studies are essential to identify strategies to improve patient
outcomes while minimising treatment-induced toxicity.
Materials and Methods: The INSPIRE clinical trial (ClinicalTrials.gov Identifier:
NCT04391244) aims to investigate patient-specific dosimetry for DTC patients
and to determine the range of absorbed doses delivered to target and non-
target tissues and their relationship with treatment outcome and toxicity.
Results: We report here initial results of the first 30 patients enrolled onto the
INSPIRE trial. A large range of absorbed doses are observed for both thyroid
remnants and salivary glands, with median values of 4.8 Gy (Range 0.2– 242
Gy) and 0.3 Gy (Range 0.1 to 1.7 Gy), respectively.
Discussion: The preliminary study results are encouraging and could help to
improve our understanding of absorbed doses to thyroid remnants and normal
organs following RAI therapy. Such knowledge could potentially enable patient-
specific treatment planning with improved clinical outcomes and quality-of-life
of patients.

KEYWORDS
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tissue

1. Introduction

More than 80 years after the initial use of radioiodine (RAI), controversy remains

regarding the optimal treatment regimen for thyroid cancer patients. A group of experts

from the American Thyroid Association (ATA), the European Association of Nuclear

Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI)

and the European Thyroid Association (ETA) published a consensus paper (1)

highlighting several issues that need addressing. Considerable variability remains between

centres in Europe with respect to the decision-making process following thyroidectomy (2).
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The decision to treat with RAI following thyroidectomy and

the level of activity to administer should be based on the risk-

benefit ratio. The benefit of RAI therapy, especially for low-risk

differentiated thyroid cancer (DTC) patients, remains

controversial (3–5). Leboulleux et al. showed in a prospective,

randomised, phase 3 trial (ESTIMABL2) of patients with low-risk

DTC [T1(m) N0 M0] that surveillance is non-inferior to RAI

therapy for event-free survival at 3 years (6). A similar study,

IoN, is currently investigating this question with incorporation of

a higher-risk group (up to T3 and N1a disease) (7). Nevertheless,

further work may also be required with respect to larger patient

groups and long follow-ups (8). Two randomised trials (HiLo

and ESTIMABL1) reported similar post-ablation success at 6–9

months and recurrence rates in patients with well-differentiated

thyroid cancer when comparing 1.1 GBq and 3.7 GBq (9–11).

Further studies are studying prognostic markers to predict

ablation success (12). Ablation success has been hypothesised to

be dependent on the absorbed dose delivered to any residual

thyroid tissue rather than the RAI administered activity (13–16),

with several studies showing a large range of absorbed doses for

empiric activities (13–21).

Controversy with respect to optimal treatment is in part due to

the lack of robust evidence in the literature concerning the

potential risks of RAI treatment. Salivary disorders are a

potential side effect of RAI and have been reported as early as

weeks or months after treatment (22, 23). These findings have

been supported by systematic reviews and meta-analysis with

respect to salivary and lacrimal gland dysfunction. However, due

to major methodological differences between studies, the

reported incidence of these disorders ranges from 16 to 72%

(24). Long-term side effects such as second primary malignancy

(SPM) have been investigated in several epidemiological studies.

Increased risk of SPM in patients with DTC has been shown in a

meta-analysis (25, 26) but evidence is usually classed as low

quality and the effect has shown to be small with a relative risk

ranging from 1.14 to 1.84 of RAI vs. no RAI (27). Retrospective

epidemiological studies aiming to address the risk of SPM

after RAI treatment for DTC have produced contradicting results

(28–30) and this remains a matter of debate (31).

Patient-specific dosimetry could potentially lead to patient-

tailored treatment planning and may be used to assess radiation

risks. Interpretation of European Council Directive 2013/59/

Euratom varies between countries and centres (32–35). Large

multi-centre multi-national prospective clinical studies are

required to address the controversies including the risk from RAI

and to assess the relationship between the absorbed dose

delivered to targets and treatment outcome (36). Examples of

multi-centre clinical studies which have included dosimetry for

radioiodine are SEL-I-METRY (EudraCT No 2015-002269-47)

(37, 38) and MEDIRAD (39), a project funded by European

Horizon 2020 that investigated the implications of medical low-

dose radiation exposure through a multi-centre multi-national

prospective study to assess the radiation doses from RAI therapy

in 100 DTC patients using quantitative imaging (40).

INSPIRE (Investigating National Solutions for Personalised

Iodine-131 Radiation Exposure, ClinicalTrials.gov Identifier:
Frontiers in Nuclear Medicine 02
NCT04391244) follows on from MEDIRAD to further investigate

the range of absorbed doses to target and non-target tissues DTC

patients and aims to assess the correlation between the absorbed

doses and clinical outcome and/or toxicities.

We report here the initial results of the INSPIRE study, with focus

on the range of absorbed doses delivered to target (residual thyroid

tissue) and non-target (salivary glands and whole-body) tissues.
2. Materials and methods

INSPIRE is currently a single centre, prospective observational

study with approval to expand to a multi-centre study in the

United Kingdom. The overarching hypothesis is that treatment

outcome in molecular radiotherapy is dependent on the absorbed

doses delivered rather than on the radioactivity administered. With

a target recruitment number of 50 patients, the primary endpoint is

to establish the range of absorbed doses and associated uncertainties

delivered to thyroid remnants, residual disease and healthy organs

from Na[131I]I. The study was approved by the East Midlands—

Nottingham 1 Research Ethics Committee (20/EM/0022) and the

institutional review board at the Royal Marsden Hospital. All

patients provided written informed consent prior to registration.
2.1. Patient inclusion criteria

Inclusion criteria include patients with histologically proven

DTC treated with total thyroidectomy or staged surgery

(hemithyroidectomy followed by completion thyroidectomy) who

are 18 years or older and had their first treatment with RAI.

Patients were excluded from the study if they had a prior

diagnostic RAI scan, external beam radiotherapy or systematic

chemotherapy within 6 weeks of treatment.
2.2. Radioiodine administration

Patients were administered either 1.1 or 3.7 GBq of Na[131I]I

according to local protocols. Administration was performed

following stimulation using recombinant human thyrotropin

(rhTSH). Patient preparation included a low iodine diet but no

specific salivary gland secretion stimulation protocol (41).
2.3. Data collection for quantitative imaging
and dosimetry

Imaging systems in participating centres were prepared for

quantitative imaging to allow collation of data (36, 37). Two

dosimetry gamma camera scanning schedules were developed to

account for initial COVID-19 restrictions and patient preferences.

For schedule 1, a single standard-of-care SPECT-CT scan is acquired

according to local protocol post-RAI administration. Schedule 2

includes the standard-of-care scan and a minimum of two additional

SPECT scans between 6 and 168 h post-RAI administration.
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For both scanning schedules, a minimum of 3 whole-body

(WB) retention measurements were performed per day during

the patient’s stay in hospital, approximately every 2–6 h,

according to local standard of care procedures. At each external

measurement time point, the quantified level of radioactivity in

the whole body was recorded using a ceiling-mounted radiation

detector above the patient’s bed.

Patients were followed-up at their standard-of-care clinic visits

with routine blood tests including thyroid function test and

thyroglobulin. These data are not reported here as the follow-up

data collection is currently ongoing.
TABLE 1 Characteristics of the patients (n = 30).
2.4. Thyroid remnant and salivary gland
dosimetry calculations

SPECT imaging datasets were reconstructed with CT attenuation

and Monte-Carlo scatter corrections. Images were quantified using

system volume calibration factors as described previously (40).

Dosimetry calculations were performed using in-house dosimetry

software developed at the RMH using Slicer3D (42). Time-integrated

activity (TIA) was determined using single or multiple time-point

fitting using a single exponential decay function as applicable.

For single time-point dosimetry, assumed effective half-lives of

T1/2 = 68 h, 9.3 and 8.6 h were used for the thyroid remnant (21),

parotid and submandibular glands (43), respectively.

Organs were outlined using segmentation tools available in

Slicer3D. The thyroid remnant and salivary glands were

segmented. All other organs showed little physiological uptake

and were assumed to have activity levels too low to be quantified

accurately. The thyroid remnant was outlined on the SPECT

image using thresholding with a relative threshold value of 10%.

Salivary glands were outlined on the CT to obtain the volume

and reproduced on SPECT scans using thresholding to obtain

the retention activity.

The absorbed dose to the voxel with maximum uptake (13) was

calculated for the thyroid remnant, while the mean absorbed dose

to salivary glands were determined using dose kernels taking into

account the electron contribution to the absorbed dose only.

Characteristic
Age—year (Mean ± Standard Deviation) 44.8 ± 15.9

Female—N (%) 22 (73.3)

Histological subtype—N (%)
Papillary 19 (63.3)

Follicular 11 (36.7)

Primary tumour and node stage—N (%)
T1N0 7 (23.3)

T1N1a 2 (6.7)

T1N1b 2 (6.7)

T2N0 6 (20.0)

T3N0 7 (23.3)
2.5. Whole-body dosimetry calculations

Whole-body absorbed doses were calculated from the whole-

body retention measurements. A multi-exponential decay

function was fitted to the data to obtain the AUC allowing for

up to 4 different exponential decay phases. Whole-body absorbed

doses were calculated using the Medical Internal Radiation Dose

(MIRD) (44) formalism with a mass-adjusted S-factor as

described by Buckley et al. (45).

T3N1a 3 (10.0)

T3N1b 2 (6.7)

T3Nx 1 (3.3)

Prescribed RAI activity—N (%)
1,100 MBq 12 (40.0)

3,700 MBq 18 (60.0)
2.6. Statistical analysis

The D’Agostino & Pearson test was used to test for normality

of the distributions of absorbed doses and absorbed doses per unit
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of administered activity for each tissue. The results of all normality

tests indicated that the null hypothesis must be rejected in all cases

(p < 0.05 for all distributions) and the conclusion was drawn that

the data are not normally distributed. All absorbed dose results

are, therefore, reported as median (range). The Mann-Whitney

test was employed to assess if thyroid remnant, salivary gland

and WB absorbed doses per unit of administered activity were

significantly different between patients treated with 1.1 and 3.7

GBq, respectively.

All statistical tests were exploratory, and testing was performed

at the two-sided 5% significance level. All statistical analysis was

performed using GraphPad Prism version 9.3.1 or later for

Windows (GraphPad Software, San Diego, California USA).
3. Results

The preliminary analysis includes the first 30 DTC patients (3)

recruited at a single centre (Royal Marsden Hospital). A summary

of patient characteristics is provided in Table 1. Nineteen patients

participated with scanning schedule 2 with two additional SPECT

scans between 20 and 72 h post-administration. Eleven patients

participated with a single standard-of-care SPECT-CT scan due

to COVID-19 restrictions and patient preferences. Post-therapy

SPECT-CT scans did not reveal any metastases in these patients.
3.1. Dosimetry results for thyroid remnants
and salivary glands

Table 2 and Figure 1 show the absorbed doses estimated for

the thyroid remnant and salivary glands. A wide range of

absorbed doses (0.2 to 242 Gy) was observed for the thyroid

remnant. Figures 2A, 3 show the comparison of absorbed doses

per unit of administered activity for the thyroid remnant and

salivary glands for patients treated with 1.1 and 3.7 GBq,
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FIGURE 1

Range of (A) thyroid remnant maximum-voxel absorbed doses and (B)
salivary glands absorbed doses.

FIGURE 2

Comparison of the absorbed doses per unit of administered activity for
patients prescribed 1.1 and 3.7 GBq, respectively, for (A) the thyroid
remnant and (B) the whole-body. The results of the Mann-Whitney
test are indicated above each comparison with “ns”= non-significant
(p-value > 0.05).

TABLE 2 Range of absorbed doses to salivary glands and thyroid remnant.

Organs [Gy] Median Minimum Maximum
Thyroid remnant* 4.8 0.2 242.0

Parotid right** 0.4 0.1 1.7

Parotid left** 0.4 0.1 1.7

Submandibular right** 0.2 0.1 1.6

Submandibular left** 0.2 0.1 1.4

*Absorbed dose to voxel with maximum uptake.

**Mean absorbed dose to outlined VOI.

FIGURE 3

Comparison of the absorbed doses per unit of administered activity for
patients prescribed 1.1 and 3.7 GBq, respectively, for (A) the right parotid,
(B) the left parotid, (C) the right submandibular and (D) the left
submandibular gland. The results of the Mann-Whitney test are
indicated above each comparison with “ns” = non-significant (p-value
> 0.05).
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respectively. The results of the Mann-Whitney tests between the

absorbed doses per unit of administered activity for patients who

received 1.1 and 3.7 GBq showed that the difference was non-

significant in all cases. The p-values of the tests for thyroid

remnant, right parotid, left parotid, right submandibular and left

submandibular glands were 0.26, 0.67, 0.39, 0.07 and 0.13,

respectively. This could potentially indicate that absorbed doses

scale linearly with administered activity.
Frontiers in Nuclear Medicine 04
Patients scanned according to schedule 2 were found to have

median effective half-lives of 42.3 (16.1–99.9) hours, 12.9 (6.7–

23.6) hours and 11.9 (7.0–85.3) hours in thyroid remnant,

parotid glands and submandibular glands, respectively.
3.2. Dosimetry results for whole-body

The median whole-body absorbed dose was 0.10 Gy (Range

0.03–0.29 Gy). The range of whole-body absorbed doses is

illustrated in Figure 4. Figure 2B shows the comparison of

whole-body absorbed doses per unit of administered activity for

patients treated with 1.1 and 3.7 GBq respectively. The results of

the Mann-Whitney test between the whole-body absorbed doses

per unit of administered activity for patients who received 1.1

and 3.7 GBq showed that the difference was non-significant

(p = 0.25). This also indicates that absorbed doses scale with

administered activity.
4. Discussion

A large range of absorbed doses are observed for both thyroid

remnants and salivary glands which implies the need for and

potential benefit of personalised treatment planning in this
frontiersin.org
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FIGURE 4

Whole-body absorbed doses obtained from the whole-body retention
measurements.
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patient cohort. The results presented here are from a single

centre, but previous studies (37, 40) have demonstrated that

dosimetry in a multi-centre setting is feasible. Standardisation

of quantitative imaging and dosimetry methodologies across

centres or a central dosimetry hub for processing is essential

to be able to collate results from centres and investigate

dose-response relationships. An important finding of these

preliminary results is that absorbed doses to target and

non-target tissues scale with the administered activity as no

significant difference could be found between absorbed doses

per unit of administered activity for patients treated with 1.1

and 3.7 GBq, respectively.

The majority of maximum-voxel thyroid remnant absorbed

doses were below 50 Gy, which is lower than values reported in

a previous publication by Flux et al. (13) in the same centre.

Possible explanations for this observation are advances in

diagnostic imaging, allowing for improved visualization of

small thyroid remnants, and the improvement in surgery due

to centralisation of patient care to high volume centres in the

United Kingdom with differences in the amount of remaining

thyroid tissue following surgery. Significant progress has also

been made with respect to image reconstruction, processing

and dosimetry calculations which explains the large differences

of absorbed doses when compared to the study by Maxon et al.

(46) that proposed an absorbed dose threshold of 300 Gy for

the successful ablation of thyroid remnants, significantly higher

than the absorbed doses calculated in the present study. A

direct comparison of absorbed doses in this contemporary

study with the historical studies is therefore challenging and

absorbed dose thresholds are in need of re-evaluation. The

large range of absorbed doses indicates that the majority of

patients are either under- or over-treated. Further work is

therefore required to achieve standardisation of methodologies

and to establish dose thresholds in large-scale multi-centre

clinical studies which could be used for personalised treatment

planning in this cohort.
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The range of absorbed doses to salivary glands is much lower

than the mean gland absorbed dose limits used in external beam

radiotherapy (EBRT), which recommend to spare parotid glands

to less than 20 to 26 Gy (47, 48). It is worth noting that these

limits are for fractionated radiotherapy to mitigate grade 3

xerostomia while the salivary gland toxicities observed

following RAI are usually of grade 1 or 2. Furthermore, due to

radiobiological factors such as relative biological effectiveness,

heterogeneous dose distribution and dose rate effects, absorbed

doses delivered cannot be directly compared to EBRT. In the

multi-centre phase of the study, INSPIRE will collect salivary

gland toxicity data up to 24 months following therapy using

Common Terminology Criteria for Adverse Events (CTCAE)

version 5.0 criteria that will enable investigation into the

relationship between the absorbed dose to salivary glands and

treatment-induced toxicity. The median absorbed dose values

per unit of administered activity obtained here of 0.2 (Range

0.1–0.9) mGy/MBq and 0.1 (0.1–0.9) mGy/MBq for parotid

and submandibular glands, respectively, can be compared with

the values of 0.2 (0.1–0.3) mGy/MBq and 0.5 (0.2–1.2) mGy/

MBq provided by Jentzen et al. (49). Despite the low absorbed

dose, salivary gland toxicity is well recognised in this patient

population who generally expect a good quality-of-life (QoL),

as has been reported in the literature (24). Jentzen et al. (49)

proposed that an inhomogeneous distribution of RAI in

human salivary glands could be a possible explanation which

would lead to a very heterogenous dose distribution. Further

work on this is required and a possibility to overcome the

clear limitations of the spatial resolution of the imaging

system would be the use of pharmacokinetic modelling, as has

been performed by Taprogge et al. (50) for the example of 223Ra.

The measured half-lives for thyroid remnants and salivary

glands are in agreement with values published in the literature

(21, 43). Nevertheless, the large range of observed half-lives is

of importance when considering the possibility of single-time

point dosimetry in this patient cohort, as discussed by

Gustafsson et al. (51).

Limitations of the present study include that the results

presented here include only low- and intermediate-risk patients

without the presence of metastases and in a single centre. The

aim is to expand the study to multiple centres and include

high-risk patients and to perform lesional-dosimetry to

establish the range of absorbed doses and to assess the

relationship between absorbed doses and outcome in these

patients.
5. Conclusions

These early study results define pragmatic methodologies

to improve understanding of absorbed doses to thyroid

remnants and normal organs following RAI therapy. An

enhanced knowledge of the impact of this treatment

should enable superior clinical outcomes whilst minimising

treatment-induced toxicities.
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