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Radionuclide-mediated diagnosis and therapy have emerged as effective and low-
risk approaches to treating breast cancer. Compared to traditional anatomic
imaging techniques, diagnostic radionuclide-based molecular imaging systems
exhibit much greater sensitivity and ability to precisely illustrate the
biodistribution and metabolic processes from a functional perspective in breast
cancer; this transitions diagnosis from an invasive visualization to a noninvasive
visualization, potentially ensuring earlier diagnosis and on-time treatment.
Radionuclide therapy is a newly developed modality for the treatment of breast
cancer in which radionuclides are delivered to tumors and/or tumor-associated
targets either directly or using delivery vehicles. Radionuclide therapy has been
proven to be eminently effective and to exhibit low toxicity when eliminating
both primary tumors and metastases and even undetected tumors. In addition,
the specific interaction between the surface modules of the delivery vehicles
and the targets on the surface of tumor cells enables radionuclide targeting
therapy, and this represents an exceptional potential for this treatment in breast
cancer. This article reviews the development of radionuclide molecular imaging
techniques that are currently employed for early breast cancer diagnosis and
both the progress and challenges of radionuclide therapy employed in breast
cancer treatment.
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1 Introduction

A radionuclide is a nuclide carrying excess nuclear energy that can emit either alpha

particles carrying high energy with a short range, beta particles carrying low energy with a

longer range, gamma radiation with a long range, or auger electrons with a very short

range and low energy (1). Amongst these, alpha particles and beta particles are the

most popular choice for radionuclides in breast cancer (BC) diagnosis and treatment

(2–4). These two forms of radiation energy can be safely harnessed to break down the

physiological processes, most notably the genomic integrity of cancer cells, and

eventually lead to cancer cell death and subsequent tumor shrinkage (2). Radionuclide

therapy, as a major type of radiopharmaceutical therapy, started in November 1938

when John Lawrence used radioactive phosphorus (32P) to treat leukemia (5). However,

radionuclide therapy for use on solid tumors had begun as early as the middle of the

19th century, not long after Dr. Marie Curie discovered radium which was found to

damage live tissues and cells following exposure. Subsequently, radium has been

employed to treat a variety of diseases besides cancer (6–11). Numerous clinical cases of
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radionuclide therapy have proved that it is a safe and effective

approach for the treatment of many types of cancer (12–14).

Radionuclides are elements, for the medical field this typically

means only those radionuclides from the actinide series on the

table of elements, that emit energy in the form of radiation (15).

The loss of this energy turns the radionuclide from one element

to another (daughter isotopes) through a process called decay. In

alpha decay, a composite particle composed of two protons and

two neutrons is emitted that mimics helium in atomic mass, but

it differs from helium in that it is double-ionized. There are two

forms of beta particles emitted in beta decay and beta plus decay

(also called positron emissions). In beta decay, electrons are

expelled from the nucleus at high speeds; these electrons are

termed beta particles and are typically used in radionuclide

therapies. In beta plus decay, positrons are expelled from the

nucleus, also at speeds close to the speed of light, and these

positrons are commonly used in the imaging of disease states.

Gamma rays are emitted from the nucleus in the form of

electromagnetic energy as photons that can be used for either

treatment or imaging modalities. Gamma-ray emissions can

travel the greatest distance of the radiation types discussed

herein. Another form of radioactive decay is electron capture,

where orbital electrons fill in a vacancy in the nucleus, resulting

in auger emissions. However, the emission of auger electrons

requires a vacancy in the nucleus of the radionuclide, which can

be induced by other forms of radioactive decay or excitation by

an external force, for example by x-rays (16). Regardless of the

form of decay, radionuclides express energy from the nucleus

(called Emax) that is responsible for cellular DNA damage. The

level of energy, however, differs vastly in both the rate of decay

and the damage potential.

Radionuclides can damage DNA through either direct or

indirect damage. Direct damage can be complex DNA double-

strand breaks, single-strand breaks, base damage, and cross-

linkage formations (17). Indirect DNA damage typically arises

through the generation of reactive species (oxygen or nitrogen)

in the treated area that affects the cellular DNA to form

mismatches, single-strand breaks, and double-strand breaks (17).

Among the three types of radionuclides, alpha is the most

ionizing with the greatest potential for direct DNA damage that

does not rely on nearby reactive species generation (18, 19). Beta

and gamma radionuclides, on the other hand, have less ionizing

potential but can damage the DNA through the generation of

reactive oxygen species and free radical species. The alpha

particles also have a very high linear energy transfer, which

contributes to the increased DNA damage potential by causing

increasingly complex DNA lesions (20). Additionally, DNA

double-strand breaks caused by high linear energy transfer

radionuclides are repaired more slowly than are double-strand

breaks caused by low linear energy transfer radionuclides (19).

Beta particles emitting radionuclides, however, can frequently

also generate gamma emissions as a side product of beta decay.

Both the alpha and beta particles emitted from radionuclides

have direct linear penetration, albeit the particles do not traverse

great distances in tissues. However, beta particles can travel

farther through the air, and gamma emissions are emitted as
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photons that travel in a wave that can sometimes co-occur with

radionuclides undergoing beta decay. Comparatively, auger

emissions have much lower energy and thus a shorter range of

penetration in tissues of only a few hundred nanometers. For

this reason, auger emitters must be incorporated into the nucleus

of a cell to be effective in damaging DNA as a treatment modality.

Recently, targeted radionuclide therapy (TRT) has emerged as a

promising strategy to significantly improve radiopharmaceutical

efficiency while minimizing toxicity and other side effects (21–28).

Unlike traditional radiation therapy in which administration

occurs through an external beam, the radionuclides employed in

therapy are administered intravenously, intraperitoneally, or orally.

During the process of an ideal TRT, internally administered

radionuclides will migrate specifically to the tumor region to

precisely exert their cytotoxicity without any significant

detrimental effects on the surrounding normal tissues (29, 30), as

exemplified by a famous case of administration of 131I to patients

with thyroid carcinoma (31–35). Specific targeting can be achieved

through antigen-antibody recognition (36, 37), ligand-receptor

interaction (38), or the interaction between certain biomolecules

and unique biomarkers on the surface of tumor cells based on

their high affinity (22). As such, the required dosage of

radionuclide used in the treatment can be much less, which will

significantly minimize the unnecessary exposure of patients to

radiation both temporally and spatially. Also, TRT can

significantly decrease the background radiation activity which may

lead to high drug tolerance (39). In addition, radionuclides can

emit either x-rays, gamma-rays, or beta-particles that can be

visualized by nuclear medicine imaging systems, such as single-

photon emission computed tomography (SPECT) scanning or

PET, to directly monitor the efficacy and precision of TRT (40–42).

Accumulated clinical evidence has demonstrated the great

treatment potential for TRT targeting both primary tumors and

metastases, thus TRT presents a highly effective, safer, and more

economical modality when compared to traditional chemotherapy

(43). This review will cover the existing TRT in BC and will

discuss the clinical development and challenges of TRT.
2 Radionuclide diagnosis in breast
cancer

Breast cancer is the most frequent cancer occurring in women

in the United States. According to statistical analyses from the

American Cancer Society, about 290 thousand women were

diagnosed with BC in 2022, rendering it the most common

cancer in U.S. women. Unfortunately, more than 43,000

women died from BC during that year (44). Thus, robust and

effective diagnostic and treatment regimens will be critical to

improve outcomes for BC patients. As to BC diagnosis,

radionuclide molecular imaging has demonstrated indisputable

advantages over traditional anatomical imaging strategies that

rely on finding the altered anatomical structure of breast tumors,

such as mammography, ultrasound, magnetic resonance imaging

(MRI), and computed tomography (CT) (45). BC is a highly

heterogeneous disease with many subtypes according to its
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genetic and clinical background (46, 47). The most common

classification of BC is based on the expression of estrogen

receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2). The expression of each of these

receptors can be detected by immunohistochemical analyses. The

four intrinsic molecular subtypes of BC are luminal A (ER+, PR+,

and HER−, the most common), luminal B (ER+, PR+, and

HER+), HER2-enriched (ER−, PR−, and HER+), and triple-

negative (ER−, PR−, and HER−) (48). Triple-negative BC

(TNBC) is the most difficult subtype to treat and the most lethal

subtype amongst all BC subtypes (49–51).

Radionuclides employed in BC therapy approaches can be

categorized into diagnostic radionuclides and therapeutic

radionuclides. Radionuclide-based imaging has been more

frequently employed in diagnosing BC in recent years and is

particularly important in ascertaining the extent of metastatic

disease (52, 53). It offers indisputable advantages to the

functional detection of BC through radionuclide-labeled small

metabolic compounds for non-invasively illustrating the

biological process of BC and radionuclide-labeled ligands/

antibodies for specific ligand/receptor interaction-mediated

targeting radionuclide molecular imaging of BC (54–56). One

well-known clinical technique showing the advantage of

radionuclides in cancer therapy is positron emission tomography

(PET). As both a research and medical technique, PET is a

functional imaging tool employing radiolabeled substances, such

as glucose, whose function is to monitor the metabolic processes

to detect tumors and search for metastases. The most popular
FIGURE 1

Representation of the basic principles and procedures in positron emission to
radiolabeled with the positron-emitting isotope. The now radiolabeled targe
directly into the bloodstream. The isotope emits positrons within the patient
those positron emissions. Finally, an overall picture is generated showing t
complex, thus showing the location of the tumor.
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clinical radionuclide used for detecting primary tumors and

metastases is 18F-fluoro-deoxy-glucose (FDG) (Figure 1).

The principle of radionuclide-facilitated diagnosis of BC is

illustrated in Figure 2. A common radionuclide cancer therapy is

composed of three interconnected parts: A cancer cell-surface

specific targeting molecule, a synthetic binding molecule that can

specifically bind to the targeting molecule (called a linker), and a

radionuclide-labeled chelator that is linked to the binding

molecule (Figure 2) (57–59). All these three parts plus the

specific surface marker on the cancer cells ensure the

radionuclides target BC with high specificity and a high affinity,

excluding potential off-target effects.

We have listed the commonly used radionuclides and their

application in BC in Table 1. Amongst them, 99mTc is the most

popular and ideal imaging radionuclide because of its high

target/non-target ratio and affordability (71–74).
3 Radionuclide treatment in breast
cancer

As to the clinical radionuclide treatment, an optimal

radionuclide therapy may provide therapeutic options that were

not previously available for BC patients (Table 2). For effective

treatment of BC, it is important to maximize tumor cell DNA

damage and cytotoxicity while minimizing effects on nearby

healthy tissue. The properties of radionuclides that support this

therapeutic effect include a short half-life (85), linear energy
mography (PET) imaging for cancer diagnosis. The targeting molecule is
ting complex is then introduced to the patient, typically through injection
s’ system, allowing the PET camera to track the high-density locations of
he highest concentration locations of the radiolabeled tumor-targeting
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FIGURE 2

Schematic overview of receptor-targeting molecular imaging for BC. The molecular radionuclide structure consists of a ligand, linker, chelator, and
radionuclide. Ligands that bind to the overexpressed receptors on BC cells can be coupled to chelator often through a linker. Chelators enable the
labeling of ligands with radionuclides.

TABLE 1 A list of radionuclides employed in the BC.

Radionuclides Mode of decay Physical half-life Emax (MeV) Application in breast cancers Refs
131I β 8.02 days 0.6 SPECT/PET imaging and targeted treatment (60)
177Lu β 6.73 days 0.5 Biodistribution and small-animal SPECT/CT imaging (61)
111In β+ 67.2 h 0.245 SPECT/PET imaging (62)
18F β+ 1.83 h 1.656 PET imaging (63, 64)
13N β+ 9.97 h 1.30 PET imaging simplified for clinical applications (65)
15O γ/β+ 122.266 s 1.73 PET imaging (66)
68Ga
99mTc

β+

γ

68 min
6.04 h

1.9
0.14

Imaging, including targeted, pre-targeted, and non-targeted imaging.
SPECT

(14, 67–70)
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transfer (86), toxicity (87–89), the range in tissue (2, 90, 91), in vivo

stability (92, 93), tissue preference (85), the accumulation in tumors

(90), the DNA damage scale (70, 94, 95), and the post-treatment

clearance (96, 97). The double-stranded DNA damage caused by

the selected particles emitted by a given radionuclide will

determine the live or death of the targeted BC cells (69, 94, 98).

Theoretically, double-stranded DNA breakage may only require
TABLE 2 List of radionuclides employed in the treatment of BC.

Radionuclide Mode of
decay

Physical
half-life

Formulation

177Lu β 6.73 days 177Lu-bombesin-paclitaxel

153Sm β 46.50 h 153Sm EDTMP
186Re β/auger 3.72 days 186Re-HEDP
188Re β/γ 17.00 h 188Re-SOCTA-trastuzumab
213Bi β 45.61 min Multiple chelators reviewed by

Ahenkorah et al.
212Bi α/β 60.55 min 212Bi-MAA

211At α 7.21 h Multiple ligands reviewed by
Guerard et al.

212Pb β 10.64 h 212Pb-CSPG4

224Ra α 3.63 days 223Ra-EDTMP
131I β 8.02 days 131I-GMIB-HER2-VHH1

Frontiers in Nuclear Medicine 04
the energy from a single alpha particle or multiple beta particles

(99). Although the cytotoxicity of beta particles to cancer cells is

much lower than that of alpha particles, alpha particles will

generate much less toxicity than beta particles to the surrounding

tissues of the tumor because of their short range (less than 100

micrometers), rendering alpha particles a focus for future use in

clinical application (100). However, due to the increased
Emax

(MeV)
Application Refs

0.5 For targeting EGFRs as a novel neoadjuvant brachytherapy
for the treatment of locally advanced BC.

(75)

0.8 A treatment for bone metastases. (76)

1.1 A treatment for bone metastasis. (77)

2.1 Treatment of inflammatory disease and cancer. (78)

5.9 As targeted alpha-particle therapy. (79)

6.1 For the development of cancer therapeutic agents for
treating various neoplastic diseases.

(80)

5.9 Treatment for cancer and first clinical trials. (81)

0.6 For targeted pre-clinical and clinical use for the management
and treatment of cancer.

(82,
83)

5.7 For the treatment of breast cancer bone metastases. (84)

0.6 For targeted treatment of HER2+ breast cancers. (60)
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penetration of beta particles, beta-emitting radionuclides are

currently more frequently used for cancer treatment as they cause

more widespread damage that can be somewhat constrained by

penetration depth. For example, in 2009, the BC therapeutic agent

trastuzumab (Herceptin, a humanized anti-HER-2/neu monoclonal

antibody) was cross-linked with succinimidyl 3,6-diaza-5-oxo-3-[2-

((triphenylmethyl)thio) ethyl]-8-[(triphenylmethyl)thio] octanoate

(SOCTA) followed by labeling with the radionuclide 188Re; using a

preclinical orthotopic mouse model, this 188Re-SOCTA-

trastuzumab was administered intravenously to mice carrying

tumors developed from BT-474 BC cells (HER2+). The results

demonstrated that 188Re-SOCTA-trastuzumab accumulated much

more in tumors than in normal tissues, suggesting that 188Re-

SOCTA-trastuzumab can be a potential agent for targeted therapy

(78). A combination treatment was employed using 131I

radioactive iodine-conjugated antibodies to target the HER2

antigen to cause cancer cell death. The outcomes from the clinical

trials demonstrated the safety and efficacy of this combined

therapy for HER2+ BC (101). A recently developed targeted

radionuclide theragnostic agent, 131I-GMIB-Anti-Her2-VHH1, has

been tested for safety, biodistribution, radiation dosimetry, and

tumor-imaging potential in the diagnosis and treatment of HER2+

BC (102). The results indicated that this agent could be a

promising drug to image and treat HER2+ BC with much fewer

side effects (Figure 3). Recently, Trastuzumab (Herceptin), a
FIGURE 3

Administration of radionuclide carriers in the tumor tissue and their fur
Representative view of a tumor growing along blood vessels that is HE
radionuclide (radioactive yellow or red symbols attached to antibodies) c
straight to HER2+ tissues such as the tumor, reducing ionizing damage to
emitter (red radioactive symbol), centered above the tumor is both and α
right of the tumor is a solely α particle emitter (yellow radioactive symbol)
is shown as red clouds centered around the radionuclides.
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monoclonal antibody targeting HER2 receptors, has been

covalently bound with 3-phosphonopropionic acid (CEPA) NP

and labeled with 225Ac. 225Ac@Fe3O4-CEPA-trastuzumab has

shown a high receptor affinity in a preclinical in vivo study in

which the significant inhibiting potential of 225Ac@Fe3O4-CEPA-

trastuzumab for BC was validated (103, 104).

Radionuclide-labeled antibodies have been tested to improve the

therapeutic efficacy and specificity (105–107). The programmed cell

death ligand 1 (PD-L1), also named B7-H1 or CD274, is a key

element of an immune checkpoint system and is essential for

avoiding autoimmunity (108). PD-L1 is expressed on most cancer

cells, tumor-associated macrophages (TAM), dendritic cells,

activated T cells, as well as cancer-associated fibroblasts within the

tumor microenvironment (109–111). PD-L1 can inhibit CD8+

T-cell effector function by interacting with programmed cell death

1 (PD-1) on the surface of T cells (112, 113). Antibodies against

PD-L1 have been generated and evaluated in multiple clinical

trials against BC, generating exciting outcomes for BC patients

(114); perhaps more excitingly, combined anti–PD-L1 therapy

with targeted radiotherapy has been shown to yield a higher

therapeutic efficacy when compared to the antibody treatment

alone (115). Notably, 111In [In]-BnDTPA-trastuzumab-NLS is

another radiopharmaceutical agent with theranostic applications

for imaging and auger electron radioimmunotherapy of

HER2-positive BC (116).
ther accumulation via active targeting approach of a HER2+ tumor.
R2+ (purple star receptors). Antibody structures (beige stars) that are
arriers are introduced. The antibody carriers direct the radionuclides
non-cancerous tissues. On the left of the tumor is a solely β particle
and β particle emitter (red and yellow radioactive symbol), and to the
. Range and depth of tissue penetration of the respective radionuclides
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The theranostics of lymph node metastasis is a major barrier to

the successful treatment of BC and a key decision-maker in BC

patients’ prognosis. Notably, a recently designed nano nuclear

drug (68Ga-NP-mAb or 177Lu-NP-mAb) displayed exceptional

stability, considerable accumulation, and sustained retention in the

lymph node metastases post-intratumoral injection. This agent not

only significantly reduced the incidence of lymph node metastasis

but also shrank the volumes of lymph node metastases as well

without apparent toxicity in a mouse model (117). This is an

example of how radionuclide-mediated therapy will open new

avenues for the diagnosis and treatment of BC metastases. For

TNBC, which has no ideal cell surface biomarkers available for

targeted therapy, auger emitters have demonstrated an excellent

therapeutic effect as long as they can be delivered directly into the

nucleus proximal to DNA. The nuclear protein poly (ADP-

ribose)-polymerase 1 has been reported as a possible target, but

ideal inhibitors (PARPi) are not clinically available for current

therapy of BC carrying the BC gene germline mutation

(BRCAmut). A recent study employed a theranostic approach in a

xenografted mouse TNBC model by radiolabeling a close

derivative of the PARPi Olaparib (e.g., PARPi-01) with the auger

emitters 125I, or [125I] PARPi-01. The results support the potential

role of [125I] PARPi-01 in improving the use of radiation and

radionclides to treat TNBC (118, 119).

Radionuclides such as radium-223 (Xofigo) (77, 119–121),

strontium-89 (122–124), and samarium-153 EDTMP (125, 126)

have been employed to treat BC bone metastases since their

radioactive particles (α or β) are most likely to be absorbed in

the setting of intensive bone turnover. To improve the efficacy of

radionuclide therapy, radionuclides have been frequently

combined with nanoparticles (NPs, 1–100 nm in diameter) in BC

therapeutics due to their specific advantages for drug delivery.

These include biocompatibility, low toxicity, high stability,

excellent penetration ability, and tissue retaining efficiency (127–

129). NP can be generated from any solid or liquid material,

such as dielectrics, semiconductors, inorganic molecules, and

organic molecules. To treat epidermal growth factor receptor

(EGFR)-positive TNBC, gold NP (AuNP) was modified with

polyethylene glycol (PEG) chains derivatized with 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators

for conjugating with emitter 177Lu and with PEG chains linked

to panitumumab (selectively binds to EGFR) for targeting TNBC

cells with surface EGFR expression. Non-targeted 177Lu-NT-

AuNP and EGFR-targeted AuNP (177Lu-T-AuNP) were

subcutaneously administered into xenograft mouse models

bearing EGFR+ MDA-MB-468 human BC tumors. The results

demonstrated that 177Lu-T-AuNP is a potent radionuclide

therapeutic agent for EGFR-positive TNBC therapy (130–132).

For early-stage cancer, antibodies targeting BC cell surface

antigens such as CEA, MUC1, and L6 had been employed (68).

Technitium-labeled anti-CEA Fab′ fragments showed 94% more

sensitivity in breast tumors in a small clinical trial (133).
90Y-labeled humanized BrE3 antibody against MUC1 displayed a

promising anti-tumor effect in a clinical trial (134, 135). The

chimeric L6 antibody labeled with 131I also showed a

considerable anti-tumor effect in clinical trials (136–138).
Frontiers in Nuclear Medicine 06
Chondroitin sulfate proteoglycan 4 (CSPG4), a highly

glycosylated transmembrane protein, has recently been identified

as a target for TNBC treatment due to its high expression on the

surface of TNBC cells and its limited expression in normal

tissues (more than six times lower than tumors) (139, 140).

Therefore, we can use monoclonal antibodies recognizing CSPG4

conjugated to a radioactive isotope for radioimmunotherapy,

which we achieve by targeting radiation directly and more

specifically tumor cells, reducing non-specific exposure of normal

cells to the radioactive isotope. Monoclonal antibody 225.28

specifically against CSPG4 was radiolabeled with 212Pb, allowing
212Pb-mAb 225.28 to specifically recognize TNBC cells and cause

cell death in vitro and thus tumor reduction in a xenograft-bearing

mouse model. These promising outcomes support 212Pb-mAb

225.28 as a potential therapeutic agent against TNBC (82).

Prostate-specific membrane antigen (PSMA) has been recently

shown to be highly expressed on the cell surface of TNBC cells and

adjacent endothelial cells, suggesting that PSMA can be a

promising target for TNBC treatment. [177Lu] Lu-PSMA induced

frequent apoptotic events in BT-20 and MDA-MB-231 tumor-

associated endothelial cells, significantly limiting the proliferation

of TNBC cells in the in vitro co-culture cellular models tested

(141). Significant uptake of radiolabeled ligand [68Ga]Ga-PSMA

was detected in BC stem cells expressing a high level of PSMA

proteins on their cell surface (67). Furthermore, the hypoxic

environment significantly promoted the uptake of radiolabeled

ligand [177Lu] Lu-PSMA in MDA-MB-231 and MCF-7 cells

(142). 177Lu has also been used to label tumor-targeting alkyl

phosphocholine (NM600) for TNBC radionuclide therapy.
177Lu-NM600 has been shown to considerably extend the

survival rate in syngeneic murine models bearing tumors

developed from either 4T07 or 4T1 TNBC cells (143).

Mesothelin is a glycosylphosphatidylinositol-anchored cell-

surface glycoprotein that is highly expressed in BC cells with a

severely limited expression in normal tissues (144–146). A

mesothelin-targeted thorium-227 conjugate, BAY 2287411 was

tested for binding activity, radio stability, biodistribution, mode-

of-action, and antitumor potency using an in vitro cellular

model, an in vivo orthotopic model, and a patient-derived

xenograft model. This demonstrated that BAY 2287411 treatment

induces double-strand DNA breaks, apoptosis, and oxidative

stress. It significantly decreases cell viability and shows a high

antitumor potency. Biodistribution studies also suggested a

specific uptake and retention of BAY 2287411 in tumors and not

in normal tissues (147).

Fulvestrant (an endocrine therapy drug for BC) was labeled

with radionuclide 131I to generate 131I-fulvestrant followed by an

evaluation of its effect on BC cell viability and attenuation of the

development of human BC and its toxicity to major organs in

xenograft nude mouse models. 131I-fulvestrant is remarkably

stable and shows a strong binding affinity to estrogen receptor-

positive (ER+) MCF-7 cells (148). In addition, 131I-fulvestrant

exhibited significant cytotoxicity in MCF-7 and MDA-MB-231

cells (ER−) and exerted a more pronounced suppressive effect on

tumors derived from MCF-7 cells than from MDA-MB-231 cells.

After 131I-fulvestrant was injected into nude mice intravenously,
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the distribution of radioactivity was tracked to ER expressing

locations, and the majority of 131I-fulvestrant was confined to the

tumors. 131I-fulvestrant could attenuate the proliferation of

MCF-7 BC cells in vitro and inhibited the growth of tumors

derived from implanted MCF-7 cells in nude mice whereas the

toxicity of 131I-fulvestrant to the major organs of mice was mild

and controllable. This renders 131I-fulvestrant a promising drug

for BC treatment that combines the advantages of both

radiotherapy and endocrine therapy (148).

In a newly-developed target alpha therapy, an anti-androgen

receptor (AR)-targeted radiotherapy platform (Hu11B6) labeled

with the alpha-particle emitting Ac-225 (225Ac-hu11B6) has been

evaluated in murine xenograft AR-positive BC models. The

results show a successful site-specific delivery of therapeutic Ac-

225 to tumor tissues and effective, long-term, local tumor control

(149). 177Lu labeled bombesin-poly (D, L-lactide-co-glycolide)

acid (paclitaxel) NP display specific cellular uptake and high

treatment efficacy in both in vitro and in vivo BC mouse models

since bombesin can specifically recognize the gastrin-releasing

peptide receptor, that is overexpressed on more than 75% of BC

(75). While 223Ra has been evaluated to treat bone metastases in

BC patients, in a mouse model, the administration of 224Ra

significantly reduced the bone metastatic incidence from tumors

developed from implanted MDA-MB-231(SA)-GFP human

BC cells (84).
4 The challenges of radionuclide
therapy for breast cancer

Growing evidence has suggested that radionuclide therapy

holds great potential to robustly improve the treatment efficacy

of BC, especially for imaging and therapy. However, one upfront

challenge to be solved is the off-target effects and toxicity from

radionuclides emitting beta particles, such as 90Sr, 14C, and 210Pb

(100, 150). Although radionuclides emitting alpha radiation have

a high linear energy transfer and can treat cancer rapidly with

high efficiency, their half-life is generally much shorter. There

may be a need to combine alpha and beta radiation emitters in a

proper ratio to achieve the best therapeutic outcomes. We may

also need to find a way to calculate the ratio of the radiation

uptake between tumor tissues and surrounding normal healthy

tissues. The implementation of radionuclide therapy also has to

deal with the deep social fear of radioactivity (151).

Over the last three decades, drug delivery agents and methods

have been intensively investigated to discover efficient and specific

drug delivery protocols with limited or no off-target effects to

improve the diagnostic and therapeutic outcomes of BC; these

include peptides, small nanobody molecules, monoclonal antibodies,

fragments of monoclonal antibodies, exosomes, and NP (152–156).

However, amongst the aforementioned methods, one challenge for

radiolabeled antibodies is the intra- and inter-tumor heterogeneity

of their uptake by cancer cells, and imaging techniques with high

resolution are required to show this heterogeneity. Certain

situations may require two types of radionuclides to achieve the

best imaging and therapeutic results, one radionuclide for imaging
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and another one for therapy (157). The antibodies’ size limits their

capability to penetrate tumors, directing the radiation emitted from

radionuclides away from their targeted sites. As such, nanobodies

have recently emerged as promising alternatives to robustly increase

the capability of tumor penetration (158, 159). Although the

resistance mechanisms to alpha particles are not significant, cancer

cells may develop mutations to limit the specific delivery of

radionuclides to cancer cells, such as the decreased expression of

cancer cell surface antigens that are selected for targeting.

Therefore, identifying more antigen and epitope candidates on BC

cell surfaces for radionuclide-specific targeting will become

increasingly indispensable to the elimination of tumors that have

already acquired resistance to previous radionuclide therapy.

Thus far, there is not a medical constituency for radionuclide

diagnosis and therapy, implying a need for a new specialty to

provide the multidisciplinary training (in general oncology,

radiation oncology, and nuclear medicine) necessary for safe,

efficient, and effective administration of radionuclides to BC

patients. Having expertise in both imaging and radionuclide

dosimetry becomes extremely important for a medical physicist

because the delivery of radionuclides and the distribution of

radiation are critical for the successful treatment of BC. In

addition, dosimetry calculations for the medical radioisotopes and

daughters are still challenging given the many factors that need to

be considered (160–164). It is necessary to accurately determine

radiochemical purity and dosage as well as to account for both the

parent radionuclide and associated decay daughters, as their

relocation from the tumor site potentially places healthy tissues at

risk. Promisingly, there is a novel method to minimize the release

of the radioisotope daughters by encapsulating the radionuclides

in exosomes (155) or by conjugating with nanobodies as we have

currently designed in our laboratories. These exosomes carry a

specific targeting peptide or nanobodies that can recognize the

specific cell surface marker on BC cells allowing us to evaluate

their anti-oncologic capability in pre-clinical animal models. There

are still many additional tests that need to be done before being

applied clinically, but novel treatment approaches are clearly

needed for this challenging disease.
5 Perspective

Despite several radiopharmaceuticals being used for therapeutic

targeting that have shown clinical value in many types of cancer and

have been or will soon be approved and authorized for clinical use

around in the world, radiopharmaceuticals do possess many side

effects as well. Therefore, more research is required to establish the

efficacy of therapeutic strategies; use in combination with other

treatment modalities may result in better efficacy and reduced side

effects. Hence incorporation of correlative biomarker studies is

imperative to draw meaningful conclusions for individualizing

critical therapeutic decisions that can be effectively generalized and

implemented beyond the setting of this clinical trial. Additionally,

testing the immune priming potential of radiation in combination

with chemotherapy and/or immune checkpoint inhibitors will also
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provide a novel opportunity to induce immune modulation in BCs,

which are largely considered to be poorly immunogenic.
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