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Mini review of first-in-human
integrin αvβ6 PET tracers
Richard H. Kimura*, Andrei Iagaru and H. Henry Guo

Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States

This mini review of clinically-evaluated integrin αvβ6 PET-tracers reveals distinct
differences in human-biodistribution patterns between linear peptides, including
disulfide-stabilized formats, compared to head-to-tail cyclized peptides. All PET
tracers mentioned in this mini review were able to delineate disease from
normal tissues, but some αvβ6 PET tracers are better than others for particular
clinical applications. Each αvβ6 PET tracer was validated for its ability to bind
integrin αvβ6 with high affinity. However, all the head-to-tail cyclized peptide
PET-tracers reviewed here did not accumulate in the GI-tract, in striking
contrast to the linear and disulfide-bonded counterparts currently undergoing
clinical evaluation in cancer, IPF and long COVID. Multiple independent
investigators have reported the presence of β6 mRNA as well as αvβ6 protein in
the GI-tract. Currently, there remains further need for biochemical, clinical, and
structural data to satisfactorily explain the state-of-the-art in human αvβ6-
imaging.
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Introduction

The integrin family of transmembrane receptors consist of 24 members that perform

many essential regulatory functions both inside and outside of the cell (1, 2). One

member of high clinical interest is integrin αvβ6, an epithelially-restricted receptor

that plays a role in wound-healing by promoting deposition of collagen via the TGFβ/

SMAD pathway (3). Chronic overexpression of integrin αvβ6 occurs in many different

cancers and in idiopathic pulmonary fibrosis (IPF) (4). The presence of integrin αvβ6

in disease is associated with high-morbidity and poor-survival (5–7). Integrin αvβ6

activates TGFβ by physically-removing a latency associated peptide from TGFβ

complex in situ (8). TGFβ is a pleiotropic growth factor that is expressed by many cell

types, stored in the stroma, and found ubiquitously throughout the body (9). Recently,

the integrin αvβ6-TGFβ axis has been shown to repress the activity of CD8+ T-cells

through a SOX4 mediated immunoregulatory pathway in triple negative breast cancer

(10). This mini review examines integrin αvβ6 PET tracers that have been evaluated in

several human cancers including pancreatic cancer, lung cancer, colon cancer, liver

cancer, head and neck cancer, and metastatic disease. Integrin αvβ6 PET is also useful

for chronic lung fibrosis such as IPF, and for visualizing the extent of lung injury in

COVID-19 (11, 12).

Efforts to image and treat disease through the integrin αvβ6-TGFβ axis have led to the

development of a wide range of ligands including small molecules and peptides, small

protein domains, antibody fragments and monoclonal antibodies. For PET imaging, the

smaller ligands are often preferred due to their favorable pharmacokinetic properties,

robust and stoichiometric synthesis routes, availability of diverse chemical modification

schemes, ease of handling and lower cost compared to biologics. Several successful
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fnume.2023.1271208&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fnume.2023.1271208
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnume.2023.1271208/full
https://www.frontiersin.org/articles/10.3389/fnume.2023.1271208/full
https://www.frontiersin.org/journals/nuclear-medicine
https://doi.org/10.3389/fnume.2023.1271208
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Kimura et al. 10.3389/fnume.2023.1271208
strategies have been used to develop the leading candidates

highlighted in this mini review. All first-in-human integrin αvβ6

PET tracers have demonstrated clinical utility in phase 0–2b

clinical trials. Strengths, weaknesses, similarities, and differences

will be explored for each.

The initial group of integrin αvβ6 PET tracers currently

undergoing clinical evaluation can be represented by five

categories: (1) linear peptide, (2) linear disulfide-bonded peptide

loop, (3) cystine knot peptide (knottin), (4) head-to-tail or

backbone-cyclized peptide, and (5) multimers of cyclic peptides

(Figure 1). The A20FMDV2 PET tracers utilize a linear 20 mer

peptide sequence derived from the VP1 capsid protein of foot

and mouth disease virus (FMDV) that uses integrin αvβ6 to

infect the host (13). Disulfide-stabilized looped peptides inspired

by Sunflower trypsin inhibitor-1 (SFTI-1) incorporate a single

disulfide bond to constrain the ends of integrin αvβ6-binding

sequences discovered by phage display, or short sequences (8-

mers) derived from natural endogenous sources such as

extracellular matrix proteins and growth factors (14, 17). Cystine

knot peptides (knottins) inspired by Momordica Cochinchinensis

trypsin inhibitor-II (MCoTI-II) are approximately 30–40 amino
FIGURE 1

Structural overview of integrin αvβ6 PET tracers currently in clinical trials. (A) P
from the VP1 protein of the Foot and Mouth Disease Virus. One variant was PEG
fluorobenzoyl group. Shown on the left (below) is a 40-member ensemble o
colored in red show the location of the DLXXL motif. The center ribbon dia
where the ball-and-stick portion contains the RGD residues. The ribbon diag
ball-and-stick format. (B) Primary structure of cyclic SFTI-1 (1JBL), three-dim
containing the integrin αvβ6 recognizing element situated between the c
Structure of [18F]FP-R01-MG-F2 containing the RTDLXXL integrin binding ac
are shown in yellow with disulfide bonds forming several looped regions. Be
MG, and on the right is the crystal structure of the [19F]fluoropropyl-labele
monomer used to make Trivehexin, the trimer (16). Below are the chemical
chelator called TRAP.
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acids long and are stabilized by three disulfide-bonds arranged

in a topologically-knotted configuration. Knottins can be

engineered by directed evolution using a yeast surface display

system to generate single-digit nanomolar integrin binders

(18, 19). Head-to-tail cyclized peptides refer to short amino acid

sequences (9 mers) rationally-designed and optimized to

selectively recognize specific RGD-integrins such as integrin

αvβ6 (20, 21). Finally, multimeric versions of cyclic-peptide

monomers have been made available by novel one-pot click

chemistry (22).
Subsections

In vivo performance highlights of the major
classes of integrin αvβ6 PET tracers
currently under clinical evaluation

Linear peptide
All A20FMDV2-derived PET tracers currently under clinical

evaluation were labeled with a fluorobenzoyl group at the N-
rimary structure of the 20 amino acid linear peptide (A20FMDV2) derived
ylated prior to radiolabeling. Both peptides were radiolabeled with an [18F]
f the peptide backbone obtained by NMR spectroscopy (13). The bonds
gram shows a side-view of the structure that was closest to the mean,
ram on the right is an end-on view where the Leu residues are shown in
ensional structure of SFTI-1, and linear disulfide-stabilized loop, SFITGv6,
ysteine residues, which form the disulfide bond (14, 15). (C) Primary
tivity in loop-1 of the MCO-TI-II framework (4). Cysteine residues, I-VI,
low left, is the ensemble of NMR structures of the parent peptide R01-
d knottin. (D) Primary structure of the head-to-tail cyclic-nonapeptide
structures of the monomer and trimer built around the multifunctional
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terminus. The initial human biodistribution and safety study

showed notable retention of [18F]FB-A20FMDV2 in the GI-

tract and liver as shown in the report by Keat et al. (23). [18F]

FB-A20FMDV2 was subsequently used to quantify integrin

αvβ6 expression in healthy vs. fibrotic lungs in the PETAL

study (24). Uncorrected (for lung tissue density) mean

standardized uptake values (SUVs) of [18F]FB-A20FMDV2

were about ∼1 in IPF lungs, and ∼0.5 in healthy lungs (24).

The authors also reported an SUVmax of ∼3 in IPF lungs (25).

[18F]FB-A20FMDV2 was next used to confirm target

engagement in the lungs of IPF patients following a single dose

of a novel inhaled αvβ6 inhibitor. Imaging results suggest

αvβ6-PET might accurately identify patients who would benefit

from αvβ6-targeted therapies (26). Finally, in a study by

Saleem et al., [18F]FBA-A20FMDV2 PET was used to image

lung fibrosis in lung cancer patients following pulmonary

radiation therapy (27). Uncorrected mean SUVs were 0.93 ± 0.6

in irradiated lungs compared to 0.56 ± 0.21 in healthy lungs.

The uptake of [18F]FBA-A20FMDV2 appears to be relatively

high in the liver and stomach.

To address off-target accumulation of the A20FMDV2-derived

PET tracers, Hausner at al. modified A20FMDV2 with a

polyethylene glycol (PEG) linker prior to radiolabeling with the

fluorobenzoyl moiety. This PET tracer was named [18F]αvβ6-BP

and it was shown to detect a lung nodule (SUVmax = 5.2) and a

metastatic-lesion at the iliac wing (SUVmax = 13.5) in a lung

cancer patient (28). [18F]αvβ6-BP was also used detect breast and

colon cancer as well as metastatic disease in the brain, liver, and

lung (28). Finally, patchy moderate uptake of [18F]αvβ6-BP was

found in the lungs of a COVID-19 patient two months after the

initial infection (12). Compared to [18F]FB-A20FMDV2

described above, uptake of [18F]αvβ6-BP appears to be much

lower in the liver compared to the non-PEGylated version. This

might be attributed to increased hydrophilicity of the PET tracer

by PEGylation. However, notable GI-tract uptake was also found

for [18F]αvβ6-BP (28).

Disulfide-stabilized loop
The SF-X (SF = sunflower, X = unique sequences) structure was

inspired by study of a serine protease sunflower trypsin inhibitor-

one (SFTI-1), a 14 amino acid backbone-cyclized peptide with a

single disulfide-bond across the middle forming two opposing

loops (29). PET-tracers inspired by this format are, thus-far,

linear peptides stabilized by a disulfide bond between the N- and

C-terminus cysteine residues, or half of the SFTI-1 structure.

Candidates of the SF-X design were approached by two parallel

methods.

A phage-display effort yielded lead candidate SFITGv6

(FRGDLMQL), where the KD = 14.8 nM for integrin αvβ6 as

measured by surface plasmon resonance (14, 30). The first

PET/CT scans of head-and-neck squamous cell carcinoma

(HNSCC) and non-small cell lung cancer (NSCLC) patients

found accumulation of [68Ga]-GaDOTA-SFITGv6 specifically

in tumors (14). In contrast, [18F]FDG accumulation was

detected not-only in tumors, but also in inflammatory lesions

in both patients (14). In addition, significant uptake of [68Ga]
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Ga-DOTA-SFITGv6 occurs in the GI-tract, but not in the liver

(14, 17). In a second comparative study, [68Ga]Ga-DOTA-

SFITGv6 demonstrated clinical utility and image quality that

was comparable to [18F]FDG in detection of NSCLC and

metastatic disease to the brain as well as regional lymph nodes

as shown by Flechsig et al. (30). SUVmax of 7.5 was found in a

histologically proven primary tumor (30). Metastatic lesions

were also easily detected.

In a parallel discovery effort, sequences that would form the

active disulfide-stabilized loop were derived from human RGD-

containing proteins such as fibronectin (SFFN1), tenascin C

(SFTNC), vitronectin (SFVTN), and latency associated peptides

1 (SFLAP1) and 3 (SFLAP3) (17). Cysteine residues were

coupled to the N- and C- termini and allowed to form a

disulfide bond. SFLAP3 (GGRGDLGRL) demonstrated superior

performance in cell binding assays and was subsequently

advanced to clinical trials. PET/CT scanning of a HNSCC

patient showed accumulation of [68Ga]Ga-DOTA-SFLAP in the

primary tumor (SUVmax = 5.1) and in corresponding lymph

node metastases (SUVmax = 4.1) (17). In contrast to the

unmodified A20FMDV2 based PET tracers described above,

significant uptake of SFTI-1 inspired peptides occurred in the

GI-tract, but not in the liver.

Cystine knot peptide (knottin)
[18F]FP-R01-MG-F2 is a knottin PET tracer that was

engineered to bind integrin αvβ6 with high affinity (KD/

IC50∼1nM) (31). This PET tracer was built into the Momordica

cochinchinensis Trypsin Inhibitor-II (MCoTI-II) framework and

therefore contains a relatively high percentage of arginine

residues compared to other inhibitor cystine knots of this family

(31–36). The high arginine content of the MCo-TI-II scaffold

produced pharmacokinetic properties that benefit molecular

imaging applications as PET and SPECT (31). In head-to-head

comparisons, the arginine-rich knottins (R-knots) outperformed

serine-rich knottins (S-knots) and glutamic acid-rich knottins (E-

knots) as PET agents evaluated in living animals (31). Arginine

residues enhanced uptake of the PET tracer in all tissues while

maintaining robust disease-to-normal tissue ratios (31). Thus, the

R-knot designated R01-MG was N-terminus labeled with a

fluropropyl moiety and advanced to clinical trials (4). In a pilot

clinical study, [18F]FP-R01-MG-F2 produced SUVmean of ∼6 in a

pancreatic tumor (4). The same primary tumor imaged with

[18F]FDG resulted in an SUVmean of∼4. [18F]FP-R01-MG-F2 also

demonstrated high uptake in the lungs of IPF patients due to

chronic over-expression of integrin αvβ6, which promotes lung

fibrosis (4). In contrast, lung uptake was very low in healthy

individuals (Figure 2).

The same parent peptide, R01-MG, was next labeled with

[68Ga]Ga-NODAGA- at the N-terminus. In a different pancreatic

cancer patient, [68Ga]Ga-NODAGA-R01-MG produced SUVmean

of 4.4 (4). [68Ga]Ga-NODAGA-R01-MG also clearly-detected

cervical cancer and lung cancer (4) Next, 15 pancreatic cancer

patients were imaged with [18F]FP-R01-MG-F2. The mean ± SD

SUVmax = 12.2 ± 4.3 at 75 min after intravenous administration of

the tracer (37). Metastatic disease was detected in the lymph
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FIGURE 2

Maximum intensity projection (MIP) PET images of integrin αvβ6 PET tracers. (A) Detection of pancreatic cancer 68Ga-Trivehexin, which performs
exceptionally well in the abdominal region (16). (B) Evaluation of [18F]FP-R01-MG-F2 in a healthy volunteer, an IPF patient and a long COVID patient
(11). This PET tracer performs well in identifying fibrotic interstitial lung disease.
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nodes (mean ± SD SUVmax = 5.9 ± 3.2), lungs (mean ± SD SUVmax

= 3.5 ± 1.8), liver (mean ± SD SUVmax = 6.9 ± 3.7) and peritoneum

(mean ± SD SUVmax = 6.3 ± 2.6) (37). Finally, evaluation of [18F]

FP-R01-MG-F2 in a long COVID patient demonstrated similar

lung uptake to IPF patients, where the typical SUVmax∼8–10 (11)

(Figure 2). Like the linear peptide and the disulfide-stabilized

loops described above, the knottin PET tracer was also taken-up

in large quantities by the GI-tract including the esophagus,

stomach, small intestines, large intestines, and colon (4).

However, liver uptake was very low, which could bode well for

detection of fibrotic liver disease.
Cyclic peptide monomers and trimers
Head-to-tail cyclization of small RGD containing peptides

has successfully led to the development of clinical products

designed to image and treat cancer (38). Early studies by

Kessler and colleagues explored integrin binding properties of

many novel cyclic-RGD containing variants (38). Recent efforts

led to the development of a cyclic-nonapeptide that binds

integrin αvβ6 with picomolar affinity (20). Half maximal

inhibitory concentration (IC50) values were determined using a

solid phase cell adhesion assay as described by Frank et al.

(39). Trimerization of the lead compound through a multi-

functional chelator led to the development of a product called

Trivehexin (16). Gallium-labeled Trivehexin yielded IC50 values

of 47 pM for integrin αvβ6, 6.2 nM for integrin αvβ8, 2.7 nM

for integrin αvβ3 and 22 nM for integrin α5β1 (16).

Remarkably, first-in-human studies found that Trivehexin did

not accumulate in GI-tract as shown in Quigley et al. (16, 40).

Indeed, this in vivo biodistribution profile bodes well for

detection of pancreatic cancer compared to the other integrin

αvβ6-based PET tracer described above, all of which

accumulate to high levels in the GI-tract, and thus can obstruct
Frontiers in Nuclear Medicine 04
signals from pancreatic cancers. The favorable biodistribution

of Trivehexin also suggests its clinical potential as a theranostic

agent for targeted treatment of cancer (Figure 2).

Feng et al. also described the development of a backbone-

cyclized octameric peptide. BxPC3 cell-based competition

binding assays were conducted between [64Cu]Cu-DOTA-

cycratide and the test compounds (21). The authors report IC50

values∼20 nM for the cycratide-derivatives. Figure 4 of Feng

et al. showed that a significant fraction of the activity remains in

the blood compartment at 60 min after administration of the

PET tracer. Interestingly, like the cyclic-nonapeptides described

above, cycratide PET tracers also did not accumulate to high

levels in the GI-tract. This first-in-human study showed that

[68Ga]Ga-DOTA-cycratide (SUVmax∼4.9) was able to detect

primary disease in the pancreas. Similarly, [18F]FDG

SUVmax∼6.9 (21).
Findings from this mini review
All the PET tracers surveyed in this mini review were able to

detect different types of cancer. For pancreatic cancer, small

backbone-cyclized peptides, Trivehexin and cycratide,

demonstrated potentially-superior performance over the

reviewed-set of linear peptides and disulfide-stabilized loops due

to biodistribution in the GI-tract. For chest imaging, knottins

PET tracers based on the R01-MG peptide performed particularly

well in assessing lung disease in IPF and Long COVID due to

high uptake in disease tissues (Figure 2).

Currently, the reason is unknown for the large differences in

PET-signal in the GI-tract between backbone-cyclized peptides

(low-uptake) and linear peptides (high-uptake), particularly when

all binders were validated for their ability to recognize integrin

αvβ6. One hypothesis is that these molecules cross-react with

different subgroups of closely-related RGD-integrins so that these
frontiersin.org
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differences may be due to the binder’s particular specificity profile

for the highly conserved RGD-integrins. Small cyclic peptides may

dock into the RGD-binding pocket differently than the linear

peptides or disulfide-stabilized loops. Currently, there is

insufficient experimental data to satisfactorily explain the findings

we have described. An answer to this question could have a

significant impact on design strategies for next-generation

integrin binders.

Expression of integrin αvβ6 in the GI-tract
Evidence of integrin αvβ6 expression in the GI tract has been

shown in both human and non-human studies. Analysis of the

human tissue-specific expression by genome-wide integration

of transcriptomics and antibody-based proteomics indicated

the presence of both β6 mRNA and protein in many parts of

GI-tract, such as the stomach, duodenum, small intestine, and

colon (41). Data from this study is available in a searchable

database through the National Center for Biotechnology

Information (www.ncbi.nlm.nih.gov). Similar data can also be

located through The Human Protein Atlas (www.proteinatlas.

org). Koivisto et al. reviewed literature about expression of

integrin αvβ6 in human and animal models, and provides

many references on studies of the GI-tract (42). Kimura et al.

demonstrated positive stomach and small bowel β6 expression

using immunohistochemistry, with strong anti-β6 antibody-

staining revealing the presence of significant quantities of the

β6 protein on the luminal side of the stomach and intestine

(4). Feng et al. found expression of integrin αvβ6 in intestinal

epithelial cells of patients with inflammatory bowel disease

(IBD) (43). Xie et al. found elevated ITGB6 mRNA expression

in IBD patients’ intestinal specimens (44). Integrin αvβ6

contributes to the development of intestinal fibrosis via the

FAK/AKT signaling pathway (44). Kuwada et al. identified an

anti-integrin αvβ6 autoantibody in patients with ulcerative

colitis (45). Rydell et al. claim that measurement of serum IgG

anti-integrin αvβ6 autoantibodies is a promising tool in the

diagnosis of ulcerative colitis (46). Brown et al. have

demonstrated integrin αvβ6 expression in several subsections

of the sheep GI-tract (47). Strong endogenous αvβ6 expression

was also detected by immunohistochemical analysis of murine

stomach, and moderate expression was found in the

duodenum, ileum, and colon (48). Yu et al. claim that integrin

αvβ6 is required for maintaining the intestinal epithelial

barrier (49).
Discussion

Lessons from the initial integrin αvβ6 PET
imaging studies in humans

The first wave of integrin αvβ6 PET tracer to enter clinical

trials consisted entirely of small peptides and peptidomimetics,

which produced sufficient uptake in disease tissues that

enabled clear delineation from healthy tissues. These integrin

αvβ6 PET tracers detected diseases such as cancer, IPF and
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long COVID lung injury. Interestingly, two broad categories of

αvβ6 PET tracer have emerged—those that accumulated to

high levels in the gut and those that did not. All non-

backbone-cyclized αvβ6 PET tracers reviewed here produced

high gut uptake, in contrast to the backbone-cyclized αvβ6

PET tracers, which avoided the gut. Since integrin αvβ6 has

been shown to be highly expressed in the GI-tract, these

findings reveal a gap in our understanding about some aspects

of integrin-binding by exogenous ligands in human systems.

This is particularly important because uptake of αvβ6 PET

tracers by abdominal organs can obscure detection of some

cancers and preclude their use as theranostics due to off-target

dosing of healthy tissue.

Trivehexin is reported to be ∼100 ×more selective for integrin

αvβ6 (KD = 47 pM) over integrin αvβ8 (KD = 6.2 nM). These

favorable binding properties resulted in part from tyrosine-

substitution, which was used to enhance binding affinity and

specificity. Tyrosine and tyrosine-like molecules are especially

good at mediating binding affinity due to favorable electrostatic

potential, thermodynamic cost and fitment into binding sites

(50). Furthermore, Notni and colleagues used trimerization by

way of a chelator to leverage the effects of avidity to further

enhance binding affinity for PET imaging (16). The trimeric

construct performed especially well in detecting pancreatic

cancer. Importantly, high uptake in tumors, coupled with low

background in the GI-tract bodes well for theranostic

applications (Figure 2).

The presence of arginine residues in a PET-tracer increases

uptake by all tissues, an unexpected pharmacokinetic property

first discovered in mouse models of cancer (31). In human

clinical trials, arginine-rich knottins (R-knottins) were taken up

by disease tissues to a greater degree compared to other classes

of PET tracers. In preclinical models, R-knottins were evaluated

for their PET-endpoints in side-by-side comparisons against

other knottin scaffolds, small peptides, antibody fragments and

various other platforms presenting the RXDLXXL master key

code. We hypothesized that the SUV-boost imparted by arginine

residues would be valuable for high performance molecular

imaging. The first-in-human PET images of IPF and Long

COVID patients’ lungs are the first clinical results demonstrating

in vivo benefit of the arginine-loading strategy (Figure 2).

Indeed, high fractions of basic amino acids naturally occur in a

large subgroup within the family of cystine knot trypsin

inhibitors (31).

Integrin-based PET will continue to evolve through

development of bio-activities that selectively recognize closely-

related RGD-integrin family members that are uniquely-

expressed in various disease states, but also in normal organs and

tissues. Integrin family members such as αvβ1, αvβ6 and αvβ8

are highly conserved in primary structure so that their binding

sites are almost identical in electrostatic potential, molecular-

shape, and other surface-interface characteristics (51). One

challenge that currently drives the field is to produce highly-

selective ligands that can distinguish between these and other

integrin subtype in order to image and treat disease with greater

precision. The first group of clinically-evaluated integrin αvβ6
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PET tracers, reviewed here, collectively-represent one step towards

our goals.
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