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Objective: The treatment with 177Lutetium PSMA (177Lu-PSMA) in patients with
metastatic castration-resistant prostate cancer (mCRPC) has recently been approved
by the FDA and EMA. Since treatment success is highly variable between patients, the
prediction of treatment response and identification of short- and long-term survivors
after treatment could help tailor mCRPC diagnosis and treatment accordingly.
The aim of this study is to investigate the value of radiomic parameters extracted
from pretreatment 68Ga-PSMA PET images for the prediction of treatment response.
Methods: A total of 45 mCRPC patients treated with 177Lu-PSMA-617 from two
university hospital centers were retrospectively reviewed for this study. Radiomic
features were extracted from the volumetric segmentations of metastases in the
bone. A random forest model was trained and validated to predict treatment
response based on age and conventionally used PET parameters, radiomic features
and combinations thereof. Further, overall survival was predicted by using the
identified radiomic signature and compared to a Cox regression model based on age
and PET parameters.
Results: The machine learning model based on a combined radiomic signature of
three features and patient age achieved an AUC of 0.82 in 5-fold cross-validation
and outperformed models based on age and PET parameters or radiomic features
(AUC, 0.75 and 0.76, respectively). A Cox regression model based on this radiomic
signature showed the best performance to predict overall survival (C-index, 0.67).
Conclusion: Our results demonstrate that a machine learning model to predict
response to 177Lu-PSMA treatment based on a combination of radiomics and
patient age outperforms a model based on age and PET parameters. Moreover,
the identified radiomic signature based on pretreatment 68Ga-PSMA PET images
might be able to identify patients with an improved outcome and serve as a
supportive tool in clinical decision making.
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TABLE 1 Patient characteristics.

Characteristic Training-set
Number of patients 45

Age (median, range) (years) 72 (51–87)

OS (median, range) (months) 16 (5–37)

Median follow-up (months) 16

Censored 12 (27%)

MTV (median, range) (ml) 32 (1.5–52)

MTV, metabolic tumor volume; OS, overall survival.

Gutsche et al. 10.3389/fnume.2023.1234853
1. Introduction

Prostate cancer affects millions of men worldwide and is the

second-common malignant tumor after lung cancer.

A promising approach to the treatment and diagnosis of

prostate cancer at the castration-resistant stage specifically targets

the type II gylcoprotein prostate-specific membrane antigen

(PSMA). It is expressed at a low level in normal prostatic tissues

and nonprostatic tissues, with a 100–1,000-fold increased

expression in prostate cancer tissues (1, 2). Thus, PSMA

represents a theranostic target for imaging diagnostics and

targeted radionuclide therapy. Recently, the US Food and Drug

Administration (FDA) as well as the European Medicines Agency

(EMA) approved the first PSMA-targeted radiopharmaceutical

based on the results of the phase III VISION trial for treatment

of patients with PSMA-positive metastatic castration-resistant

prostate cancer (mCRPC) (3).

Besides the effective treatment, another crucial aspect of the

theranostic approach is a personalized treatment based on the

molecular properties of tumors in an individual patient. 68Ga-

labelled PSMA positron emission tomography/computed

tomography (PSMA PET/CT) has been applied successfully for

primary staging, image-guided radiotherapy, and surgery in

recurrent prostate cancer and advanced-stage metastatic prostate

cancer (4–6). Thus, there is growing evidence of integrating PSMA

PET/CT imaging into personalized prostate cancer treatment

concepts (7). Moreover, it is recommended for patient selection

and treatment monitoring by the European Association of Nuclear

Medicine (EANM) procedure guidelines for radionuclide therapy

with 177Lu-labelled PSMA-ligands (177Lu-PSMA) (8).

So far, PSMA PET studies addressing patient selection,

prognosis, or treatment response for 177Lu-PSMA predominately

focused on the use of SUV-based analyses related to PET

Response Criteria in Solid Tumors (PERCIST) as well as total

tumor volumes (TTV) (9–12).

Radiomics is a subdiscipline within the broad field of artificial

intelligence, and it has also demonstrated its potential in nuclear

medicine and oncology. It permits assessing tumor heterogeneity

quantitatively by extracting a large number of image features

from imaging data using various mathematical algorithms. Based

on these quantitative features, machine learning models can be

generated that may allow the prediction of outcome parameters

such as treatment response or survival (13, 14).

So far, studies applying radiomic analyses to PSMA PET data in

prostate cancer have demonstrated potential applications for

detection, risk assessment, and prognosis at initial diagnosis (15–17).

Only a few studies have evaluated the potential of PET radiomics

for patient selection for 177Lu-PSMA treatment (18–20). Thereof,

only one study predicted the treatment response in a small number

of subjects (n = 21) (20), and another one evaluated the prognostic

potential of survival models based on radiomic features (19).

The aim of this study was to compare age and common PET

parameters for response prediction to 177Lu-PSMA treatment

with radiomic features. Secondly, the study aimed to assess the

prognostic value of the radiomic signature for the differentiation
Frontiers in Nuclear Medicine 02
between responders and non-responders and evaluate its

contribution to an optimized patient selection.
2. Materials and methods

2.1. Patients

This study was approved by the institutional review board of

the University Hospital Aachen. Given the type of study

(a retrospective analysis), the need for written informed consent

was waived. All procedures were performed in accordance with

the ethical standards of the institutional and/or national research

committees and with the principles of the 1964 Declaration of

Helsinki and its later amendments or comparable ethical standards.

Patients were retrospectively recruited from the Departments of

Nuclear Medicine at the University Hospitals of Bonn and Aachen

who received 68Ga-PSMA PET/CT from November 2014 through

January 2018, followed by a treatment of 177Lu-PSMA-617

consisting of three or four cycles.

Criteria for selecting the patients were as follows: We included

mCRPC patients with bone metastases for whom imaging using
68Ga-PSMA PET/CT was performed before the first cycle of
177Lu-PSMA-617 treatment. Only patients were considered who

had been treated with at least one of the new-generation

antihormonal drugs (abiraterone or enzalutamide) before the
177Lu-PSMA-617 treatment. In addition, eligibility criteria

required PSA measurements before and after the third or fourth

treatment cycle. The timespan between the 68Ga-PSMA PET/CT

and the PSA measurement had to be four weeks or less. All

patients had disease progression despite first- or second-line

chemotherapy (docetaxel or cabazitaxel), or the patients were

ineligible for chemotherapy or 223Ra-dichloride. Patients with

tumor lesions in bone metastasis with an SUVmax < 3 and a

lesions size <1 ml were excluded. All patient characteristics are

shown in Table 1.
2.2. 177Lu-PSMA-617 treatment

The treatment and imaging procedures have been described

previously (10). Briefly, the 177Lu-PSMA-617 treatment was

performed according to the German consensus guidelines in both

centers (21). The detailed treatment protocol is described in (21).
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2.3. 68Ga-PSMA PET/CT imaging

The 68Ga-PSMA-HBED-CC tracer for the PET/CT scans was

produced by the in-house radiopharmacy (22). Patients received an

intravenous injection of approximately 2 MBq/kg body weight of

68Ga-PSMA 45 minutes before the start of the PET/CT scan.

Patients were scanned in caudocranial orientation with raised arms.

Attenuation correction was performed using the CT data. Image

data at both centers were acquired according to international

standard guidelines applying EARL for harmonization across centers.
2.4. MTV segmentation

We defined any focal bone uptake of 68Ga-PSMA with an

SUVmax ≥3 as bone metastases.

An experienced nuclear medicine physician (AH, board-certified

with >10 years of experience in PET/CT) identified and segmented

the bone lesion with the highest SUVmax for each scan using

HERMES HYBRID VIEWER PDR 5.1.0 Hermes Medical Solutions

Inc., Greenville, United States). The segmentation was performed

using PMOD 3.13 (PMOD Technologies LLC, Zurich, Switzerland)

by creating a VOI around the bone lesion with the highest SUVmax

that contained all voxels of this lesion with a SUVmax > 3. SUVmax

and SUVmean of the identified bone lesions were extracted.
2.5. Radiomic feature extraction

Feature extraction was performed with the open-source Python

package pyradiomics (version 3.0.1) (23). No spatial resampling of

the PET images was performed. Absolute-intensity discretization

was performed using a bin width of 0.15. On the original image,

107 features were calculated for each volume of interest (VOI),

including 18 first-order statistics, 14 shape features, 24 features

from the grey level co-occurrence matrix (GLCM), 16 features

from the grey level run length matrix (GLRLM), 16 features from

the grey level size-zone matrix (GLSZM), 5 features from the

neighborhood grey level different matrix (NGLDM), and 14 features

from the grey level dependence matrix (GLDM). Furthermore, high-

pass filters using the Laplacian-of-Gaussian image filter (LoG; sigma,

1–5), as well as the discrete 3-dimensional wavelet transformation

with the “coifl” wavelet and reconstruction of the higher spatial

frequency content in all directions resulting in 8 different wavelet

decompositions, were applied, and all features (except the shape

features) were also calculated on the filtered images. In total, 1,316

features were calculated for each VOI: 107 features on the original

image, 465 features on the LoG-filtered image, and 744 features on

the wavelet-transformed images (93 features on each of the 8

different wavelet decompositions).
2.6. Feature selection

To avoid the usage of non-reproducible radiomic features, we

followed the process of a test-retest analysis described previously
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(24). In short, data augmentation methods were used to generate

a modified version of the original image. Extracted features from

the original and modified versions of the image were then

analyzed for repeatability. Features were considered repeatable if

the lower and upper limits of the intraclass correlation coefficient

(95% confidence interval) were in the range of 0.91 and 1.00.

The feature correlation was assessed by the Pearson correlation

coefficient. From 1,302 extracted features, 364 repeatable features

were identified. Further, features were considered uncorrelated if

the Pearson correlation coefficient was below 0.9. Of the 364

repeatable features, 330 showed a high linear correlation. Finally,

the features with the highest mutual information for predicting

responses were selected, resulting in 34 features that were

included in the modeling process.
2.7. Response prediction

With regard to PSA, we defined the treatment response

according to the Prostate Cancer Work Group 3 criteria, i.e., a

PSA decline of ≥50% compared to the baseline was considered a

response (25). Prior to training the random forest model, all

radiomic features were standardized by subtracting the mean and

dividing the standard deviation of the training data. A five-

fold stratified shuffled cross-validation was performed, with

subsequent feature selection based on the validation fold showing

the best performance. This process was repeated until the average

validation metric did not improve further, and the model with

the best performing features and hyperparameters (n_estimators

= 500, max_depth = 5, min_samples_split = 3) was retrained on

the complete training data set. The random forest model used a

radiomic signature of three features (first-order range; first-order

mean absolute deviation; GLCM inverse variance).

The prediction of treatment response was derived from three

individual models: a model based on a combination of patient age

and the PET parameters SUVmean and SUVmax; a radiomic model

based on the previously described radiomic signature; and a model

based on a combination of the radiomic signature and the patient

age. The performance of the models was evaluated by comparing the

area under the curve of the receiver operating characteristics (AUC).

All processing steps were implemented in Python (scikit-learn,

version 0.24.1). Further details are provided in (24).
2.8. Survival prediction

Patient survival time was determined starting from the pre-

therapeutic PET/CT until patient death or until the last patient

contact if the patient was still alive (censored). The complete

dataset was randomly split into a training set and a test set (60/40).

Prognosis models were calculated, and statistical analysis was

performed using the Python library scikit-survival (version 0.15.0)

(26). Multiple Cox’s regression hazard models were trained from

age and PET parameters, the previously identified features of the

classification task (response vs. no response), or a combination on

the training set. Finally, hazard ratios were predicted on the test
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FIGURE 1

Feature distribution for age and PET parameters. SUV, standardized uptake value; MTV, metabolic tumor volume.

TABLE 2 Results of univariate response prediction based on age and PET
parameters.

Feature AUC Threshold ACC SEN SPE
Age 0.63 69 0.71 0.84 0.55

SUVmean 0.51 7.8 0.58 0.64 0.50

SUVmax 0.56 25.1 0.62 0.60 0.65

Gutsche et al. 10.3389/fnume.2023.1234853
set. Performance was evaluated based on the concordance index

(c-index). For the sake of illustration, the risk scores were

dichotomized by their median, and the Kaplan-Meier curves of the

resulting low- and high-risk groups were computed for the training

and test sets. A log-rank test was used to evaluate statistical

differences between low- and high-risk groups.
ACC, accuracy; AUC, area under the receiver operating characteristic curve;

SEN, sensitivity; SPE, specificity; SUV, standardized uptake value.
3. Results

3.1. Patient characteristics

We initially identified 80 patients for potential inclusion in this

study. In 35 patients, PSA measurements were taken later than four

weeks after the PET/CT, and had SUVmax values <3 or small

lesions <1 ml. In total, 45 patients were subjected to further

analyses and received an average dose of 5.8 GBq of 177Lu-PSMA-

617 (range: 4.0–7.3 GBq). Among these patients, 60% had

received previous treatments with docetaxel, 24% with cabazitaxel,

67% with abiraterone, 71% with enzalutamide, 42% with both

abiraterone and enzalutamide, 42% with 223Radium, and 49%

with external radiation therapy. A total of 25 patients showed a

response to the 177Lu-PSMA-617 treatment (55%). Responding

patients had a median metabolic tumor volume (MTV) of 23.3 ml

(IQR25–75, 11.1–77.3 ml) in contrast to 33.3 ml (IQR25–75,

17.1–102.5 ml) for non-responding patients (p = 0.71) (Figure 1).

The mean SUVmean ± SD and SUVmax ± SD were 9.2 ± 5.7 and

32.9 ± 32.0 for responding patients and 7.8 ± 2.4 and 29.0 ± 15.7

for non-responding patients (Figure 1). No statistically significant

differences were detected between both groups for SUVmean and

SUVmax (p = 0.92; p = 0.50). Patients showing a response were

significantly older than non-responding patients (mean age ± SD,

74.2 ± 6.5 vs. 68.7 ± 8.7; p < 0.05) (Figure 1).
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3.2. Response prediction

Univariate feature analysis of patient age, SUVmean, and

SUVmax revealed AUCs of 0.63, 0.51, and 0.56, respectively

(Table 2). A random forest model based on a combination of all

three features resulted in a mean AUC± SD of 0.75 ± 0.13 during

5-fold cross-validation (Table 3 and Figure 2). Regarding this

model, we compared a random forest model based on a radiomic

signature of three features in its ability to predict response to
177Lu-PSMA-617 treatment on pretreatment 68Ga-PSMA PET

scans. The radiomic model achieved a similar performance as the

previous model, with an AUC± SD of 0.76 ± 0.15 (Table 3 and

Figure 2). A random forest model based on a combination of the

radiomic signature and the clinical feature patient age resulted in

an AUC± SD of 0.82 ± 0.07 (Table 3 and Figure 2). The feature

distribution of the radiomic signature is shown in Figure 3.
3.3. Survival prediction

To test if the identified radiomic signature also has a prognostic

value, we calculated three individual multiple Cox regression

models based on age and PET parameters: the radiomic
frontiersin.org
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TABLE 3 Cross-validation results of response prediction for individual models.

CV-fold Age + PET parameters (n = 3) Radiomics (n = 3) Radiomics + age (n = 4)

AUC ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE
1 0.85 86 100 67 0.93 86 75 100 0.88 86 100 67

2 0.92 86 75 100 0.90 86 100 67 0.92 86 88 83

3 0.73 79 75 83 0.67 64 63 67 0.77 86 100 67

4 0.60 71 88 50 0.63 71 75 67 0.75 79 88 67

5 0.65 71 50 100 0.67 71 88 50 0.79 79 75 83

Mean 0.75 79 78 80 0.76 76 80 70 0.82 83 90 73

±SD 0.13 7 19 22 0.15 10 14 18 0.07 4 10 9

Bold values represent the mean values of the cross-validation folds. CV, cross-validation; AUC, area under the receiver operating characteristic curve; SEN, sensitivity; SPE,

specificity.

FIGURE 2

Receiver operating characteristic curves for response prediction models. AUC, area under the receiver operating characteristic curve; CV, cross-
validation; FPR, false positive rate; SD, standard deviation; TPR, true positive rate.

FIGURE 3

Distribution of the radiomic features and patient’s age between responders and non-responders. GLCM, gray-level co-occurrence matrix.

Gutsche et al. 10.3389/fnume.2023.1234853
signature and a combination of the radiomic signature and the

patient age. The survival model based on a combination of

radiomic signature and patient’s age outperformed the models

based on age and PET parameters or radiomic features alone,
Frontiers in Nuclear Medicine 05
resulting in a concordance index of 0.64 for the combined

model, 0.56 for the model based on age and PET parameters,

0.62 for the radiomic model in the training set, 0.67 for the

combined model, 0.50 for the model based on age and PET
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parameters, and 0.65 for the radiomic model in the test set

(Table 4). None of the Kaplan–Meier curves divided into low-

and high-risk groups based on the risk scores estimated by the

models showed significant differences between the groups

(Figure 4). Representative lesions for low- and high-risk patients

and a potential clinical workflow combining the response

assessment and estimation of prognosis are provided in Figure 5.
4. Discussion

Our study showed that a machine learning model based on a

combination of radiomic features extracted from pretreatment

PSMA PET and the patient age may predict the treatment

response to 177Lu-PSMA therapy. In addition, the results indicate a
TABLE 4 Results of prognosis prediction for multiple Cox regression
models based on age, PET parameters, radiomics.

Age + PET
parameters

(n = 3)

Radiomics
(n = 3)

Radiomics + age
(n = 4)

C-index training 0.56 0.62 0.64

Log-rank p-value 0.22 0.10 0.17

C-index test 0.50 0.65 0.67

Log-rank p-value 0.71 0.31 0.22

FIGURE 4

Kaplan-Meier survival curves for risk prediction based on multiple Cox regression

Frontiers in Nuclear Medicine 06
trend for possible prediction of long vs. short survival time after

treatment.

Studies on treatment with 177Lu-PSMA have shown impressive

efficacy. Therefore, it is considered a “beacon of hope” even in

intensely pre-treated patients (27). However, it is known that a

significant percentage of treatments will not be successful (28).

Moreover, especially intensely pre-treated patients are vulnerable

to possible severe side effects. Thus, careful patient selection

regarding the beneficial treatment outcome is of the utmost

importance. Currently, patient selection, among other clinical

parameters, is based on tracer accumulation in tumor sites

compared to physiological accumulation in normal liver tissue in

the pretreatment PSMA PET (8, 28). Additionally, studies

investigated the use of SUV-based parameters. However, so far,

the results are contradictory. A recent study found a relationship

between pretherapeutic accumulation and imaging-based

responses on PSMA PET for primary tumors, lymph nodes,

bones and visceral metastases (29). This is in line with other

recent findings (11, 30). In contrast, former studies did not find

significant image-derived predictive factors (31, 32).

Regarding the prediction of the 177Lu-PSMA-617 treatment

response, our results indicate that the identified radiomic features,

first-order range and mean absolute deviation, as well as the

GLCM inverse variance, are superior to conventional SUV-based

parameters such as SUVmax and SUVmean. In our analysis, the
models for the training data (A, top row) and the test data (B, bottom row).
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FIGURE 5

Potential clinical implementation of the workflow combining the response assessment and prognosis estimation, as well as representative PET examples
for lesions identified as high survival and low survival probability.

Gutsche et al. 10.3389/fnume.2023.1234853
prediction model based on radiomic features, especially in

combination with the clinical parameter age, showed the highest

diagnostic accuracy.

Our results are in line with other studies indicating the role of

radiomics in PSMA PET-based pretreatment patient selection.

Khurshid et al. (18) found that textural heterogeneity parameters

extracted from metastatic bone lesions in mCRPC patients

correlated with the change in PSA levels following therapy. Their

results indicate that the more heterogeneous the tumor with

regard to its PSMA expression, the more responsive it is to
177Lu-PSMA-617 therapy. These results agree with the findings

of our study, where more responsive tumors seem to have more

heterogeneous PSMA uptake. This assumption is supported by a

wider first-order range and lower values for the texture feature

GLCM inverse variance, a description of local homogeneity.

Similar results were also found by Roll et al. (20).

In a follow up study of the same group, Mozamei et al. (19)

extracted radiomic features in a patient group with histologically

confirmed advanced prostate carcinoma from all hotspots,

including the primary tumor as well as the metastatic lesions in

different organs. They identified a multiple Cox regression model

based on SUVmin and first-order kurtosis, which showed similar

prognostic values compared to other clinical features such as

Hb1, CRP1, ECOG1, and SUVmean. Neither first-order kurtosis

nor SUVmin showed a prognostic value in our patient group.

However, due to differences in methodology in various aspects,

such as VOI-definition, statistics, reference standard, etc., a direct

comparison between the results is difficult.

According to our analysis, SUV-based parameters are

outperformed by radiomic features, especially in combination with

the clinical parameter age. This underlines the importance of

integrating clinical parameters into machine learning models to
Frontiers in Nuclear Medicine 07
potentially increase predictive power. Promising clinical

parameters that could be of interest for future studies might be

blood-based parameters such as hemoglobin or the ECOG

performance scale (32). Moreover, tumor-specific parameters such

as the Gleason score, which reflects tumor aggressiveness, may also

be considered (33). However, Rolls et al. did not find a prognostic

impact of the Gleason score, patients’ performance status, or

hemoglobin (20). The authors argue that this might be partly due

to their specific sample containing mostly patients with a very

high Gleason score in the majority of patients (median, nine) with

a mostly high performance status (median, one). This underlines

the importance of analyzing data from heterogeneous patient

samples in large multicenter studies. Our study contains data from

two different institutions, including different PET/CT scanners.

This may partly reduce a possible selection bias and permit a more

heterogeneous patient sample. However, this may also lead to an

increase in variance in the data, thereby requiring larger sample

sizes. This could explain why we did not find significant results for

the prediction of overall survival in contrast to other groups with

more homogeneous patient samples (19, 20).

Studies have demonstrated that higher pretreatment PSMA-

PET uptake is associated with improved overall survival, thereby

establishing a cut-off of SUVmean >10 for optimized patient

selection (34). Yet, despite optimal standard PET/CT imaging,

some patients demonstrate primary disease progression (35).

Moreover, some of the patients with non-optimal standard PET/

CT imaging might still benefit from treatment (36). Therefore,

we aimed to identify additional factors based on the radiomic

features that are independent of the established SUVmean

threshold.

In addition to survival, treatment-related quality of life

represents another important outcome parameter that we did not
frontiersin.org
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address due to a lack of data. As quality of life is of particular

interest, especially regarding a palliative treatment approach,

future studies should address this issue.

Some limitations of the study must be noted. The retrospective

design entails several methodological disadvantages, including a

potential selection bias. The observation that responders were

older than non-responders in this study is of interest, but the

reasons for this remain unclear. The number of participants in

the study is not sufficient to further investigate whether

treatment response is correlated with age or not. Only

prospective studies in a multi-center setting could ultimately

solve this issue. Moreover, the segmentation method of the

tumoral lesions was based on PET using a fixed threshold

permitting reproducibility. However, due to the possible inter-

individual variety in tumor biology, an individualized patient-

based threshold might be more adequate in some patients.

Furthermore, although performing a multistep feature dimension

reduction, cross-validation in the training phase, and the use of a

separate test data set for survival prediction, the number of

patients remains relatively small. Thus, the generalizability of the

statistical model, especially the radiomic signature, needs to be

considered in studies with larger sample sizes, including datasets

from other external institutions.
5. Conclusion

The developed radiomic model using data from pretreatment

PSMA PET might be of value for response prediction and

patient selection for Lu-PSMA therapy. Although further

validation of the results is warranted, due to its potential for

automated and objective image evaluation, its integration into the

theranostic workflow for patient evaluation should be considered.

However, prospective studies with larger sample sizes are needed

prior to a potential translation to clinical routine, which should

also attempt to correlate the identified radiomic features with

histologic specimens.
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