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Post-acquisition standardization
of positron emission tomography
images
Aliasghar Mortazi, Jayaram K. Udupa*, Dewey Odhner,
Yubing Tong and Drew A. Torigian

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA,
United States

Purpose: Tissue radiotracer activity measured from positron emission tomography
(PET) images is an important biomarker that is clinically utilized for diagnosis,
staging, prognostication, and treatment response assessment in patients with
cancer and other clinical disorders. Using PET image values to define a normal
range of metabolic activity for quantification purposes is challenging due to
variations in patient-related factors and technical factors. Although the
formulation of standardized uptake value (SUV) has compensated for some of
these variabilities, significant non-standardness still persists. We propose an
image processing method to substantially mitigate these variabilities.
Methods: The standardization method is similar for activity concentration (AC) PET
and SUV PET images, with some differences, and consists of two steps. The
calibration step is performed only once for both AC PET or SUV PET, employs a
set of images of normal subjects, and requires a reference object, while the
transformation step is executed for each patient image to be standardized. In
the calibration step, a standardized scale is determined along with 3 key image
intensity landmarks defined on it: the minimum percentile intensity smin, median
intensity sm, and high percentile intensity smax. smin and sm are estimated based
on image intensities within the body region in the normal calibration image set.
The optimal value of the maximum percentile β corresponding to the intensity
smax is estimated via an optimization process by using the reference object to
optimally separate the highly variable high uptake values from the normal
uptake intensities. In the transformation step, the first two landmarks—the
minimum percentile intensity pα(I ), and the median intensity pm(I )—are found
for the given image I for the body region, and the high percentile intensity
pβ(I ) is determined corresponding to the optimally estimated high percentile
value β. Subsequently, intensities of I are mapped to the standard scale
piecewise linearly for different segments. We employ three strategies for
evaluation and comparison with other standardization methods: (i) comparing
coefficient of variation (CVO) of mean intensity within test objects O across
different normal test subjects before and after standardization, (ii) comparing
mean absolute difference (MDO) of mean intensity within test objects O
across different subjects in repeat scans before and after standardization, and
(iii) comparing CVO of mean intensity across different normal subjects
before and after standardization where the scans came from different brands
of scanners.
Results: Our data set consisted of 84 FDG-PET/CT scans of the body torso
including 38 normal subjects and two repeat-scans of 23 patients. We utilized
one of two objects—liver and spleen—as a reference object and the other for
testing. The proposed standardization method reduced CVO and MDO by a
factor of 3–8 in comparison to other standardization methods and no
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standardization. Upon standardization by our method, the image intensities (both for AC
and SUV) from two different brands of scanners become statistically indistinguishable,
while without standardization, they differ significantly and by a factor of 3–9.
Conclusions: The proposed method is automatic, outperforms current standardization
methods, and effectively overcomes the residual variation left over in SUV and inter-
scanner variations.

KEYWORDS

positron emission tomography, standardized uptake value, PET standardization, SUV variability,

tumor quantification
1. Introduction

1.1. Background and rationale

Cancer is the second most common cause of death in the

United States and is a significant health problem worldwide. In

2019, about 1.8 million new cancer cases and about 0.6 million

cancer deaths were reported in the United States (1). Positron

emission tomography (PET), a non-invasive molecular imaging

technique, is one of the major clinical imaging modalities used

routinely for comprehensive body-wide diagnostic assessment of

patients with cancer and other non-cancerous disorders. PET

detects, measures, and localizes gamma rays emitted from

annihilation events between positrons (emitted by administered

positron-emitting isotopes) and electrons, providing a method

to distinguish tissues that have differential radiotracer activities.

For example, abnormal changes in tissue metabolic activity can

be detected with 18F-fluorodeoxyglucose (FDG)-PET imaging

before structural changes are detectable with computed

tomography (CT) or magnetic resonance imaging (MRI). As

such, metabolic activity measured from FDG-PET is an

important biomarker that is clinically utilized for diagnostic,

staging, prognostication, and treatment response assessment

purposes in patients with cancer (2–5).

Although qualitative assessment of PET images in clinical

practice is routinely performed, quantitative assessment is

encouraged to decrease inter-reader variability and to improve

diagnostic performance of study interpretation. In early attempts

for disease quantitative assessment in PET images, the percent

of administered dose per gram of tissue was used as a measure

of tumor uptake (6). However, after comparing this metric

among different patients, it was discovered that this value is

affected by the patient size as well as by the radiotracer dose

administered. To compensate for these factors, another

quantitative measurement was introduced called Standardized

Uptake Value (SUV), which is the decay-corrected tissue activity

concentration of radiotracer in a region of interest (ROI)

divided by the injected radiotracer dose per unit body weight

(or alternatively body surface area or lean body mass) (see

Equation 1) (7, 8). SUV measurement has been widely utilized

for semi-quantitative PET assessment in clinical practice given

its ease of use. For any PET image I, the value I(v) at any voxel

v represents the activity concentration (AC) of the radiotracer
02
(in units of MBq/ml). This value is converted to SUV(v) at v by

using the formula:

SUV(v) ¼ I(v)
injected radiotracer dose=body weight

: (1)

Note that injected radiotracer dose is in units of MBq, and that

body weight is in units of g, where it is assumed that the

average mass density of the human body is 1 g/ml [such that

1 g = 1 ml and SUV(v) is therefore unitless]. The factors that can

adversely affect the accurate and precise measurement of tissue

radiotracer uptake as portrayed in PET images can be divided

into two categories: patient-related factors and technical factors.

Patient-related factors include differences in body weight, body

composition, body habitus, serum glucose levels, etc. Technical

factors include differences in radiotracer uptake period, partial

volume effects, the size and placement of the region of interest

(ROI), image acquisition methods, attenuation correction

methods, image reconstruction methods, etc. (3, 9–11). SUV

only partially compensates for certain factors such as patient

body weight and administered radiotracer dose.

The uncompensated factors can make accurate and

reproducible disease quantification via PET acquisitions very

challenging, potentially leading to diagnostic errors during

disease staging and response assessment that may adversely affect

patient management and outcome, not to mention site-to-site

variations and their attendant issues. Equally importantly, these

factors cause non-standardness of SUV numerically and pose

challenges to image processing and analysis methods. Even if it

were possible to segment object/pathology automatically with

advanced deep learning methods with the presence of non-

standardness, disease measurement within segmented entities

using SUVs will vary substantially. Needless to say, the original

raw PET images from which voxel-wise SUV is estimated also

pose challenges of at least similar magnitude. As such, methods

have been developed to compensate for some of these

uncompensated factors.
1.2. Related works

Some methods operate at the image acquisition level such as by

using a phantom, by modifying image reconstruction, or by
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1Many papers have been published on the subject of intensity standardization

subsequent to the introduction of the concept by Nyul et al. in the name of

intensity normalization or harmonization (20, 21). Normalization implies

uniform (or linear) scaling of a variable, whereas the process under

consideration involves non-linear mappings. Similarly, harmonization

implies making image value meaning uniform without reference to a

specific absolute standard value scale, whereas AC PET and SUV have

standard meaning. Therefore, we suggest that standardization is a more

appropriate term to describe the process.
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standardizing the parameters of scan data acquisition. For example,

Bae et al. performed standardization of PET/CT scanners using

phantom tests in a multicenter phase 2 trial of patients with

peripheral T-cell lymphoma (12). Namias et al. used a simple

cylindrical phantom based on resolution and noise measurements

for harmonization of PET/CT images (13). Ferretti et al.

investigated a method using a single reconstruction data set together

with a post-reconstruction algorithm for SUV harmonization to

address the problems of exaggerated SUV due to point-spread

function (PSF) corrections in PET/CT reconstruction (14).

Other methods operate at the patient level by controlling or

correcting for the amount of radiotracer dose administered in the

setting of radiotracer extravasation, compensating for the

patient’s serum glucose level, or by controlling the allowable

delay time for radiotracer uptake. For example, Jahromi et al.

compared the accuracy of SUV corrected by serum glucose levels

(SUVgluc) to 4 other commonly used semi-quantitative metrics

for evaluation of pulmonary nodules on FDG-PET scans and

concluded that SUVgluc was the most accurate SUV parameter

(15). Laffron et al. proposed a simple method derived from

kinetic model analysis to normalize decay-corrected SUV for

injection-to-acquisition time differences within the range of 55–

110 min in FDG-PET imaging (16).

In yet other methods, standardization is performed at the

image post-processing stage by using various methods such as

digital PET phantoms, anatomical standardization with Z-scores,

or various image transformation methods. For example, Hara

et al. proposed the use of anatomical standardization of PET

images of the torso region via construction of a normal torso

model and subsequent determination of the SUV scores as

Z-score indices for measuring the abnormalities in an FDG-PET

scan image (17). Scarpelli et al. identified the optimal

transformation for producing normal distributions of tumor

SUVs on pre-treatment and post-treatment FDG-PET and 18F-

fluorothymidine (FLT)-PET images by iterating the Box-Cox

transformation parameter and selecting the parameter that

maximized the Shapiro–Wilk P-value (18). Orlhac et al. proposed

the use of a harmonization method (ComBat) initially described

for genomic data to normalize radiomic features as measured in

PET for removing the center effect while retaining

pathophysiologic information (19).

Image-acquisition-level approaches are not very practical and

cannot be used to analyze data sets that have been acquired

without following the regimen required by them. Patient-level

approaches do not fully correct for the non-standardness of SUV,

as there is often still variability in radiotracer uptake and since

serum glucose level differentially affects FDG uptake within

different tissue types, leading to overcorrections and under-

corrections of SUV. Post-acquisition methods such as Z-scores

generally perform a linear correction and do not account for

non-linear variations that often exist among data sets obtained

from different patients. Also, most of these methods perform

harmonization for a specific organ and cannot be applied to the

whole-body PET images or to other organs without requiring

major modifications. Moreover, they require the organ of interest

to be segmented in order to normalize. Furthermore, a major
Frontiers in Nuclear Medicine 03
drawback of current PET standardization/harmonization methods

is the lack of appropriate and logical quantitative methods and

metrics for evaluation. The goals of this paper are not only to

demonstrate post-acquisition techniques to standardize activity

concentration (AC) PET images as well as SUV PET images but

also to address the evaluation problems. We show how the

proposed standardization techniques substantially improve tissue-

specific meaning across patients upon standardization and also

how the new metrics enable us to measure and compare among

different standardization/normalization methods.

Standardization has been studied extensively for magnetic

resonance imaging (MRI) starting with the method introduced

by Nyul et al.1 (20, 21). They proposed a 2-step process

consisting of calibration and transformation. In the calibration

step, landmarks in the image intensity space (such as mean,

median, quartiles, and deciles) derived from image histograms of

the foreground of the image are found on a set of images for

creating an intensity mapping model. In the intensity

transformation step, the intensities of any given patient image

are non-linearly mapped by using the landmarks to guide the

transformation. One aspect of the MRI intensity standardization

challenge that has direct relevance to AC PET and SUV PET

images is the strategy to handle high outlier intensities. In MRI,

these intensities have been shown to be due to noise and artifacts

and have a similar behavior among the most commonly used

MRI sequences (20). In PET, particularly FDG-PET, which is the

focus of this paper, they arise due to noise as well as the large

dynamic range of high FDG concentrations in pathologic tissue

regions and in some normal organs. In MRI image analysis, the

positive influence of intensity standardization on other image

operations such as non-uniformity correction (22), segmentation

(23), registration (24), and even standardization itself has been

demonstrated (22). In PET image analysis, such avenues have yet

to be explored.

In this paper, we propose a new standardization method for

AC PET and SUV PET images inspired by the MRI

standardization techniques of Nyul et al. Although the proposed

techniques have similarities to the approach of Nyul et al., a

direct application of that approach to PET/SUV images will not

work, as we demonstrate in Section 3, for three key reasons: (i)

The outlier intensities in MRI are better behaved than the high

intensities in PET/SUV images, always lying at or beyond the

99.8 percentile level (20), independent of the MRI pulse sequence
frontiersin.org
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protocol. They are much harder to handle in PET/SUV images; (ii)

In MRI, the outlier intensities and intensities due to pathology do

not confound, as such calibration for standardization can be

performed directly on the patient images irrespective of whether

they are normal or abnormal. In PET/SUV images, this is not

the case, and calibration must be performed based on normal

scans. Furthermore, the cut off percentile is to be determined in

a reference-organ-specific manner via an optimization process,

as demonstrated in this paper; and (iii) In view of (ii), PET

standardization, unlike MRI, requires a reference organ whose

normal uptake is low enough that it is not mixed up with

extremely variable high-uptake regions. High-uptake organs like

heart, kidneys, and bladder are thus not useful as reference

organs for PET standardization.

Despite efforts to control specific patient-related and technical

factors, current PET images, including derived SUV measurements

with an implicit standardization, still have considerable variability

across subjects in similar tissue regions that are normal.

Therefore, the goal of the standardization method is to reduce

this variability from the overall effect of multiple variables,

without focusing on any specific variables individually, under the

assumption that we expect PET image values to be similar in

comparable normal tissue regions in different subjects. This goal

is in line with that of societies and groups such as the SNMMI

(Society of Nuclear Medicine and Molecular Imaging), EANM

(European Association of Nuclear Medicine), American College

of Radiology (ACR), Radiological Society of North America

(RSNA), Quantitative Imaging Biomarkers Alliance (QIBA), and

Quantitative Imaging Network (QIN) of the National Cancer

Institute (NCI) as part of the broader effort to improve the

accuracy and reproducibility of quantitative PET imaging, as the

proposed standardization method would improve the subsequent

measurement of whatever quantitative metrics of interest are

sought after (25–28).

Our proposed methods do not assume that hepatic or splenic

metabolism is exactly the same across normal subjects. However,

they do assume that normal hepatic or splenic metabolism

should be within an expected range of variability amongst a

population of subjects. Such an assumption is made all the time

in the application of many types of diagnostic tests when

reporting what is “normal” and “abnormal” in terms of the test

results, which is largely based on our knowledge of human

physiology, technical performance of the particular diagnostic

test at hand, and observations of organ behaviors during PET

scan interpretation.

Understanding what is “normal” is critically important to the

detection, quantification, and diagnostic interpretation of PET

images, as it allows one to (1) detect abnormality when present,

even if subtle or diffuse within an organ of interest, given that

once “normal” has been defined, everything that is “outside”

normal can be defined as “abnormal”; (2) enable quantification

of subtle disease and even inconspicuous disease when present

beyond what is due to normal radiotracer uptake; and (3)

improve accuracy of lesion-to-background measurements, which

is important for quantitative assessments in cancer and in non-

cancer related disorders.
Frontiers in Nuclear Medicine 04
Although PET scans reflect absolute measures of radiotracer

uptake at the time of imaging as well as variations in imaging

technique and human biological status, there is no reason to

ignore information gleaned from use of populations of studies in

terms of the normal level and range of radiotracer uptake within

individual organs and from knowledge of human organ

physiology in order to facilitate detection and quantification of

pathology whenever present.

Our approach for both AC PET and SUV PET images, as

described in Section 2, consists of a one-time calibration step,

wherein the parameters of the standardization mapping are

determined (learned), followed by the transformation step

performed on any acquired patient image. Calibration is carried

out by using only normal (or near-normal) images and

separately for AC PET and SUV PET images, and the

transformation step is applied to any given image—normal or

abnormal. Section 2 also describes our strategies for evaluating

the effectiveness of standardization. In Section 3, we present

detailed results in comparison to direct application of the MRI

standardization approach and other standardization strategies.

We state our concluding remarks in Section 4.

An early version of this work was presented at the SPIE

Medical Imaging Conference held in Houston in February 2020

whose proceedings contained the abbreviated paper. The present

paper differs from the conference paper in major ways: (i) It

fully describes the background and rationale with a

comprehensive review of the literature which was lacking in the

conference paper; (ii) It gives full details of the method and all

associated algorithms while the conference paper included just an

outline for just the AC PET images and did not include SUV

standardization; and (iii) The evaluation is significantly expanded

in this paper over the conference paper to include both AC PET

and SUV PET images, comparative analysis with other methods,

and repeat scan data sets of patients to show the reproducibility

of the method.
2. Materials and methods

2.1. Overview and notations

Let I be a set of 3D PET images of a body region B, comprised

of a stack of sequential transverse slices. In this paper, we will be

studying standardization of both AC PET and SUV PET images.

The standardization process is mostly the same for both AC PET

and SUV PET images. Thus, we may think of I as representing

either a set of AC PET images or a set of SUV PET images. Our

description will be general without referring to AC or SUV PET

images specifically, except when there is a deviation in the process

between them, in which case, the differences will be explained.

For any image I in I , we will denote its standardized image by

Is. We will denote the entire standardization mapping by ψ. Thus,

per our notation, for any image I in I , Is = ψ(I). Our

standardization strategy employs certain landmarks or special

features of interest in the image intensity or voxel value space,

observable on image intensity distributions or histograms,
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https://doi.org/10.3389/fnume.2023.1210931
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Mortazi et al. 10.3389/fnume.2023.1210931
defined as follows. For any image I in I , we will denote its

minimum and maximum intensities by min(I) and max(I), and

three special percentile values (more about this later), called

lower percentile value, median value (50th percentile), and upper

percentile value by pα(I), pm(I), and pβ(I), respectively. Here α

and β denote the lower and upper percentiles; for example, we

may have α = 5 denoting the 5th percentile in I and β = 95

denoting the 95th percentile in I, and correspondingly, the actual

image intensity values corresponding to these percentiles may be

pα(I) = 52 and pβ(I) = 3,007.

The proposed standardization method consists of two main

steps: calibration and transformation. The calibration step is

performed only once for a scanner or set up while the

transformation step is executed for each acquired patient

image. In the calibration step, a standardized scale is

determined along with key image intensity landmarks defined

on it, named smin, sm, and smax by using a subset I c of I . Set
I c is used expressly for calibration purposes only and the

images in this set are assumed to be normal2. The idea is that

smin, sm, and smax have a meaning similar to pα(I ), pm(I ), and

pβ(I ), respectively, except that they denote statistical average

locations (in the intensity space) of the latter obtained from

the images in I c. In the transformation step, for any given

image I to be standardized, where I [ I t ¼ I � I c is not

necessarily normal, the same landmarks are determined in I,

the mapping that results when the landmarks of I are matched

to the landmarks on the standardized scale is computed, and

I’s voxel intensities I(v) are transformed to Is(v) according to

the mapping. Landmarks pm(I ) and pβ(I ) play key but different

roles in standardization. pm(I ) allows shifting the overall

intensity in I to a reference value. pβ(I ) helps in finding that

reference reliably. The main reason for choosing pβ(I ) ≠max(I )

is that the upper tail of the histogram of I is affected by

artifacts, outlier intensities, and very high uptake values due to

the presence of pathological conditions and other high-level

accumulations of radiotracers which cause significant variation

among subjects and scanners. As we show in this paper, such

variations in PET images can lead to undesired SUV variations

among healthy organs from different subjects and scanners.

Following the idea introduced by Nyul et al. (20, 21), to solve

this problem, we use pα(I ) and pβ(I ) as landmarks such that

only within the interval [pα(I ), pβ(I )] do we seek to

uniformize3 intensity meaning across subjects. Finally,

intensities in [min(I ), pα(I )] are transformed by using

(extrapolating) the mapping associated with [pα(I ), pm(I )].
2It is not necessary for the whole image to be normal or disease-free. As we

explain in Section 2.2, our method uses a reference organ such as liver.

“Normal” implies that the reference organ should be normal in all images

in the set Ic.
3Our intent is to reduce the variation in image intensity values in “normal”

tissues of the same type across subjects as much as possible while leaving

the natural variations that exist unaltered.
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Similarly, intensities in [pβ(I ), max(I )] are transformed by

using the mapping associated with [pm(I ), pβ(I )].

In the following sections, we first explain the calibration and

transformation steps and then describe our evaluation strategy

together with a brief outline of two common methods from the

literature with which we have compared our standardization

method.
2.2. Calibration

Figure 1 is a schematic depiction of the calibration process.

Given the set I c of images of normal subjects, the calibration

process outputs the standard scale along with its parameters,

namely the landmark locations for smin, sm, and smax on the

standard scale. The process consists of three steps: (i) Defining a

standard scale, (ii) identifying landmarks on individual image

scales, and (iii) determining landmarks on the standard scale.

We emphasize again that the calibration process uses only

normal images as explained above.

2.2.1. Defining a standard scale
The length of the standard scale defined by the interval [smin,

smax] is chosen such that we do not lose “resolution” of SUVs

contained in the input image (irrespective of whether the input is

an AC PET image or a SUV PET image) as it undergoes

standardization mapping. Since min(I) is typically 0 for PET

images, we select smin = 0 for both AC PET and SUV PET

standardization. smax is chosen so that no two distinct SUVs in

the input image that are clinically meaningful map to the same

SUV after standardization. See Section 3 for further details.

Recall that smax denotes roughly the maximum SUV on the

standard scale for the normal portion of the activity (determined

from normal images used for calibration) and not the actual

maximum possible SUV in any patient image.

2.2.2. Identifying landmarks on individual image
scales

Among the 5 landmarks (see Figure 1), the 1st and 5th

landmarks min(I) and max(I) are selected to be the actual

minimum and maximum voxel value in I, respectively. The

second landmark pα(I) is set equal to min(I) which is typically 0

in our images. The remaining two parameters, pm(I) and pβ(I),

are selected based on the histogram of I as follows.

Defining and estimating pm(I): Based on our examination of

body-wide FDG-PET/CT scans of 552 patients, the histogram of

the full 3D AC PET and SUV PET images is typically bimodal.

The first mode is situated close to 0 and corresponds to activity

in the background of the image outside the body region, and the

second mode represents the body region. Figure 2 displays the

histograms of the full body torso 3D SUV PET image from

FDG-PET/CT acquisitions of one normal subject and one cancer

patient. A PET axial slice at the mid abdominal level is also

displayed in the figure. We select pm(I) to be the median value

within the body region (second mode) in I. To find the body

region, we threshold I at the mean, denoted by mean(I), of the
frontiersin.org
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FIGURE 1

Schematic illustration of the calibration process. The image intensity scales of 4 images are shown on the top as dotted lines. The 5 key landmarks of each
image are also marked on the intensity scale. The standard scale is shown at the bottom as a solid line. The position of pm(I ) when each of the 4 images is
mapped linearly from their respective [pα(I ), pβ(I ) to [smin, smax] of the standard scale is depicted on the standard scale as small vertical.

FIGURE 2

An FDG-PET axial image slice at the mid abdominal level selected from a 3D body torso image I (left), the histogram of the full 3D image I (middle), and the
binary image (right) resulting from thresholding I at mean(I ). (Top): Image from a normal subject. (Bottom): Image from a patient with metastatic cancer.
For better visualization, some background regions are trimmed in the slice displays on the left.
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image intensity values over the whole volume of I. The thresholded

results are also shown in Figure 2 for the two studies. This simple

technique worked well as verified on all 552 images tested. Note

that perfect segmentation of the body region is not needed here

since pm(I) is the median value within the segmented region and

is not affected by minor imprecisions in the thresholded

outcome. To verify our assertion, we segmented the body region

accurately in all data sets in I c by thresholding at the volume

mean followed by a filling operation and performing manual
Frontiers in Nuclear Medicine 06
corrections as needed. We found the mean ± SD (standard

deviation) of the difference in the median values estimated by

the two methods of segmentation in PET images over all data

sets in I c to be 0.667 ± 0.925.

Defining and estimating pβ(I): The landmark pβ(I)

corresponding to the upper percentile value is the most crucial

from the standardization perspective and the most challenging to

define, considering the large and variable dynamic range of the

image values, the highly variable high uptake values, and the
frontiersin.org
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variability within normal tissues that we need to handle. To

exemplify, the AC scale among our data sets of normal subjects

in I c varies from [700, 10,200] to [4,600, 56,100] Bq/ml and the

corresponding SUV scale varies from [0.2, 1.6] to [9.6, 13.25].

Also, the mean value scale over healthy liver and spleen among

AC data set varies from 3,050 to 18,659 Bq/ml and the

corresponding SUV scale varies from 0.66 to 3.33. These

variabilities pose challenges for quantitative analysis as well as for

3D visualization such as via maximum intensity projection in a

consistent manner. Our idea is to choose a reference organ O and

select β to be the largest percentile such that, upon standardizing

each I in I c by using pβ(I), the coefficient of variation over the

samples in I c of the standardized mean intensity within O is the

smallest.

To elaborate, let μO(Is) denote the mean intensity value of a

specific image I in I c within O after I is standardized to Is by

using a given upper percentile b and the corresponding upper

percentile landmark pb(I), let mO(b) and σO(b) denote the mean

and standard deviation of μO(Is) over all images in I c, and let

δO(b) be the coefficient of variation of μO(Is) over images in I c:

dO(b) ¼ sO(b)
mO(b)

: (2)

Then the optimum upper percentile β is chosen to be that b which

minimizes δO(b) over all upper percentile values over a certain

interval [bL, bH]:

b ¼ argmin
b

{dO(b): bL � b � bH}: (3)

We have taken [bL, bH] = [90, 100]. The liver is commonly used as a

reference organ in FDG-PET. For example, it is used as a reference

organ in the PET response criteria in solid tumors (PERCIST)

response assessment system because it is relatively stable and

uniform in terms of FDG uptake from scan to scan, is well-

defined and sufficiently large, and has more FDG-uptake than

other background organs such as adipose tissue or lung so that it

is easily visible and measurable (29). Other more FDG-avid

organs like brain and heart have a lot more variable FDG uptake

between scans and have more heterogeneous FDG uptake within

the organs themselves. The spleen is more variable in terms of

FDG uptake compared to liver, but still generally has uniform

uptake and can also be used as a reference organ. Therefore, in

this work, we have used both liver and spleen as reference organs

for estimating β for the calibration process. As we will

demonstrate in Section 3, β estimated by using the two organs as

reference yields the same value. We note that these organs are

needed as reference only in the calibration step and not for

performing standardization transform on a patient scan.
FIGURE 3

Illustration of the first standardization mapping. Input intensities in [pα(I ),
pm(I )] and [min(I ), pα(I )) are mapped to intermediate standardized
intensities by a single linear mapping. Input intensities in [pm(I ), pβ(I )]
and (pβ(I ), max(I )] are mapped to intermediate standardized intensities.
2.2.3. Determining landmarks on the standard
scale

Parameters smin and smax of the standard scale are determined

as explained above. To estimate sm, first the intensities in [pα(I),
Frontiers in Nuclear Medicine 07
pβ(I)] in the images I in I c are mapped linearly to the interval

[smin, smax] on the standard scale; see Figure 1. Denoting this

linear mapping by l(x), sm is defined as the mean of the mapped

values l( pm(I)) on the standard scale over all I in I c:

sm ¼ 1
jI cj

X
I[I c

l( pm(I)), (4)

where |I c| denotes the cardinality of I c. In Figure 1, l( pm(I))

values for 4 images are illustrated. Note how pm(I) and pβ(I)

both play an important role in defining sm and smax. Note also

that the mechanism of choosing [smin, smax] guarantees that l(x)

is 1:1 onto and hence invertible.
2.3. Intensity transformation

A given input test image I∈ It is converted to a standardized

image Is = ψ(I) by using two mappings. The first, denoted by η

(I), maps input intensity I(v) at voxel v to output intensity Js(v)

at v, where Js = η(I), on an intermediate standardized scale. The

second mapping, denoted by l�1(x), represents the inverse of the

scaling transformation l(x) mentioned above in Section 2.2 (iii).

We will use Figure 3 to illustrate the first step. Overall, η is non-

linear or piece-wise linear with two linear segments: [pα(I),

pm(I)] mapped to [smin, sm]; and [pm(I), pβ(I)] mapped to [sm,

smax]. The first linear segment is extended (extrapolated) to map

any input intensities I(v) in the half-open interval [min(I), pα(I))

to. In our case, since min(I) = pα(I), this (half-open) interval is

empty, and thus, s0min ¼ smin. Similarly, the second segment is

extended to map any input intensities I(v) in pβ(I), max(I)] to

(smax, s0max]. In our case, this half-open interval covers most of

the high-uptake (and outlier) intensities in the upper tail of the

histogram of I. Note here that the actual value of s0max is defined

by the slope of the second linear segment and the actual

maximum value max(I) in I. Thus, s0max will vary from image to

image or patient to patient. More importantly, all intensities in I

are retained faithfully and mapped to Is appropriately so that in
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the lower parts of the scale below pβ(I) corresponding to mostly

normal uptake values, standardized numeric meaning is achieved.

The second mapping via l�1(x) is performed after the above

transformation process. This is for bringing the transformed PET

values and SUVs on the intermediate standardized scale back to

their original physical meaning. The l�1 transformation is

obtained as follows. Note that since pα(I) = 0 = smin, λ(x) is

simply a scale (multiplication) factor. Since each I in I c may give

rise to a different scale factor, we find l�1(x) by first removing

scale factors that are greater than one standard deviation away

from the mean scale factor and then finding the mean of the

remaining scale factors. l�1(x) then is simply the reciprocal of

the found mean. The overall standardization mapping ψ(I) is

thus a composition4 of η and l�1.

In summary, the proposed method of standardization consists

of a one-time calibration step and a transformation step that is

applied to any given image. The latter step does not require any

segmentation mask. In the calibration step, key parameters of the

standardization mapping are estimated from a given set of PET

image data sets of normal subjects. There are no parameters in

the method that need manual or ad hoc adjustment, and the

process is fully automatic once calibration is set up.
2.4. Iterative strategies

The method described above can be applied iteratively. That is,

the standardization method can be applied to the already

standardized images repeatedly. Referring to a single application

of the method as applied to AC PET and SUV PET images by

s-AC and s-SUV, respectively, in the iterative strategy, we form

sequences of operations such as: s-AC→ s-AC; s-SUV→ s-SUV;

s-AC→ SUV; s-AC→ SUV→ s-SUV; etc. For example, s-AC→
SUV→ s-SUV connotes standardizing AC, followed by SUV

estimation via Equation 1, followed by SUV standardization. For

the second application of standardization, the calibration set I c

is standardized to create set I s
c and the calibration parameters

are re-estimated based on I s
c.
2.5. Evaluation metrics

Our test set I t consists of two cohorts of images—a set In of

images of normal subjects and another set I r of images of non-

normal subjects where repeated scans were available within 7

days of each other. For In, our goal is to investigate how the

mean intensity within certain objects O varies among all images
4There is a slight abuse of notation here. η maps an image I into another

image Js. Equivalently, it can also be thought of as mapping an input voxel

value I(v) to another value assigned to the same voxel in the output,

namely Js(v). Since l and l�1 map voxel values to voxel values, with the

voxel mapping interpretation of η, composition of η and l�1 makes sense.
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in In before and after standardization. We expect the coefficient

of variation of this mean intensity after standardization to be

significantly lower than that before standardization since the

subjects are considered normal5. For I r , our goal is to assess the

difference in mean intensity within O between the two repeat

scans for each subject. We expect this difference to be

significantly lower after standardization than before

standardization. For both evaluation strategies, the objects

considered are liver and spleen for the reasons explained in

Section 2.2.

For the set of images In and object O, we denote the coefficient

of variation of the mean intensity μO(I) within O over the images I

in In by CVO(In):

CVO(In) ¼ SO(In)
MO(In)

, (5)

where MO(In) and SO(In) are the mean and standard deviation,

respectively, of μO(I) over all I [ In. Denoting the set of

standardized images corresponding to In by I s
n, our hypothesis is

that CVO(I s
n) will be significantly lower than CVO(In) for both

AC PET and SUV PET images.

For the set of images I r and object O, we define the mean

absolute difference MDO(Ir) between the mean intensity μO(I1)

within O of the first scan image I1 [ I r of a subject and the

mean intensity μO(I2) within O in the second repeated scan

image I2 [ I r of the same subject by:

MDO(I r) ¼ 1
jI rj

X
I1,I2[I r

jmO(I1)� mO(I2)j
[mO(I1)þ mO(I2)]=2

: (6)

MDO expresses the average of the normalized differences between

μO(I1) and μO(I2) over all corresponding pairs of images in I r . We

hypothesize that MDO(I s
r) will be significantly lower than

MDO(I r), where I s
r denotes the set of standardized images

corresponding to I r , for both AC PET and SUV PET images.
3. Data sets, experiments, and results

3.1. Data sets

This retrospective study was conducted following approval

from the Institutional Review Board at the Hospital of the

University of Pennsylvania along with a Health Insurance

Portability and Accountability Act waiver. The following data

sets were utilized for this study. Our data set I contains a total
5Here “normal”means the entire liver and spleen are radiologically normal on

the PET images and that the remainder of the image is radiologically near-

normal with exception of minor incidental abnormalities such as small liver

cysts or lung nodules.
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of 84 FDG-PET/CT scans with the following division of the scans

among subsets: |I c| = 23; |I t | = 61; |In| = 15; and |I r| = 46; note

that I t is a union of In and I r .

Normal scan data sets (I c ∪ In): This set includes 38 whole-

body (skull vertex to toes) or near whole-body (skull base to

proximal thighs) PET/CT scans with normal-appearing livers and

spleens on the PET images and otherwise radiologically near-

normal appearance of other organs of the body with exception of

minor incidental abnormalities such as small liver cysts and lung

nodules as verified by a board-certified radiologist (co-author

Torigian). The scans were acquired on two different brands of

scanners; they were obtained in 17 women (mean age 69, range

52–85 years, mean weight 73 kg, range 49–98 kg, mean BMI

28.14 kg/m2, range 17.27–38.28 kg/m2) previously scanned on a

Biograph mCT scanner (Siemens Healthcare, Erlangen,

Germany) and 21 men (mean age 44, range 30–50 years, mean

BMI 26.80 kg/m2, range 20.80–35.10 kg/m2) previously scanned

on a Gemini TF scanner (Philips Center, Amsterdam, The

Netherlands). These 38 scans were acquired approximately

60 min after administration of approximately 15 mCi of FDG.

This set is considered as the normal data set and is employed for

calibration (I c) and testing (In).

Repeated scan data set (I r): This data set includes a pair of

repeated near whole-body (skull base to proximal thighs) PET/

CT scans from 12 men and 11 women (mean age 59, range 40–

71 years) with advanced stage non-small cell lung carcinoma

(mean SUVmax 13.61 and range 5.80–55.10 for initial scans,

mean SUVmax 13.85 and range 4.70–55.10 for initial scans for

repeat scans). The data sets were acquired on three brands of

scanners: Gemini TF (Philips Center, Amsterdam, The

Netherlands), Discovery LS and Discovery STE 16 slices (General

Electric Healthcare, Waukesha, WI), and Biograph 40 Truepoint

(Siemens Healthcare, Erlangen, Germany) PET/CT scanners as

part of a prospective multicenter research study ACRIN 6678

(see Acknowledgements). All patients had previously undergone

initial and repeat FDG-PET/CT imaging within 7 days without

intervening therapy where repeat scans were performed using

FDG administration and image acquisition parameters similar to

those in the initial scans. Both initial and repeat scans had been

acquired with FDG uptake delay times within 10–15 min of each

other.
3.2. Experiments and results

3.2.1. Quantitative evaluation
For quantitative evaluation, we have conducted four

experiments: (E1) for comparing coefficient of variation before

and after standardization on normal data sets, (E2) for

comparing mean absolute difference obtained before and after

standardization on repeat scans, (E3) for comparing among

iterative strategies, and (E4) for comparing performance on

normal data sets obtained from different brands of scanners. For

experiments E1 and E2, we also included other methods

commonly used in the literature (30), called Gaussian

normalization and Z-score normalization methods as well as the
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original MRI standardization method (19, 20). We will refer to

the Gaussian and Z-score methods correspondingly by G-AC,

G-SUV, Z-AC, and Z-SUV, and to the MRI standardization

methodology by M-AC and M-SUV.

For E1, utilizing data set In, we compare the coefficient of

variation CVO(In) for O∈ {liver, spleen} before standardization

with CVO(I s
n) obtained after standardization. For E2, utilizing

data set I r , we compare mean absolute difference MDO(I r)

before standardization with MDO(I s
r) obtained after

standardization. The G- and Z-methods require an estimate of

the mean mG
O(I) and standard deviation sG

O(I) of intensities

within a reference organ O in each test image I, and hence a

segmentation of O in each I, as such, we estimated mG
O(I) and

sG
O(I) for each image I in I t . Further, they normalize intensities

only within O. The Gaussian method “normalizes” intensities in

a test image I (AC or SUV) in I t by dividing the voxel value I

(v) by the standard deviation sG
O(I). The normalized image is

given by:

Is(v) ¼ I(v)
sG
O(I)

: (7)

The normalized image in the Z-method is given by:

Is(v) ¼ I(v)� mG
O(I c)

sG
O(I)

: (8)

In Table 1, we summarize our results from the two experiments E1

and E2 by listing CVO and MDO values before standardization and

for the four methods after standardization for both AC PET and

SUV PET images. In the table, I s represents the set of

standardized images corresponding to I (In or I r) output by

each of the different methods.

We make the following observations from this table: (i) The

proposed standardization method reduces CV significantly—by a

factor of 3–4. Not surprisingly, the reductions are similar for AC

PET and SUV PET images and for both organs; (ii) Although

the concept underlying SUV reduces variability somewhat (by

about 10% for both organs), significant residual variability

remains; (iii) Compared to the mechanism underlying just

standardization via SUV, the G- and Z-methods achieve slightly

better harmonization of AC PET images, the Z-method

performing slightly better, but they both fail to improve beyond

this level for SUV images. More importantly, note that these

methods require a segmentation of O in each test image, and

standardization (normalization) is applicable only within the

region of O and not on the whole image; (iv) Compared to the

original MRI standardization method, the proposed method

reduces both CVO and MDO for both organs by a factor of 3–8.

This is exactly for the key reasons mentioned in Section 1,

justifying the need for a new method to handle AC and SUV

non-standardness; (v) The proposed standardization strategy

significantly outperforms both G- and Z-methods in

harmonizing both AC PET and SUV PET images; (vi) The

variability seen in repeat scans in the spleen is greater than that
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TABLE 1 CVO and MDO values (%) for liver and spleen derived from data set In and Ir respectively before standardization (I ) and for the three methods
after standardization (I s) for both AC PET and SUV PET images.

Metric Organ AC (I ) G-AC (I s) Z-AC (I s) SUV(I ) G-SUV (I s) Z-SUV (I s) M-AC (I s) M-SUV (I s) s-AC (I s) s-SUV (I s)
CVO Liver 42.28 27.29 21.62 30.10 27.28 21.51 32.23 32.52 11.48 11.66

Spleen 37.50 20.23 17.73 27.56 20.26 17.83 31.43 33.42 12.21 12.36

MDO Liver 9.34 10.34 14.94 8.17 10.43 15.91 25.87 27.34 3.38 4.83

Spleen 20.82 27.91 18.35 20.13 27.5 19.13 30.76 33.23 5.04 6.26
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in the liver, which is what is observed in clinical practice.

Interestingly, AC PET and SUV PET images show similar

variability in repeat scans; and (vii) Again, the proposed method

outperforms the other methods and achieves a significant

reduction in variations between repeat scans, with a residual

variation of 3%–6%.

In experiment E3, utilizing metrics CVO and MDO, we

compared the following iterative and the above non-iterative

strategies: s-AC→ s-AC; s-AC→ SUV; s-AC→ s-AC→ SUV; s-

SUV→ s-SUV. The results are summarized in Table 2 for both

liver and spleen. We make several key observations: (i) The

SUVs resulting from s-AC→ SUV are far less harmonized than

directly standardizing SUV PET images (s-SUV; see Table 1).

However, they are slightly more harmonized than the original

SUVs (4th column in Table 1). Although s-AC achieves

substantial harmonization (see Table 1), subsequently the process

of estimating SUVs from the standardized AC PET images itself

introduces its own non-standardness; and (ii) Repeated

application of standardization (to AC PET and SUV PET

images) does not seem to help since most non-standardness

seems to be mitigated in the first application of standardization.

For experiment E4, our goal was to study how effective the s-

AC and s-SUV methods are in standardizing data sets coming

from different brands of scanner. Ideally, we would like to have a

sufficient number of studies in Ir such that, for each subject, the

repeated scans I1 and I2 of the same subject come from two

different brands of scanners. Unfortunately, this is not the case,
TABLE 2 CVO values (%) and MDO values (%) for liver and spleen derived from

s-AC→ s-AC s-AC→ SUV

CVO(I s
n) MDO(I s

r) CVO(I s
n) MDO(I s

r)
Liver 11.88 5.01 26.15 6.47

Spleen 12.58 6.53 25.09 9.01

TABLE 3 Mo and SO values for liver and spleen derived from data sets J s
n1, I s

n
different brands of scanners. P-values of statistical comparisons are also sho

s-AC s-AC

Mo(J s
n1) MO(I s

n2) P MO(I s
n1) Mo(J s

n2)

SO(J s
n1) SO(I s

n2) SO(I s
n1) SO(J s

n2)
Liver 4.83 4.77 0.73 4.94 4.85 0

0.61 0.47 0.63 0.48

Spleen 4.32 4.26 0.70 4.42 4.33 0

0.61 0.46 0.63 0.47
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and so for E4, we chose data set In where we have 17 healthy

women scanned on Siemens Biograph mCT scanner and 21

healthy men scanned on Philips Gemini TF scanner. We will

refer to these two subsets by In1 and In2, respectively. For this

assessment, we will assume that, upon standardization, similar

SUVs are expected for the same organ in In1 and In2 since the

subjects are normal. We conducted two experiments, one using a

subset of In1 as set I c for calibration and another using a subset

of In2 as I c. In the first case, let ϑn1 = In1− Ic and J s
n1 denote

the standardized version of ϑn1. Using the notations related to

Equation 5, we then compare the mean MO(J s
n1) and standard

deviation SO(J s
n1) of the mean intensities μO(I) within O over

the images I in ϑn1 with the corresponding mean and standard

deviation MO(I s
n2) and standard deviation SO(I s

n2) of the mean

intensities μO(I) within O over the images I in I s
n2. We expect

the mean intensities MO(J s
n1) and MO(I s

n2) to be statistically

indistinguishable under a t-test. In the second case, the setup is

similar, with the roles of In1 and In2 interchanged. Table 3

summarizes the results from the two cases for liver and spleen

for s-AC and s-SUV. In each case, we used 7 studies as set I c

for calibration. From the P-values listed, it is clear that the mean

intensities obtained after standardization using the two strategies

for the two brands of scanners are statistically indistinguishable

for both s-AC and s-SUV. For comparison, we also estimated the

mean and standard deviation of raw SUVs of the two sets of

scans In1 and In2. They were found to be MO(In1) = 1.11,

SO(In1) = 0.50, and MO(In2) = 0.83, SO(In2) = 0.22, with a P =
data sets In and Ir, respectively, for comparing different iterative strategies.

s-AC→ s-AC→ SUV s-SUV→ s-SUV

CVO(I s
n) MDO(I s

r) CVO(I s
n) MDO(I s

r)
28.24 7.11 11.95 5.08

27.28 11.41 13.44 7.01

2, I s
n1, and J s

n2 for comparing different strategies based on data sets from
wn.

s-SUV s-SUV

P Mo(J s
n1) MO(I s

n2) P MO(I s
n1) Mo(J s

n2) P

SO(J s
n1) SO(I s

n2) SO(I s
n1) SO(J s

n2)
.62 4.74 4.71 0.83 4.86 4.79 0.70

0.52 0.48 0.53 0.49

.63 4.26 4.20 0.74 4.35 4.28 0.67

0.56 0.45 0.57 0.46
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FIGURE 4

Coefficient of variation δ0(b) (%) as a function of the percentile value b in [90, 100] for both AC PET and SUV PET images for (A) liver and (B) spleen. The
optimum values of b found are β= 96.5 for PET images.
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0.03 for their t-test comparison. This, combined with the results

shown in earlier tables, demonstrates that the standardization

strategies overcome not only inter-subject variations in AC values

and SUVs but also mitigate inter-scanner variations.
FIGURE 5

Histograms of liver 3D AC PET images of 6 subjects randomly chosen
from the PET data set In: (A) original AC PET image; (B) AC PET image
scaled by linear mapping guided by the maximum value; (C) s-AC.
3.2.2. Qualitative evaluation
To illustrate the performance of the s-AC and s-SUV

standardization methods qualitatively, we display several graphs

and images in Figures 4–7.

In Figure 4, we show the plot of δO(b) (Equation 2) as a

function of the upper percentile variable b for each of liver

(Figure 4A) and spleen (Figure 4B) taken as a reference object.

For AC standardization, the optimal values β found for b with

[bL, bH] = [90, 100] for liver and spleen were identical, namely,

β = 96.4. Similarly, for SUV standardization, these values were

identical, with β = 95.6. As seen in Figure 4, the coefficient of

variation suddenly rises for b >∼98, suggesting a cut off

percentile beyond which image intensities are extremely variable

from subject to subject.

To illustrate the uniformization effect of our standardization

strategy, we display histograms of the liver AC PET images selected

from In from 6 subjects in Figure 5 as follows: (a) before

standardization, (b) after linear mapping determined by the

maximum value in the image, and (c) upon standardization (s-

AC). In Figure 6, we display histograms from SUV PET images

from the liver of the same subjects where the layout is similar to

that of Figure 5. The purpose of (b) is to demonstrate that just a

linear mapping of the entire AC/SUV range to a common scale

does not help to standardize, and that standardization of the whole

image requires a non-linear mapping. In fact, linear mapping

makes matters worse—the histograms are more spread out after

mapping. The point made in Table 1 about the SUV estimation

process taking care of some non-standardness, but not all, existing

in AC PET images is borne out in Figures 5A, 6A. The histograms

of subjects 5 and 6, which were far apart in AC PET images, come

close together in SUV PET images. However, for other subjects,

such a mitigation of non-standardness did not take place.
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Finally, we demonstrate via image slice display at fixed gray

map windows how uniformity of numeric meaning is achieved

after standardization. Figure 7 displays (top row) an abdominal
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slice selected from each of the 6 SUV data sets in In. The same

slices from the same data sets after standardization are also

displayed (bottom row). For each row, a fixed gray map window
FIGURE 6

Histograms of liver 3D SUV PET images of 6 subjects randomly chosen
from the SUV data set In: (A) original SUV PET image; (B) SUV PET image
scaled by linear mapping guided by the maximum value; (C) s-AC.

FIGURE 7

An abdominal SUV PET image slice selected from each of 6 3D body torso
(bottom row). In each row, the images are displayed at a fixed gray map adju
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is used which is adjusted optimally for the first image in the row.

It can be readily seen that standardization facilitates the use of

fixed gray map windows, whereas fixed windows do not offer

optimum slice visualization prior to standardization owing to

non-standardness of intensity meaning.

As alluded to in Section 2, parameter smax was chosen to be

5.00 for SUV PET images so as to not lose intensity in normal

portions of the activity. The logic behind this selection is as

follows. We require that, for any two distinct SUV values x and

x + dx in I, we will be able to differentiate between them with a

difference of at least dx. We assumed dx = 0.01 since, in clinical

practice, this level of discriminability is adequate. By examining

all SUV PET images that we analyzed and the associated

standardization mappings, we found that smax≥ 4.53 fulfills this

requirement for dx = 0.01. Therefore, we set smax = 5.00. Similarly,

for AC PET, we set smax = 50,000 Bq/ml.

For the calibration data set I c of AC PET images, we observed

that the scale factor l(x) ranged from 2.66 to 13.49 The mean scale

factor after leaving out extreme values was 6.00, and thus, l�1 as a

multiplication factor was 1/6.00 = 0.167. For the calibration data set

I c of SUV PET images, we observed that the scale factor l(x)

ranged from 1.66 to 5.94 The mean scale factor after leaving out

extreme values was 2.50, and thus, l�1 as a multiplication factor

was 1/2.50 = 0.405.
4. Discussion and conclusion

We proposed a new methodology for standardizing AC PET

and SUV PET images individually, called s-AC and s-SUV,

respectively, to overcome the effect of undesired factors that

impede accurate quantitative analysis for clinical and research

purposes. The methods can be directly applied to AC/SUV PET

images without requiring the parameters related to the scanner,

image acquisition, or the patient. They consist of a one-time

calibration step wherein the parameters pertaining to the

standardization mapping are estimated once and for all using a

reference organ. This is followed by the transformation step

wherein any given image is subjected to the standardization

mapping. The methods are fully automatic, requiring no
images I in In before standardization (top row) and after standardization
sted to the first image in the row.
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per-image interactive input or adjustment of parameters.

Moreover, both s-AC and s-SUV preserve the original meaning

of activity concentration and Standardized Uptake Value. Their

effectiveness in significantly improving the tissue-specific AC/

SUV numeric meaning is demonstrated quantitatively using scan

data from four different scanners via two metrics: (i) reduced

variability in the scans of normal subjects within liver and

spleen and (ii) improved reproducibility of image intensities

within these organs in repeated scans of patients with different

pathologies. Improvement in uniformization is also demonstrated

qualitatively through displays of histograms and images at fixed

gray map settings.

The proposed s-AC and s-SUV methods have been evaluated in

comparison with two commonly used strategies, namely, Gaussian

and Z-score intensity normalization, demonstrating the following

key advantages: (i) s-AC and s-SUV significantly outperform the

G- and Z-methods in terms of the above quantitative metrics.

The latter methods do not seem to be able to go beyond the

normalization achieved by the SUV process and leave

considerable residual non-standardness; (ii) G- and Z-methods

perform normalization only within the organ of interest and not

on the whole image and require a pre-segmentation of the organ

of focus. In contradistinction, the proposed methods standardize

the whole image and do not require segmentation of any organs

or the reference organ to be within the field of view of the scan.

The only segmentation, not precise but rough, required is that of

the entire body region which can be performed quite effectively

by thresholding as demonstrated in the paper; and (iii) Since the

proposed methods standardize the whole image, they can be

employed as a pre-processing step to facilitate further analysis of

the images for image segmentation, disease quantification,

response assessment, etc.

Although the optimal value β for the upper percentile was

96.4 for AC and 95.6 for SUV, the behavior of the δO(b)

function was almost identical for AC PET and SUV PET images

(Figure 4). Given this and the observation that, at the optimal

value, there is no sharp valley in δO(b), we surmise that setting

β = 96.0 would not make much difference in the effectiveness

of standardization in terms of metrics CVO and MDO. This

indeed turned out to be true, with β = 96.0, the new metric

values becoming, for liver in s-AC: CVO(I s
n) ¼ 11:47,

MDO(I s
r) ¼ 3:38; and for liver in SUV: CVO(I s

n) ¼ 11:67,

MDO(I s
r) ¼ 4:84. The absolute maximum difference is less

than 0.01% of the previous metric values, as can be seen by

comparing these new values with the entries in Table 1. For

spleen as well, the difference turned to be less than 0.01% with

β = 96.0. Another interesting finding is that direct

standardization of SUV PET images is better than standardizing

AC PET images followed by converting them to SUV images

(see Table 2). Our recommendation is that if AC PET images

are needed for subsequent image processing/analysis operations,

then perform s-AC processing, and if SUV images are the end

goal, then perform s-SUV processing. Also, as shown in Table 2,

one application of the standardization mapping takes care of the

underlying non-standardness in AC/SUV PET images and there

is no benefit in repeated application.
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We used liver and spleen separately as a reference organ. For

FDG-PET imaging, the optimum values β obtained for both

organs are similar. If some other object or tissue region is used

as reference, the optimum value β needs to be estimated via

Equation 3 by using data set I c in the calibration step. Similarly,

if one does PET imaging with radiotracers other than FDG, then

the liver and spleen may not necessarily be the best choice since

the accumulation and distribution of radiotracer uptake may

differ from that of FDG, and therefore, the estimation of β may

have to be redone for each individual type of radiotracer utilized.

Although performed on a small sample, our analysis indicates

that the standardization mapping can mitigate variations

potentially coming from different brands of scanners.

One limitation of this work is the rather small number of cases

utilized in testing method performance, especially as related to

inter-scanner variation of SUVs. Although our existing data sets

came from multiple scanners, we did not have a sufficiently large

number of studies from each of several brands of scanners. One

of our future goals is to acquire such data sets and test our

method’s ability to standardize both AC PET and SUV PET

intensities across all major brands of scanners currently used in

clinical practice.

In summary, the proposed s-AC and s-SUV algorithms involve

a one-time calibration step which requires a set I c of FDG-PET

data sets of normal subjects and the segmentation mask of a

reference organ or tissue region for each image. All parameters

needed by the method are then estimated automatically by the

algorithms. Subsequently, any given FDG-PET image of a patient

can be standardized automatically by using the parameters

estimated in the calibration step. The algorithms are easy to

implement and computationally inexpensive. Their ability to

drastically reduce variations inherent in the existing SUV

measurement process, especially as evidenced by our repeated

scan experiments, suggests that the s-SUV measures may be used

for disease measurement highly reliably.
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