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Prediction of angiographic
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and supine ejection fractions and
left ventricular volumes
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Introduction: Perfusion imaging strongly predicts coronary artery disease (CAD),
whereas cardiac volumes and left ventricular ejection fraction (LVEF) strongly
predict mortality. Compared to conventional Anger single-photon emission
computed tomography (SPECT) cameras, cadmium-zinc-telluride (CZT) cameras
provide higher resolution, resulting in different left ventricular volumes. The
cadmium-zinc-telluride D-SPECT camera is commonly used to image in the
upright position, which introduces changes in left ventricular loading conditions
and potentially alters left ventricular volumes. However, little or no data exist on
the predictive value of left ventricular volumes and ejection fraction when
acquired in the upright position. We investigated models for the prediction of
CAD and mortality, comparing upright and supine imaging.
Methods: A retrospective study of patients with upright/supine stress and rest
imaging and coronary angiography within 3 months was performed. Univariate
and multivariable analyses were performed to predict abnormal angiograms and
all-cause mortality.
Results: Of the 392 patients, 210 (53.6%) had significant angiographic CAD; 78
(19.9%) patients died over 75 months. The best multivariable model for CAD
included the supine summed stress score and supine stress LVEF, with an area
under the receiver operating characteristic of 0.862, a sensitivity of 76.7%, and a
specificity of 82.4%, but this model was not statistically superior to the best
upright model. The best multivariable models for mortality included age,
diabetes, history of cardiovascular disease, and end-systolic volume, with the
upright and supine models being equivalent.
Abbreviations

CZT, cadmium-zinc-telluride; SPECT, single-photon emission computed tomography; CAD, coronary artery
disease; LVEF, left ventricular ejection fraction; EDV, end-diastolic volume; ESV, end-systolic volume; SSS,
summed stress score; AUROC, area under the receiver operating characteristic; AIC, Akaike information
criterion.
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Discussion: Angiographic CAD was best predicted by the supine summed stress score and
LVEF but was not statistically superior to the next-best upright model. Mortality was best
predicted by end-systolic volume in combination with age, diabetes status, and
cardiovascular disease status, with equivalent results from the upright and supine images.

KEYWORDS

CZT SPECT, D-SPECT, upright SPECT, supine SPECT, LVEF, ESV
1. Introduction

The advent of digital cadmium-zinc-telluride (CZT) single-

photon emission computed tomography (SPECT) imaging

ushered in an era of faster, more patient-friendly perfusion stress

testing (1, 2). With these new devices came the need to validate

and reconcile the effects of increased spatial resolution on

attenuation artifacts and volumetric measurements (3–5). With

respect to clinical outcomes, the resulting CZT SPECT literature

has focused primarily on myocardial perfusion findings for the

prediction of coronary artery disease (CAD), cardiac events, and

mortality (6–14). Although left ventricular ejection fraction

(LVEF) and volumes are known to be strong predictors of

mortality, the prognostic value of CZT SPECT volumetric

measurements has been less explored (15–22). In a multicenter

comparative study of the Anger camera and CZT camera

measurements of LVEF, the mean LVEF was found to be

significantly higher with the CZT camera (23). The prognostic

implications of this difference in LVEF are unknown.

An important factor affecting CZT SPECT volumetric

measurements is patient positioning. Unlike other imaging

modalities obtained in a single supine position, CZT SPECT

studies are commonly performed in two positions to reduce the

risk of incorrectly interpreting attenuation artifacts as perfusion

abnormalities (24–28). This potentially provides the imager with

both upright and supine LVEF and volume data. No study,

however, has directly compared the relative prognostic power of

LVEF vs. left ventricular volumes on a CZT camera, and no

study has addressed whether the prognostic implications are

different in the upright vs. supine position.

There is limited previous research on the accuracy of LVEF

and volume measurements obtained in the upright position (24,

29–31). Previous data in healthy participants (30, 32) and

patients referred for evaluation of angina pectoris (24) have

shown that resting end-diastolic volumes (EDV) and end-

systolic volumes (ESV) are generally smaller in the upright

position compared to the supine position, whereas LVEF is

more variable. It is unclear whether these differences may affect

the prognostic value of upright volumetric measurements on a

CZT SPECT camera.

The aim of this study was to compare the prognostic value of

upright vs. supine volumetric imaging for the prediction of CAD

and mortality by creating multivariable prediction models.

Because left ventricular volumes and ejection fractions differ due

to differences in ventricular loading, we hypothesized that there

may be a difference in the prediction of mortality between the

upright and supine images acquired with a CZT camera.
02
2. Materials and methods

2.1. Study population and clinical data
collection

All methods for this retrospective cohort study were reviewed

and approved by the Institutional Review Board of the University

of Cincinnati, with an exception for informed consent. The study

population underwent upright and supine SPECT myocardial

perfusion imaging with a Spectrum Dynamics D-SPECT camera

(Spectrum Dynamics Inc., Palo Alto, CA, United States) between

20 June 2014 and 4 February 2016. All patients who underwent

selective coronary angiography within 3 months of perfusion

imaging were included in the present study, regardless of other

medical histories.

Clinical data were obtained from the electronic medical record

(Epic Systems, Verona, WI, USA). All-cause mortality data were

acquired from the local medical record and from communicating

institutions utilizing the same electronic medical record. Follow-

up was terminated at death or last contact with the electronic

medical record.
2.2. SPECT protocol

Our SPECT protocol was conducted as follows. Patients

were counseled to avoid caffeinated beverages 24 h before testing

and to avoid beta-blockers or calcium channel antagonists 24–

48 h before testing, unless otherwise requested by the referring

physician. Exercise testing was performed on a treadmill using

the Bruce protocol. Pharmacologic stress was performed with

regadeoson 0.4 mg intravenously when exercise testing was

not possible.

Upright and supine stress and rest images were acquired with a

D-SPECT CZT dedicated cardiac camera. Upright imaging was

performed with the imaging chair at an angle of 65°–70°. Rest

images were acquired for 3–11 min at 60 min following a weight-

based injection of 9.4–14 mCi (mean 0.11 mCi/kg) of

technetium-99 m tetrofosmin. Stress images were acquired for at

least 3 min at 30–45 min following a weight-based injection of

27.7–42 mCi (mean 0.33 mCi/kg) of technetium-99 m tetrofosmin.
2.3. Image processing

Images were processed using iterative reconstruction (ordered

subset expectation maximization) on a Spectrum Dynamics
frontiersin.org

https://doi.org/10.3389/fnume.2023.1162784
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Walker et al. 10.3389/fnume.2023.1162784
Cedars View processing station (Spectrum Dynamics Inc., Palo

Alto, CA, United States). Processed images were reviewed by a

physician reader and inaccurate computer identification of

endocardial borders, the left ventricular long axis, and apical

or basal planes was corrected at the time of image

interpretation. The interpretation was performed by two

experienced nuclear cardiologists using Corridor4DM SPECT

software (INVIA Medical Imaging Solutions, Ann Arbor, MI,

United States). Differences in interpretation were resolved by

consensus agreement. The studies were read independently,

without knowledge of the test indication or clinical data other

than gender, height, and weight. Summed stress score (SSS),

summed rest score, and summed difference score were

recorded from the upright and supine positions. Upright and

supine rest and post-stress LVEF, ESV, and EDV were

calculated from the gated images by the 4DM SPECT software.
2.4. Method for CAD assessment

Coronary angiographic images were blinded for the patient’s

age, gender, past medical history, presenting symptoms, and

SPECT results. Angiographic CAD was defined as a stenosis of

≥50% in the left main coronary artery and/or ≥70% in the left

anterior descending, left circumflex, right coronary artery, or

main branch. Angiographic CAD was assessed by an

independent, blinded interventional cardiologist. This assessment

was compared to the documented reading in the patient’s
TABLE 1 Study population demographics and outcome frequencies.

Total
(n = 392)

Survivors
(n = 314,
80.1%)

Non-survivors
(n = 78,
19.9%)

p-value

Age (mean, SD) 58.9 (10.4) 62.9 (9.5) 57.9 (10.4) 0.0001*

Gender (n, %) 0.0139*

Men 223 (56.9) 169 (53.8) 54 (69.2)

Women 169 (43.1) 145 (46.2) 24 (30.8)

BMI (mean, SD) 32.6 (8.1) 30.6 (6.7) 33.1 (8.4) 0.0044*

BSA (mean, SD) 2.1 (0.3) 2.1 (0.3) 2.1 (0.3) 0.4082

Pharm/exercise
test (n, %)

0.3065

Pharm 294 (75.0) 232 (73.9) 62 (79.5)

Exercise 98 (25.0) 82 (26.1) 16 (20.5)

Diabetes (n, %) 156 (39.8) 119 (37.9) 37 (47.4) 0.1235

Hypertension
(n, %)

314 (80.1) 247 (78.7) 67 (85.9) 0.1520

HLD (n, %) 188 (48.0) 143 (45.5) 45 (57.7) 0.0545

CAD (n, %) 98 (25.0) 65 (20.7) 33 (42.3) <0.0001*

CVD (n, %) 148 (37.8) 103 (32.8) 45 (57.7) <0.0001*

CMP (n, %) 77 (19.6) 50 (15.9) 27 (34.6) 0.0002*

Angiographic
CAD (n, %)

210 (53.6) 154 (49.0) 56 (71.8) 0.0003*

SD, standard deviation, BMI, body mass index; BSA, body surface area; HLD,

hyperlipidemia; CAD, history of coronary artery disease; CVD, cardiovascular

disease, defined as previously; CAD, cerebrovascular disease and/or peripheral

arterial disease; CMP, cardiomyopathy, defined as a history of reduced ejection

fraction and/or heart failure.

*Significant p-values < 0.05.
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medical chart, and any differences were resolved by a second

blinded interventional cardiologist.
2.5. Statistical methods

Categorical variables were summarized using frequencies and

percentages, with chi-squared tests used for comparisons.

Continuous variables were summarized using means and

standard deviations, and t-tests were used for comparisons.

Logistic regression models were used to predict angiographic

CAD, and Cox regression models were used to predict mortality.

For each outcome, demographic and clinical variables were

evaluated in univariate models. Multivariable models were then

constructed using forward stepwise selection, using demographic

variables only, demographic variables plus upright stress results,

demographic variables plus upright rest results, demographic

variables plus supine stress results, and demographic variables

plus supine rest results. The best logistic and Cox models were

chosen using the C-statistic and Akaike information criterion

(AIC), respectively; models were compared using Vuong’s

closeness test and partial likelihood ratio test, respectively. All

statistical analyses were performed with SAS version 9.4. Figures

were generated using SAS 9.4 software.
3. Results

3.1. Demographic results

Between 20 June 2014 and 4 February 2016, 2,779 patients

underwent SPECT testing in the Nuclear Cardiology Laboratory.

Of these patients, 395 underwent both upright and supine rest

and stress imaging and subsequently underwent selective

coronary angiography within 3 months and were included in the
TABLE 2 Upright vs. supine perfusion and volumetric variables.

Upright
(mean, SD)

Supine
(mean, SD)

p-value, upright
vs. supine

SSS 4.4 (5.7) 4.6 (5.6) 0.1971

SRS 2.7 (4.0) 2.9 (4.4) 0.2096

SDS 2.3 (2.9) 2.3 (2.8) 0.9691

Stress LVEF 51.9 (13.9) 52.9 (13.6) 0.0006*

Rest LVEF 52.2 (14.1) 53.3 (13.7) 0.0015*

Difference stress vs.
rest LVEF

0.0 (0.1) 0.0 (0.1) 0.968

Stress ESV 68.8 (50.2) 68.5 (48.4) 0.5074

Rest ESV 65.5 (46.8) 65.2 (44.6) 0.5653

Difference stress vs.
rest ESV

3.3 (10.9) 3.3 (12.1) 0.9869

Stress EDV 130.4 (57.3) 133.5 (55.9) <0.0001*

Rest EDV 125.4 (53.9) 128.6 (51.5) <0.0001*

Difference stress vs.
rest EDV

5.0 (13.5) 4.9 (15.1) 0.9261

SRS, summed rest score; SDS, summed difference score; SSS, summed stress

score; LVEF, left ventricular ejection fraction; EDV, end-diastolic volume; ESV,

end-systolic volume.

*Significant p-values < 0.05.
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present study. Three patients were excluded from the final analysis

due to missing perfusion data. Of the 392 patients, 169 (43.1%)

were women; 98 (25.0%) patients underwent exercise stress, and

the remaining patients underwent pharmacological stress. Of the

392 patients, 210 (53.6%) had significant angiographic CAD, and

78 (19.9%) died during a median follow-up of 75 months. See

Table 1 for complete patient demographic data.
3.2. Perfusion scores and left ventricular
volumes

Perfusion scores and volumetric data are presented in Table 2.

The mean differences in perfusion scores between the upright and

supine positions were not statistically significant. Stress and rest

LVEF and stress and rest EDV were all lower in the upright

position than in the supine position, but the absolute differences

were small. The differences between upright and supine ESV at

rest (0.3 ml) and stress (0.3 ml) were minimal and not

statistically different.
3.3. Univariate analysis for CAD prediction

Table 3 shows the univariate analysis for CAD. The strongest

upright predictors for CAD were SSS [area under the receiver

operating characteristic (AUROC) 0.823], summed difference

score (AUROC 0.778), summed rest score (AUROC 0.709), and

stress LVEF (AUROC 0.706). The strongest supine predictors

were SSS (AUROC 0.848), summed difference score (AUROC

0.781), summed rest score (AUROC 0.738), and stress LVEF

(AUROC 0.682). Supine SSS was not independently statistically

superior to upright SSS for the prediction of CAD. The presence

of hyperlipidemia (AUROC 0.568, p = 0.0073), known
TABLE 3 Individual SPECT variables AUROC for prediction of CAD.

Upright Supine

AUROC p-value AUROC p-value
SSS 0.823 <0.0001* 0.848 <0.0001*

SRS 0.709 <0.0001* 0.738 <0.0001*

SDS 0.778 <0.0001* 0.781 <0.0001*

Stress LVEF 0.706 <0.0001* 0.682 <0.0001*

Rest LVEF 0.643 <0.0001* 0.662 <0.0001*

Stress EDV 0.646 <0.0001* 0.65 <0.0001*

Rest EDV 0.645 <0.0001* 0.633 <0.0001*

Stress ESV 0.679 <0.0001* 0.671 <0.0001*

Rest ESV 0.648 <0.0001* 0.654 <0.0001*

Difference stress LVEF − rest
LVEFa

0.585 0.0017* 0.537 0.2946

Difference stress EDV− rest EDVa 0.569 0.0083* 0.611 0.0004*

Difference stress ESV − rest ESVa 0.634 <0.0001* 0.622 0.0003*

SPECT, single-photon emission computed tomography; AUROC, area under the

receiver operating characteristic; CAD, coronary artery disease; SRS, summed

rest score; SDS, summed difference score; SSS, summed stress score; LVEF, left

ventricular ejection fraction; EDV, end-diastolic volume; ESV, end-systolic volume.

*Significant p-values < 0.05.
aDifference values refer to the absolute difference between stress and rest

measurements.
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cardiovascular disease (AUROC 0.570, p = 0.0044),

cardiomyopathy (AUROC 0.581, p < 0.0001), and a

pharmacological stress type (AUROC 0.544, p = 0.0477) were all

significantly but weakly predictive of CAD.
3.4. Multivariable analysis for CAD
prediction

Multivariable modeling for CAD prediction demonstrated that

the supine SSS and supine stress LVEF model was the best

predictor of CAD with an AUROC of 0.862, a sensitivity of

76.7%, and a specificity of 82.4%. The best upright model

consisted of upright SSS, supine LVEF, and a history of

hyperlipidemia with an AUROC of 0.839, a sensitivity of 70.5%,

and a specificity of 81.9% (Figure 1). Vuong’s closeness test was

performed between these upright and supine models and showed

no statistical difference.
3.5. Univariate analysis for mortality
prediction

The univariate analysis for all-cause mortality is presented in

Table 4. The strongest upright predictor of mortality was stress

EDV, followed by stress ESV, rest ESV, and rest EDV in

ascending order of AIC. The lower the AIC value, the better the
FIGURE 1

Multivariable CAD AUROC curves. Black curve: best upright CAD
prediction model. Includes upright SSS, upright stress LVEF, and HLD
status. AUROC: 0.839; sensitivity: 70.5%; specificity: 81.9%. Gray
curve: best supine CAD prediction model. Includes supine SSS and
supine stress LVEF. AUROC: 0.862; sensitivity: 76.7%; specificity:
82.4%. Models were not statistically different by Vuong’s closeness
test. CAD, coronary artery disease; AUROC, area under the receiver
operating characteristic; SSS, summed stress score; LVEF, left
ventricular ejection fraction; HLD, hyperlipidemia.
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TABLE 4 Individual SPECT variables and AIC for prediction of all-cause mortality.

Upright AIC Supine AIC

HR p-value HR p-value
SSS 1.08 (1.05–1.11) <0.0001* 871.5 1.07 (1.04–1.10) <0.0001* 877.3

SRS 1.09 (1.05–1.13) <0.0001* 877.1 1.08 (1.04–1.12) 0.0002* 879.5

SDS 1.11 (1.05–1.18) 0.0003* 880.1 1.09 (1.02–1.16 0.0129* 885.9

Stress LVEF 0.97 (0.95–0.98) <0.0001* 873.6 0.97 (0.95–0.98) <0.0001* 871.0

Rest LVEF 0.97 (0.95–0.98) <0.0001* 872.4 0.96 (0.95–0.98) <0.0001* 867.0

Stress EDV 1.01 (1.01–1.01) <0.0001* 862.9 1.01 (1.01–1.01) <0.0001* 865.0

Rest EDV 1.01 (1.01–1.01) <0.0001* 869.1 1.01 (1.01–1.01) <0.0001* 870.8

Stress ESV 1.01 (1.01–1.01) <0.0001* 863.3 1.01 (1.01–1.01) <0.0001* 863.2

Rest ESV 1.01 (1.01–1.01) <0.0001* 865.7 1.01 (1.01–1.01) <0.0001* 866.3

Difference stress LVEF − rest LVEFa 1.72 (0.07–43.08) 0.7427 890.9 5.71 (0.19–167.74) 0.3125* 890.0

Difference stress EDV − rest EDVa 1.03 (1.01–1.04) 0.0003* 878.7 1.03 (1.01–1.04) 0.0001* 878.4

Difference stress ESV − rest ESVa 1.03 (1.01–1.05) 0.0093* 884.5 1.02 (1.01–1.04) 0.005* 884.0

SPECT, single-photon emission computed tomography; AIC, Akaike information criterion; SRS, summed rest score; SDS, summed difference score; SSS, summed stress

score; LVEF, left ventricular ejection fraction; EDV, end-diastolic volume; ESV, end-systolic volume.

*Significant p-values < 0.05.
aDifference values refer to the absolute difference between stress and rest measurements.
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predictive ability of the variable. The strongest supine predictor was

stress ESV, followed by stress EDV, rest ESV, and rest LVEF in

ascending order of AIC. The demographic variables that predicted

mortality were increasing age, male gender, increasing body mass

index (BMI), cardiovascular disease, and cardiomyopathy. The

change in the left ventricular end-diastolic volume between the

upright (mean 129.3 ml) and supine (mean 132.8 ml) positions in

patients with a body mass index <35 kg/m2 was 3.5 ml. For a body

mass index ≥35 kg/m2, the mean change in the left ventricular

end-diastolic volume between the upright (mean 132.5 ml) and

supine (mean 135.0 ml) positions was 2.5 ml (p =NS).
3.6. Mortality prediction by LVEF subgroup

Although ESV outperformed LVEF in predicting all-cause

mortality, LVEF is a practical and widely used prognostic

indicator. Table 5 shows the hazard ratios for mortality for stress

and rest LVEF divided into three groups: LVEF >50% (reference

group); LVEF 35%–50%; and LVEF <35%. For example, the
TABLE 5 Mortality hazard ratios by LVEF >50%, 35–50%, and <35%.

Upright Supine

vs.
>50%

HR p-value HR p-value

Stress
LVEF

0.0005* 0.0002*

<35% 3.00 (1.68–
5.34)

3.24 (1.81–
5.79)

35–50% 1.95 (1.18–
3.25)

1.85 (1.12–
3.08)

Rest LVEF <0.0001* <0.0001*

<35% 3.70 (2.16–
6.34)

3.67 (2.05–
6.58)

35–50% 1.42 (0.83–
2.44)

2.32 (1.40–
3.85)

HR, hazard ratio; LVEF, left ventricular ejection fraction.

*Significant p-values < 0.05.
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hazard ratio for upright stress LVEF <35% compared to LVEF

>50% was 3.00 (95% CI: 1.68–5.34), and for LVEF 35%–50% it

was 1.95 (95% CI: 1.18–3.25). Hazard ratios showed similar

trends for upright rest, supine stress, and supine rest LVEF.
3.7. Multivariable analysis for mortality
prediction

Multivariable modeling for all-cause mortality demonstrated

that upright stress ESV, combined with age, diabetes, and

cardiovascular disease status, was the best predictor of all-cause

mortality with the lowest AIC. The best model for the supine
FIGURE 2

Upright stress ESV tertiles vs. mortality, ages <60 years and ages ≥60
years. Upright stress ESV is divided into tertiles, ordered from lowest
to highest ESV, vs. mortality events per hundred person-years. The
gray curve represents patients aged <60 and the black curve
represents ages ≥60. The overall mortality rate was significantly
higher in the third tertile compared with the second, but not
significantly different between the first and second tertiles. ESV, end-
systolic volume.
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position included the same demographic variables in addition to

supine resting ESV. The partial likelihood ratio test showed the

equivalent predictive ability of these two best models. See

Figure 2 for a graphical representation of the mortality rate per

100 person-years by upright stress ESV tertile.
3.8. Indexed volumes sensitivity analysis

A sensitivity analysis was performed using volumetric indices

corrected for body surface area for the ESV and EDV areas. The

indices were included in the multivariable prediction models but

did not provide additional predictive ability and were therefore

removed from the final analyses.
4. Discussion

This study demonstrates that upright and supine D-SPECT data

provide the equivalent predictive ability for identifying angiographic

CAD and risk for all-cause mortality. In multivariable models that

include commonly available demographic variables, the addition of

left ventricular volume measurements provides a similar prediction of

all-causemortality, whether acquired in the supine or upright position.

This study helps address the question of the optimal imaging

position for volumetric measurements on the D-SPECT camera. It

has previously been suggested that volumetric measurements are

best obtained in the supine position for adequate comparison with

other cardiac imaging modalities (33). Nevertheless, a validation

study comparing upright CZT volumes on the D-SPECT camera

with cardiac magnetic resonance volumes showed a good

correlation for LVEF, although upright CZT images underestimated

supine ESV and EDV (31). This underestimation probably reflects

reduced left ventricular filling in the upright position. The present

study does not compare the accuracy of upright vs. supine

measurements of LVEF with a reference standard such as cardiac

magnetic resonance. It does suggest, however, that the prognostic

values of upright and supine volumes are similar. It also shows

that, while LVEF and EDV are statistically smaller in the upright

position, the absolute differences are likely clinically insignificant (a

1% difference in LVEF).

Obese patients in the present study had a higher mortality rate

than non-obese patients. It has been previously observed that obese

patients have higher end-diastolic volumes than non-obese patients

(34). In the present study, we also noted that end-diastolic volumes

were statistically higher in the supine position compared to the

upright position, but the change in end-diastolic volumes by

imaging position was minimal. The observed differences in

upright vs. supine end-diastolic volumes may be more closely

related to left ventricular loading conditions than to body weight.

An important additional implication from this study is that ESV

is a stronger predictor of all-cause mortality than LVEF, regardless of

whether it is measured in the supine or upright position. A possible

physiological explanation is that ESV is a proxy for systolic

dysfunction and remodeling. Numerous previous studies have

supported the strength of ESV as a predictor of events (17, 19,
Frontiers in Nuclear Medicine 06
35–39), although not all studies have demonstrated the strength of

ESV over LVEF for prediction (40).

The final major finding of this study was that SSS is the

strongest predictor of angiographic CAD, whether performed in

the upright or supine position. This finding is in contrast to a

previous, smaller sample that showed improved prediction in the

supine position (6). This, however, does not detract from the

value of imaging in multiple projections to avoid confounding

attenuation artifacts with true perfusion defects.

There are some potential limitations to the present study. This was

a retrospective review of patients at a single urban academic medical

center. Our patients had a high mortality rate of nearly 20% over a

median follow-up of 75 months. We suspect that this is due to the

complex multimorbidity of our patient population and thus may

not be easily generalizable. We measured all-cause mortality rather

than cardiovascular death, which may capture unrelated mortality

events. We did not correlate upright and supine volumetric

measurements with another imaging modality, such as cardiac

magnetic resonance, but other generally applied imaging modalities

are not available for upright imaging. Finally, the administered

radioactivity at the time of the present study was higher than the

substantially lower doses used with the CZT camera in our current

practice, but this is not expected to alter the present findings.

In conclusion, in the present study, angiographic CAD was best

predicted by the combination of supine SSS and LVEF, although

this supine model was not statistically superior to the next-best

upright model. The study demonstrates that all-cause mortality

was best predicted by ESV, in combination with age, DM status,

and cardiovascular disease (CVD) status, with equivalent

predictive ability in both the upright and supine positions.

Finally, it shows that LVEF and EDV measurements are

statistically different in the upright compared to the supine

position, but their absolute differences are clinically insignificant.
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