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Background: The role of artificial intelligence and radiomics in prediction model
development in cancer has been increasing every passing day. Cervical cancer is
the 4th most common cancer in women worldwide, contributing to 6.5% of all
cancer types. The treatment outcome of cervical cancer patients varies and
individualized prediction of disease outcome is of paramount importance.
Purpose: The purpose of this study is to develop and validate the digital signature
for 5-year overall survival prediction in cervical cancer using robust CT radiomic
and clinical features.
Materials and Methods: Pretreatment clinical features and CT radiomic features of
68 patients, who were treated with chemoradiation therapy in our hospital, were
used in this study. Radiomic features were extracted using an in-house
developed python script and pyradiomic package. Clinical features were
selected by the recursive feature elimination technique. Whereas radiomic
feature selection was performed using a multi-step process i.e., step-1: only
robust radiomic features were selected based on our previous study, step-2: a
hierarchical clustering was performed to eliminate feature redundancy, and
step-3: recursive feature elimination was performed to select the best features
for prediction model development. Four machine algorithms i.e., Logistic
regression (LR), Random Forest (RF), Support vector classifier (SVC), and
Gradient boosting classifier (GBC), were used to develop 24 models (six models
using each algorithm) using clinical, radiomic and combined features. Models
were compared based on the prediction score in the internal validation.
Results: The average prediction accuracy was found to be 0.65 (95% CI: 0.60–
0.70), 0.72 (95% CI: 0.63–0.81), and 0.77 (95% CI: 0.72–0.82) for clinical,
radiomic, and combined models developed using four prediction algorithms
respectively. The average prediction accuracy was found to be 0.69 (95% CI:
0.62–0.76), 0.79 (95% CI: 0.72–0.86), 0.71 (95% CI: 0.62–0.80), and 0.72 (95%
CI: 0.66–0.78) for LR, RF, SVC and GBC models developed on three datasets
respectively.
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Conclusion: Our study shows the promising predictive performance of a robust radiomic
signature to predict 5-year overall survival in cervical cancer patients.
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1. Introduction

Cancer is one of the most fatal diseases and is considered the

second most lethal disease across the world (1). As per Global

Cancer Statistics 2020 (GLOBOCAN 2020), cervical cancer is the

4th commonest cancer worldwide, 6th commonest cancer in

developed countries and 2nd commonest cancer in developing

countries in the female population (2, 3). The cervical cancer-

related mortality rate among women varies across the globe and

there is a distinct difference in developed and developing

countries (2–4). Breast and cervical cancer are the leading causes

of cancer death in 103 and 42 countries, respectively, whereas

lung cancer is the leading cause of cancer death in 28 countries

(1–4). Cervical cancer management has been approached on two

fronts i.e., prevention or early detection of cervical cancer by

implementing screening programs and treatment of cervical

cancer using evidence-based medicine (8–14). The incidence of

cervical cancer in developed countries has reduced to half

between 1972 and 2018 (8–10). The reason for the reduced

incidence and mortality rate can be attributed to the effective

implementation of cervical cancer screening and HPV

vaccination programs. Availability of several new technologies or

advancements in existing technology like CT, PET/CT,

ultrasound and MRI has led to early diagnosis and better staging

of the disease, leading to improvement in overall survival and

quality of life index (11–14). The staging of cervical cancer is

very complex and technically demanding. The staging system

developed by the International Federation of Obstetrics and

Gynecology (Fédération Internationale de Gynecologie et

d’Obstetrique, or FIGO) is used for cervical cancer. Bhatla

N. et.al. have published the recently revised FIGO staging of

carcinoma of the cervix uteri to differentiate the various stages

and substages of the disease (15). Improvement in diagnostic

accuracy due to the implementation of newer technologies like

PET/CT, MRI, and transvaginal ultrasound has improved cervical

cancer staging and treatment in the last few years. As

conventional treatment has a very low response rate of around

20–30 per cent, it proves that the “one-size-fits-all” principle

usually doesn’t work in cancer management (15–17). In the last

few years, diagnostic modalities like immunohistochemistry

(IHC), genetic profiling, and tumor marker studies have

established the fact that there are variations in disease in the

same disease in different patients (18). Hence, cancer treatment

is gradually shifting towards personalized treatment or tailored

treatment and replacing conventional treatment (19). With the

growing use of various computer-aided technologies in oncology

in the last decade, these technologies have taken the forefront in
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cancer management worldwide (20). These technologies are

being utilized for diagnosis, treatment planning, interim

evaluation, and follow-up of the disease. In the last few years, as

the effort is being taken to provide personalized treatment to the

patients, the ability of these technologies is being tested to

predict treatment outcome, toxicity profile, and treatment

selection for patients. Utilization of available technologies like

machine learning, radiomics, genomics, etc. for enabling

personalized treatment, especially for those at high risk and who

are responding very poorly to standard treatment protocols, is of

great interest for clinicians (20). Such a technological-driven

system has shown promising results in the selection or

modification of treatment plans, to improve the treatment

outcome (21–23). Major types of ML techniques, including

Decision Tree (DT), Support Vector Machine (SVM), Artificial

Neural Networks (ANN), Naïve Bayesian Classifier (BC),

Bayesian Network (BN), K-Nearest Neighbor (KNN) and

Random Forest (RF), have been used for nearly three decades in

cancer detection (21–25). In cancer prediction modelling, the

main three predictive tasks are the prediction of cancer

susceptibility, the prediction of cancer recurrence/metastasis, and

the prediction of survival. Several such technology-driven

prediction models have been developed, tested, and utilized in

the last decade in screening programs and the treatment of

cervical cancer (26–39). However, several prediction models have

been developed using clinical and radiomics features predicting

survival outcomes but the stability of radiomic features has been

questioned by many researchers. In our earlier study, we have

performed a detailed stability study of CT radiomic features and

found around 100 robust radiomic features. In this study, we

have tried to find the prediction capability of robust radiomic

features with and without clinical features in predicting 5-year

overall survival. This study is also the first of this kind from India.
2. Materials and method

2.1. Patient demographics

The study was approved by the institutional ethics committee

as a retrospective study with a waiver of consent. In total 68

patients were included in this study and had ages ranging 45–72

years (median: 56 years), at the time of diagnosis. All patients

diagnosed with cervical cancer between 2005 and 2009 and who

were treated with definitive chemoradiotherapy or concomitant

chemo and radiation therapy were included in this study.

External beam radiation therapy (EBRT) dose range between 43.2
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TABLE 1 Demographic details of the study population.

Characteristics Patients
Sample size 68

Age (years) 56 (Range: 45–72)

Sex
Male 0

Female 68/68 (100%)

Tumor type
Cervix cancer 68/68 (100%)

FIGO stages
Stage 3 20

Stage 4 48

Pelvic Node
Yes 42

No 26

Retroperitoneal Node
Yes 58

No 10

Surgery
Yes 15

No 53

Overall survival (OS)
>5-year 42

<5-year 26
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and 60.4 Gy (median = 50 Gy) was considered as radiotherapy

procedures. Disease staging was performed according to the

International Federation of Gynecology and Obstetrics (FIGO)

classification. The numbers of patients in various FIGO stages in

this cohort of patients are provided in Table 1. The majority of

the patients (85%) had squamous cell carcinoma and only a few

patients (15%) had other histologies. From diagnosis to the last

follow-up, the meantime was 72 (range: 5–140) months. 48 of

the 68 patients had survived more than five years, whereas 26

had survived less than five years. In our study, we have aimed to

establish the correlation between radiomics/clinical features and

overall survival. The initial characteristics of the study population

are given in Table 1.

20 clinical, pathological and radiological features were extracted

from electronic health records as approved by the hospital ethics

committee; out of that, 13 features were used for further

processing. Pretreatment PET/CT scans were also downloaded

from the PACS for radiomic extraction. 1,093 CT radiomics

features were extracted from the CT series of PET/CT scans.
2.2. PET/CT imaging procedure

All of the baseline PET/CT scans were performed using

Gemini TF16 or Gemini TF64 PET/CT scanners (Philips Medical

Systems, Netherlands) (40). F-18 FDG radiopharmaceutical was

administered to the patient as per institutional protocol i.e.,

4–5 MBq/kg body weight after 6 h of fasting. Scans were

performed between 60 min and 100 min after administration of

the radiopharmaceutical.
Frontiers in Nuclear Medicine 03
Contrast-enhanced CT scans were performed after the injection

of 60–80 ml of non-ionic contrast using the protocol mentioned in

Supplementary Table S1. CT images were reconstructed using the

Filtered back project (FBP) reconstruction algorithm.
2.3. Radiomic extraction

DICOM images of PET/CT scan were downloaded on Philips

Intellispace Discovery (research-only build; Philips Medical

System, Eindhoven, The Netherlands) from PACS. The tumor

was contoured using 3D contouring software installed on

Intellispace Discovery by a 15-year experienced medical physicist

and checked & approved by a 30-year experienced nuclear

medicine physician. The contours were saved as RTStructure by

the name of GTV. Subsequently, the image and GTV were

transferred to the research computer for radiomic extraction.

Images and GTV were converted into NRRD format using

Plastmatch software (41). Thereafter, pre-processing steps were

applied using an in-house developed python script and the

Pyradiomics package (42) for radiomic extraction. Resampling:

Images were resampled using a 2 × 2 × 2 mm cube isotropic voxel.

Filtering and transformation of image: From the original images,

three sets of filtered images were produced applying Laplacian of

Gaussian (LoG) filters with 1, 2, and 3 mm sigma values. We also

generated 8 sets of wavelet-transformed images using eight

combinations of high-pass and low-pass wavelet filters (42–44).

A total of 1,093 radiomic features were extracted from 12 sets

of images (1 set of original images, 3 sets of LoG images, and 8 sets

of Wavelet Images) and corresponding GTVs (42).
2.4. Prediction algorithm used

The commonly usedmachine learning algorithms for classification

problems i.e., Logistic regression (LR), Random Forest classifier (RF),

Gradient boosting classifier (GBC), and Support vector classifier

(SVC), were used for prediction model development (45–52).
2.5. Feature selection

The multi-step process was adopted for feature selection in this

study. The following subsections describe the various methods

adopted for feature selection. The steps utilized for feature

selection are summarized in Figure 1.

2.5.1. Clinical features selection
Considering the completeness of data, 13 clinical features were

selected for further processing. Spearman correlation test was

performed to find correlating features and reduce the redundancy

among the features. The association of clinical features with outcome

i.e., 5-years overall survival (OS) was carried out using a t-test.

Finally, recursive feature elimination (RFE) methods using logistic

regression (RFE-LR) and random forest (RFE-RF) were applied to

select two sets of features for prediction model development.
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FIGURE 1

Feature selection algorithm used in this study.

Jha et al. 10.3389/fnume.2023.1138552
2.5.2. Radiomic feature selection
We opted for a two-step process to select the best radiomic

features for OS prediction out of 1,093 radiomic features extracted

from CT images. In the first step of feature selection, we included

121 stable radiomic features for the next step of feature selection

based on our earlier radiomic stability study (53). In the second

step of feature selection, we performed a Spearman correlation test

to identify redundant features. In step 3, recursive feature

elimination (RFE) methods using logistic regression (RFE-LR) and

random forest (RFE-RF) were applied to select two sets of features

for the prediction model development.
2.5.3. Combined (clinical + radiomic) features
selection

The top 7 clinical features and top 15 radiomic features that

were identified in clinical and radiomic feature selection steps

were used to select the best features for the combined model.

Recursive features selection (RFE) methods using logistic

regression (RFE-LR) and random forest (RFE-RF) were applied

to select two sets of features for prediction model development.

Features selected using random forest model were used to

develop models using random forest (RF) Support vector classifier

(SVC) and Gradient Boosting and features selected using logistic

regression (LR) were used to develop the logistic regression model.
Frontiers in Nuclear Medicine 04
2.6. Nested cross-validation

Nested cross-validation was performed on the entire dataset

using 7 outer and 6 inner loops for tuning the hyperparameters

of the models (54). Finally, a random train-test split (in 7:3

ratio) of data was performed and a prediction model was

developed and validated.
2.7. Data balancing

After the train-test split, the training dataset was used to

develop the prediction models with and without balancing the

train data set for survival outcomes. Data balancing was

performed by using minority oversampling. Validation was

performed using the test data set without balancing the data.
2.8. Model development

A total of 24 prediction models were developed using the

aforementioned four prediction algorithms, three data sets with

and without balancing the train data sets (Supplementary

Table S2 and Figure 2).
frontiersin.org

https://doi.org/10.3389/fnume.2023.1138552
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 2

The figure shows our algorithm to develop 24 prediction models using various combinations. “-B” in the model’s name indicates the model developed
using a balanced train data set.

FIGURE 3

The figure shows the process of data collection and prediction model development.

Jha et al. 10.3389/fnume.2023.1138552
2.9. Model evaluation and selection

All the developed models were evaluated by plotting the area

under the receiver operator curve (AUC) to graphically
Frontiers in Nuclear Medicine 05
represent the association between the features and the

outcome i.e., 5-year overall survival in the validation set. The

best model was selected based on the performance score of

each model in the validation set.
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FIGURE 4

The figure shows the spearman correlation among the clinical features.
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2.10. Statistical analysis

Statistical analyses were performed using R (v3.5.2, the R

foundation for statistical computing, Vienna, Austria) or Python

3.9.0 software. Prediction model development and validation of

models were performed using python 3.9.0 software.
3. Results

In total, 68 patients who fulfilled the criteria of completeness of

data sets were selected for this study. The details of data collection

are provided in Figure 3.
3.1. Feature selection

3.1.1. Clinical
In total, 13 clinical and radiological features were used for this

study. Figure 4 shows the Spearman correlation among the

features; there are a few features which have a strong positive
Frontiers in Nuclear Medicine 06
and a few which have a strong negative correlation. For example,

surgery and R0 resection have a strong negative correlation with

EBRT and Brachytherapy (r2 =−0.65 to −0.69) HPR

adenocarcinoma has a very strong negative correlation (r2 =−1)
with that of HPR squamous cell carcinoma; they probably do not

exist together and cannot both be used as they are redundant

features. Whereas follow-up time in months has a strong positive

correlation (r2 = 0.8) with that of new vital (recurrence), which

may be because increasing follow-up time increases the chance of

recurrence. Surgery has a strong positive correlation (r2 = 0.88)

with that of R0 resection and probably both cooccur. Among

strong correlating features, one feature each was selected for the

next step of feature selection. Recursive feature elimination (RFE)

was performed using logistic regression and random forest

algorithms. A total of 5 clinical features were found to be

significant for each algorithm independently (Table 2 and

Figure 6).
3.1.2. Radiomics
121 stable radiomics features based on our earlier study were

included in this study (53). Spearman correlation shows 10
frontiersin.org

https://doi.org/10.3389/fnume.2023.1138552
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


TABLE 2 The table shows the number of features selected, accuracy and
kappa value for various combinations of data sets using multivariate
recursive feature elimination with logistic regression and random forest.

Feature
selection
technique

Feature
type

Number of
features
selected

Accuracy
with

selected
features

Kappa
value

Recursive Feature
Elimination with
Logistic regression

Clinical 5 0.69 0.31

Radiomics 3 0.64 0.17

Clinical +
Radiomics

5 0.68 0.26

Recursive Feature
Elimination with
Random Forest

Clinical 5 0.68 0.32

Radiomics 4 0.72 0.38

Clinical +
Radiomics

5 0.77 0.46

Jha et al. 10.3389/fnume.2023.1138552
distinct clusters (Figure 5) and these clusters had positive or

negative correlations. Based on these clusters and r2 value, 15

radiomic features were selected to include in the next step of
FIGURE 5

The figure shows the spearman correlation among the radiomic features sho
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feature selection. Recursive feature elimination (RFE) was

performed using logistic regression and random forest

algorithms. In total, 3 and 4 radiomic features were found to be

significant for logistic regression and random forest algorithms

respectively (Table 2 and Figure 6).

3.1.3. Combined (clinical + radiomics)
Among clinical and radiomic features selected independently,

the most significant mixed features were selected using recursive

feature elimination with logistic regression and random forest

algorithms. In total, 5 clinical + radiomics features were found to

be significant for each of the algorithms separately (Table 2 and

Figure 6). The selected radiomic feature shows the distinct

distribution of feature values in two groups of patients i.e., OS >

5 years and OS < 5 years. The box plots show the distribution of

all the selected features in two groups of patients

(Supplementary Figures S1–S9).
wing clusters of features with positive and negative correlations.
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FIGURE 6

The figure shows feature importance in various combinations of algorithms and features. The first row shows feature importance using a logistic regression
algorithm for clinical, radiomic and combined (clinical + radiomics) features (A); the second row shows feature importance using random forest algorithm for
clinical, radiomic and combined (clinical + radiomics) features (B). (Abbreviations: OSFL, original_shape_flatness; WLNC, wavelet_LHL_ngtdm_contrast; WLGI,
wavelet_LLL_glcm_Idn; OSM2DDR, original_shape_maximum2DDiameterRow; L3M3DFO10P, log-sigma-3-0-mm-3D_firstorder_10percentile; L2M3DGRP,
log-sigma-2-0-mm-3D_glrlm_runPercentage; L2M3DGLFE, log-sigma-2-0-mm-3D_glrlm_longRunEmphasis).

Jha et al. 10.3389/fnume.2023.1138552
3.2. Model development and validation

Four algorithms i.e., Logistic regression (LR), Random Forest

(RF), Support vector classifier (SVC) and gradient boost classifier

(GBC), were used for prediction model development. There were

a total of 24 prediction models using four prediction algorithms

for clinical, radiomics and combined features.

Nested cross-validation: Nested cross-validation was performed

for all the prediction algorithms for tuning their hyperparameters.

The prediction algorithms along with the best hyperparameters

and validation scores are shown in Table 3.

All 24 models showed good prediction capability of 5-year

overall survival. The average accuracy and AUC in validation sets

across all the 24-prediction models were found to be 0.73 (95%

CI: 0.66–0.80) and 0.60 (95% CI: 0.49–0.71) respectively. The
Frontiers in Nuclear Medicine 08
detailed complete validation scores of all the models are shown

in Table 4 and Figure 7.
3.2.1. Logistic regression model
The average accuracy and AUC for logistic regression models

across six models developed with various combinations were

found to be 0.69 (95% CI: 0.62–0.76) and 0.60 (95% CI: 0.55–

0.65) respectively. The AUC of all the logistic regression models

is shown in Supplementary Figure S10. Radiomics [accuracy:

0.76 (LR-Radiomics-B); 0.71 (LR-Radiomics)] or combined

prediction [accuracy: 0.71 (LR-Combined-B); 0.76 (LR-

Combined)] models had better prediction capabilities in

comparison to clinical models [accuracy: 0.61 (LR-Clinical-B);

0.61 (LR-Clinical)] developed with logistic regression algorithm.
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TABLE 3 This table shows the selected hyperparameters and nested
cross-validation scores of various models.

Algorithms Features Hyperparameters Accuracy in
nested cross-
validation

Logistic
regression

Clinical {c: “10”, penalty: “12”, solver:
“newton-cg”}

0.66 (±0.17)

Radiomics {c: “10”, penalty: “12”, solver:
“liblinear”}

0.68 (±0.09)

Clinical +
Radiomics

{c: “100”, penalty: “12”, solver:
“newton-cg”}

0.66 (±0.06)

Random forest Clinical {bootstrap: “true”, criterion:
“gini”, max_depth: “10”,
“min_samples_leaf”: 2,
n_estimators: “80”}

0.66 (±0.15)

Radiomics {“bootstrap”: True, “criterion”:
“gini”, “max_depth”: 25,
“min_samples_leaf”: 2,
“n_estimators”: 40}

0.79 (±0.09)

Clinical +
Radiomics

{bootstrap: “true”, criterion:
“gini”, max_depth: “10”,
“min_samples_leaf”: 2,
n_estimators: “80”}

0.75 (±0.07)

Support vector
classifier

Clinical {c: “1”, gamma: “1”, kernel:
“linear”}

0.72 (±0.11)

Radiomics {c: “0.1”, gamma: “0.001”,
kernel: “rbf”}

0.74 (±0.08)

Clinical +
Radiomics

{c: “100”, gamma: “0.001”,
kernel: “rbf”}

0.67 (±0.16)

Gradient boost
classifier

Clinical {learning_rate: “0.1”,
max_depth: “7”, n_estimators:
“60”}

0.75 (±0.12)

Radiomics {“learning_rate”: 0.1,
“max_depth”: 7,
“n_estimators”: 80}

0.75 (±0.13)

Clinical +
Radiomics

{learning_rate: “1”, max_depth:
“3”, n_estimators: “10”}

0.75 (±0.09)

Jha et al. 10.3389/fnume.2023.1138552
3.2.2. Random forest model
The average accuracy and AUC for random forest models were

found to be 0.79 (95% CI: 0.72–0.86) and 0.73 (95% CI: 0.66–0.80)

respectively. The AUC of all the Random Forest models is shown in

Figure 7. Radiomics [accuracy: 0.86 (RF-Radiomics-B); 0.81 (RF-

Radiomics)] or combined prediction [accuracy: 0.81 (RF-

Combined-B); 0.81 (RF-Combined)] models had better

prediction capabilities in comparison to clinical models

[accuracy: 0.67 (RF-Clinical-B); 0.76 (RF-Clinical)] developed

with random forest algorithm.
3.2.3. Support vector classifier (SVC) model
The average accuracy and AUC for support vector models

were found to be 0.71 (95% CI: 0.63–0.79) and 0.69 (95% CI:

0.51–0.87) respectively. The AUC of all the support vector

classifier models is shown in Supplementary Figure S12.

Radiomics [accuracy: 0.76 (SV-Radiomics-B); 0.71 (SV-

Radiomics)] or combined prediction [accuracy: 0.76 (SV-

Combined-B); 0.81 (SV-Combined)] models had better

prediction capabilities in comparison to clinical models
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[accuracy: 0.62 (SV-Clinical-B); 0.62 (SV-Clinical)] developed

with support vector classifier algorithm.
3.2.4. Gradient boosting classifier (GBC) model
The average accuracy and AUC for gradient boosting models

were found to be 0.72 (95% CI: 0.66–0.78) and 0.73 (95% CI:

0.68–0.78) respectively. The AUC of all the Gradient busting

classifier models is shown in Supplementary Figure S13.

Radiomics [accuracy: 0.76 (GB-Radiomics-B); 0.76 (GB-

Radiomics)] or combined prediction [accuracy: 0.76 (GB-

Combined-B); 0.76 (GB-Combined)] models had better

prediction capabilities in comparison to clinical models

[accuracy: 0.67 (GB-Clinical-B); 0.62 (GB-Clinical)] developed

with gradient boosting algorithm.
3.3. Model selection

RF-Radiomics-B model had the best prediction accuracy

(accuracy = 0.86; AUC = 0.82) among all 24 models developed.

The average prediction accuracy for clinical, radiomic, and

combined models were found to be 0.65 (95% CI: 0.60–0.70),

0.72 (95% CI: 0.63–0.81) and 0.77 (95% CI: 0.72–0.82)

respectively. The average prediction accuracy for logistic

regression, random forest, support vector classifier, and gradient

boosting classifier models were found to be 0.69 (95% CI: 0.62–

0.76), 0.79 (95% CI: 0.72–0.86), 0.71 (95% CI: 0.62–0.80), and

0.72 (95% CI: 0.66–0.78) respectively.
4. Discussion

Our study shows the significance of radiomic features in

generating statistical machine-learning models for disease

outcomes like 5-year overall survival prediction in cervical

cancer. With this study, we were able to identify the gap in the

data archival system in our hospital related to medical image

archives as well as other clinical data points as described in the

results section. With this study, we were able to determine

the most effective radiomic feature and their combination for

the prediction of disease outcomes. A rigorous method of

feature selection by applying various techniques has helped this

study to select the most efficient features which can become a

digital signature for the stated disease outcome. We tested

various prediction algorithms with radiomics and clinical

features separately and in combination. In multivariate analysis

with random forest, radiomic features were found to be better

associated with disease outcomes in our cohort. Our result was

consistent with various other studies performed on cervical

cancer outcome prediction. If we consider our study with other

studies performed in this field, our study design had

similarities with others, although we tested several prediction

algorithms to select the best fits for our cohort. Our finding is

consistent with other similar studies performed earlier (12, 14,
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TABLE 4 The table shows accuracy, PPV, NPV, F1-score and AUC of all the models.

Feature selection function ML algorithm Prediction model Accuracy Precision Recall F1-Score AUCh
Logistic regression Logistic Regression LR-Clinical-B 0.61 0.63 0.62 0.62 0.65

LR-Clinical 0.61 0.63 0.62 0.6 0.65

LR-Radiomics-B 0.76 0.83 0.76 0.78 0.60

LR-Radiomics 0.71 0.77 0.71 0.73 0.62

LR-Combined-B 0.71 0.77 0.71 0.73 0.56

LR-Combined 0.76 0.78 0.76 0.77 0.51

Random forest Random Forest RF-Clinical-B 0.67 0.7 0.67 0.67 0.65

RF-Clinical 0.76 0.77 0.76 0.76 0.71

RF-Radiomics-B 0.86 0.86 0.86 0.85 0.82

RF-Radiomics 0.81 0.81 0.81 0.81 0.81

RF-Combined-B 0.81 0.81 0.81 0.81 0.70

RF-Combined 0.81 0.78 0.81 0.78 0.71

Support Vector Classifier SV-Clinical-B 0.62 0.38 0.62 0.47 0.39

SV-Clinical 0.62 0.38 0.62 0.47 0.59

SV-Radiomics-B 0.76 0.76 0.76 0.76 0.70

SV-Radiomics 0.71 0.74 0.71 0.69 0.83

SV-Combined-B 0.76 0.83 0.76 0.78 0.82

SV-Combined 0.81 0.85 0.81 0.82 0.82

Gradient Boosting GB-Clinical-B 0.67 0.66 0.67 0.66 0.68

GB-Clinical 0.62 0.6 0.62 0.61 0.68

GB-Radiomics-B 0.76 0.83 0.76 0.78 0.74

GB-Radiomics 0.76 0.83 0.76 0.78 0.82

GB-Combined-B 0.76 0.78 0.76 0.77 0.74

GB-Combined 0.76 0.74 0.76 0.75 0.72
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15, 26–39, 55–66). Clinical features like age, presence or absence

of retroperitoneal node, and peritoneal node FIGO stage at the

time of diagnosis were also found to be prognostic markers in

our study which was consistent with the published literature

(12, 14, 15, 26–33, 57–60). In univariate and multivariate

analysis clinical features i.e., Age, FIGO stage, absence and

presence of retroperitoneal node and peritoneal node, and

imaging features i.e., SUV MTV found an association with

5-year overall survival, which was consistent with other

published literature (12, 14, 29, 33, 34, 57, 61, 66). Similarly in

univariate and multivariate studies, radiomic features showed a

significant association with 5-year OS which is also consistent

with published literature (28, 29, 34, 66). As we had selected

only stable radiomic features based on our earlier study (53),

this shows the repeatable and reproducible radiomic features

also show excellent prognostic and predictive value in cervical

cancer. The effort of the radiomic community should be to

identify the robust features and find out the predictive

capabilities of those stable features in various disease groups for

various prediction endpoints. Among various prediction models

tested in our study, RF-Radiomics-B random forest model

showed the best accuracy in nested cross-validation and the

train-test final model outperformed all the prediction models

used in our study. Whereas LR-Clinical-B and LR-Clinical

logistic regression models showed the lowest accuracy in

predicting overall survival in this study. When we compared

the performance score of prediction models with radiomic,

clinical and combined models, again random forest and

gradient boosting models were at the top.
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The average accuracy of clinical models with all four prediction

algorithms was less than that of radiomics and combined models,

which is similar to previously published work (26–30). The

radiomic and combined model performance across all four

prediction algorithms were found to be more or less similar. Our

study also confirms the superiority of radiomic features over

clinical features in predicting overall survival in cervical cancer.

Comparing the prediction algorithms, the random forest-based

prediction models had better accuracy in comparison to the

other three which affirms the findings of earlier published

literature in cervical cancer (26, 27). We found little difference

between the models developed with or without balanced train

sets, perhaps because the event rate in our study was adequately

balanced and balancing was not required as an additional step.

The radiomic community has been concerned about the stability

of radiomic features and is skeptical about stable radiomic

features’ ability to predict outcomes (67). This is probably the

first study published on cancer prediction modelling using stable

radiomic features independently or in combination with clinical

features. In our study, we were able to show that radiomic

features can be used for 5-year overall prediction in cervical

cancer. This was also the first prediction modelling study to be

conducted on cervical cancer patients in India. Other researchers

in India will be motivated to conduct prediction modelling

studies for evolving digital signatures of disease outcomes based

on our study. This study was a single-center study with a small

sample size and no external or prospective validation, which

limits the study somewhat. The future will involve repeating this

study at our hospital with a larger sample size, as well as
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FIGURE 7

The figure shows the prediction models with prediction accuracy in the validation set.
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initiating multicentric studies to develop a universally accepted

model. It is the ultimate objective of this research to validate this

model using prospective clinical trials and then implement

decision support systems in clinics based on a validated

predictive model with retrospective and prospective data.
5. Conclusion

We have demonstrated in our study that robust radiomic features

are predictive of 5-year overall survival for cervical cancer patients.

According to this study, random forest prediction algorithms can

predict better than other algorithms. The model’s predictive ability is
Frontiers in Nuclear Medicine 11
slightly improved by using data balancing. Although radiomic

features are superior to clinical features in terms of prediction

abilities, they are most effective when combined with clinical

features. Overall, this study suggests the importance of radiomics

and artificial intelligence in implementing decision-support systems

in the management of cervical cancer.
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