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Investigation and optimization of
PET-guided SPECT reconstructions
for improved radionuclide therapy
dosimetry estimates
Harry Marquis1,2*, Kathy P. Willowson2,3, C. Ross Schmidtlein1

and Dale L. Bailey3

1Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States,
2Institute of Medical Physics, University of Sydney, Sydney, NSW, Australia, 3Department of Nuclear
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Introduction: To investigate and optimize the SPECTRE (Single Photon Emission
Computed Theranostic REconstruction) reconstruction approach, using the hybrid
kernelised expectation maximization (HKEM) algorithm implemented in the
software for tomographic image reconstruction (STIR) software library, and to
demonstrate the feasibility of performing algorithm exploration and optimization
in 2D. Optimal SPECTRE parameters were investigated for the purpose of
improving SPECT-based radionuclide therapy (RNT) dosimetry estimates.
Materials and Methods: Using the NEMA IEC body phantom as the test object,
SPECT data were simulated to model an early and late imaging time point
following a typical therapeutic dose of 8 GBq of 177Lu. A theranostic 68Ga PET-
prior was simulated for the SPECTRE reconstructions. The HKEM algorithm
parameter space was investigated for SPECT-unique and PET-SPECT mutual
features to characterize optimal SPECTRE parameters for the simulated data. Mean
and maximum bias, coefficient of variation (COV %), recovery, SNR and root-mean-
square error (RMSE) were used to facilitate comparisons between SPECTRE
reconstructions and OSEM reconstructions with resolution modelling (OSEM_RM).
2D reconstructions were compared to those performed in 3D in order to evaluate
the utility of accelerated algorithm optimization in 2D. Segmentation accuracy was
evaluated using a 42% fixed threshold (FT) on the 3D reconstructed data.
Results: SPECTRE parameters that demonstrated improved image quality and
quantitative accuracy were determined through investigation of the HKEM
algorithm parameter space. OSEM_RM and SPECTRE reconstructions performed in
2D and 3D were qualitatively and quantitatively similar, with SPECTRE showing an
average reduction in background COV % by a factor of 2.7 and 3.3 for the 2D case
and 3D case respectively. The 42% FT analysis produced an average % volume
difference from ground truth of 158% and 26%, for the OSEM_RM and SPECTRE
reconstructions, respectively.
Conclusions: The SPECTRE reconstruction approach demonstrates significant
potential for improved SPECT image quality, leading to more accurate RNT
dosimetry estimates when conventional segmentation methods are used.
Exploration and optimization of SPECTRE benefited from both fast reconstruction
times afforded by first considering the 2D case. This is the first in-depth exploration
of the SPECTRE reconstruction approach, and as such, it reveals several insights for
reconstructing SPECT data using PET side information.
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Introduction

Single Photon Emission Computed Tomography (SPECT) is

commonly used to evaluate the radiation dose delivered to target

structures and normal organs in radionuclide therapy (RNT).

Currently, SPECT imaging is hindered by poor spatial resolution,

making accurate quantification of the dose delivered difficult to

measure accurately (1). This has slowed the progress of the

personalization of radionuclide therapies, where the dose is

tailored to the individual, and where diagnostic PET imaging

prior to therapy can be used to optimize the delivery of

therapeutic radionuclides for the management and treatment of a

range of cancers. Improved quantitative accuracy in SPECT

imaging of RNT should lead to a better understanding of the

radiobiological effects of targeted radionuclide therapies and may

pave the way forward for improved personalization in RNT

treatment planning.

Reconstruction of SPECT data acquired with ME collimators

presents several difficulties, where the relatively high noise and

poor spatial resolution (compared to PET) pose significant

challenges for image reconstruction algorithms (2). The poor

spatial resolution of SPECT and, to a lesser extent, PET

manifests as so-called partial volume effects (PVEs), which result

in the systematic underestimation of image-based activity

measurements in objects smaller than 2–3 times the full-width at

half-maximum (FWHM) of the imaging system, also known as

the system point spread function (PSF) (3). Optimization of

SPECT acquisition protocols and image reconstruction

algorithms typically requires knowledge of the ground truth (GT)

radioactivity concentration. Both physical experiments and

simulated studies can be used to evaluate various aspects of

SPECT acquisition protocols and image reconstruction

algorithms. A common approach for reconstruction algorithm

optimization is to perform physical phantom experiments with

fillable compartments with known geometry and radioactivity

concentrations (4–10). Such experiments are typically designed to

model a particular cohort of patients, both in terms of physical

structure and radioactivity uptake. Simulation of emission

tomography (ET) data using digital phantoms is an alternative to

conducting physical phantom experiments (11, 12), where complex

radioactivity distributions can be readily modelled (13). The most

common approach for simulating nuclear medicine imaging systems

is the Monte Carlo (MC) method, which is a well-established

technique capable of modelling the physical processes involved in

PET and SPECT image acquisition (14–18). Monte Carlo methods

are useful, for example, in estimating the scatter component of

SPECT acquisitions in order to evaluate the accuracy of various

scatter correction methods (19–24).

Routine use of MC methods for simulating ET data is hindered

by the computational time and resources required to accurately

simulate the number of detected events typically acquired in a

routine clinical PET or SPECT scan (25). Alternatives to MC

methods are so-called analytical methods, where the simulation

of PET and SPECT data involves calculating the mean estimate

of a sinogram bin based on a mathematical geometric ray-tracing
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model. Analytical methods have the advantage of being much

faster than MC methods, meaning that multiple realizations can

be produced more quickly (19, 26). Analytical methods are

suitable for evaluating image reconstruction algorithms, testing

novel image processing methods, evaluating image quality (e.g.,

noise, resolution, etc.), and investigating acquisition protocols and

reconstruction settings (27–30). Several analytical PET simulators

are available: ASIM (26), SMART (29), STIR (31), and PETSTEP

(27), to name a few. The software for tomographic image

reconstruction (STIR) library is an open-source image

reconstruction toolkit written in C++ that provides classes and

utilities for SPECT and PET image reconstruction, analytical

simulations, image manipulation, and image analysis. A number

of reconstruction algorithms are available in STIR, including

analytic, iterative, and anatomically driven approaches. Most of

STIRs’ user base is involved in the research, development, and

optimization of PET reconstruction algorithms. Fuster et al. first

introduced the SPECT-UB utilities into the STIR reconstruction

library in 2013 (32) and showed that noise-free SPECT

projections of a cylindrical phantom generated using the SPECT-

UB utilities (ProjMatrixByBinSPECTUB) were similar to

sinograms simulated using the SimSET MC code (33), suggesting

that the SPECT-UB utilities may be useful for fast analytical

simulations of SPECT projection data. The SPECT-UB utilities

are capable of modelling attenuation [using a modified

implementation of the Siddon algorithm (34)] and PSF

contributions to the projection matrix (32, 35). Currently, STIR

cannot model scatter in SPECT imaging, though it can correct

for it if the scatter estimate (SE) is supplied. A survey of the

literature suggests that the use of STIR for analytical simulations

of SPECT projection data has not yet been investigated, despite

its promise being suggested as early as 2013.

In previous work, we introduced the SPECTRE (Single Photon

Emission Computed Theranostic Reconstruction) reconstruction

approach to address the current limitations of SPECT imaging of

therapeutic radionuclides (36). The SPECTRE reconstruction

approach uses diagnostic PET images to guide reconstruction of

the SPECT data in a theranostic setting. This novel approach to

SPECT image reconstruction uses the hybrid kernelised

expectation maximization algorithm (HKEM) implemented in

STIR by Deidda et al. (12) and is, to the best of our knowledge,

the first example of PET-guided SPECT reconstruction. This

reconstruction approach demonstrated potential for improved

SPECT resolution and image quality, ultimately leading to more

accurate SPECT-based dosimetry estimates (36). Previous MR-

guided PET reconstruction studies using the kernelised

expectation maximisation algorithm have suggested that larger

kernel windows can lead to PET-unique feature suppression (12,

37, 38), that is, features present in the data being reconstructed

can be suppressed when those features are absent in the guiding

modality. Due to the different characteristics of SPECT

resolution and noise and the use of PET-images as the guiding

modality, previous investigations looking at the HKEM algorithm

applied to MR guided PET are not necessarily applicable to

SPECTRE and thus warrant an in-depth and standalone

investigation.
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Materials and methods

The investigation and optimization of the SPECTRE

reconstruction approach using the HKEM algorithm are

performed in three steps. In the first step, 2D simulated data is

used to investigate the impact of a range of parameters on PET-

SPECT mutual and SPECT-unique features. In the second step,

the parameters for these 2D reconstructions are then optimised

at two noise levels. In the third step, the reconstructions from

2D simulations were compared to those from 3D simulations to

validate the use of 2D results for optimizing 3D reconstruction,

and the 3D reconstructed images were then analysed to evaluate

the impact of their improved image quality on accurate volume

delineation and quantitative mean and maximum value recovery.
SPECTRE image reconstruction

The HKEM algorithm, developed by Deidda et al. (12), is a

basis-constrained version of the well-known Maximum

Likelihood Expectation Maximization (MLEM) algorithm. The

HKEM algorithm was originally implemented for PET image

reconstruction using a MR prior, and in previous work, we

extended its use to SPECT reconstruction guided by a PET-prior

in a theranostic setting, which we termed SPECTRE (36). Briefly,

the SPECTRE algorithm is given by:
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where a(n)
f is a coefficient image at each location f and yi is the

sinogram data. The basis for the constrained image is thus:

xj ¼
X Nj

f¼1af ks,fjK p,fj, (2)

where kp and ks are the basis kernels derived from a PET prior and

the SPECT update image, respectively. The PET and SPECT

kernels map the similarity between the local voxel index “f” and

the supporting voxel index “j”, in the kernel window. The PET

and SPECT kernels using the HKEM algorithm applied to the

SPECTRE reconstruction approach are defined as (36):
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The HKEM algorithm has five adjustable parameters that can be

optimised in SPECTRE for a particular reconstruction task.

These parameters are the PET-prior intensity weight (σp),

SPECT update-image intensity weight (σs), Euclidean distance

weights coming from the PET-prior and SPECT update-image

(σdp and σds, respectively), and the size of the kernel search

window (NN). The strength of the Gaussian-weighted intensity

supports within the kernel window are set by parameters σp and

σs. These parameters control the degree of edge preservation

coming from the voxel intensity differences in the PET-prior (vf
and vj) and SPECT update images (zf and zj), respectively.

Figure 1 shows an example of edge preservation coming

from the voxel intensity differences between vf and vj, when

using a PET-prior simulated from an IEC phantom Digital

Reference Object (DRO). The degree of edge preservation

coming from the PET-prior is normalised to the standard

deviation of the PET image. Large values of σp will impose

similar weights on all voxels within the kernel window, which

may result in oversmoothing across edges in the reconstructed

image. Smaller σp values promote edges for voxels with small

intensity differences, which may result in the promotion of edges

coming from noise in the reconstructed PET image. On the

other hand, the motivation for setting the edge preservation from

the SPECT update image (σs) is different when compared to σp.

For the case of σs, the local voxel value (zf) in the SPECT update

image (centre voxel in the kernel window) are normalised by the

σs intensity weights for the supporting voxel (zj). This means

that σs weights the voxel neighbourhood in the kernel window

allowing edge preservation coming from the SPECT update

image to handle SPECT PVEs more efficiently than σp alone.

The degree of support (local voxel, xf, and supporting voxel xj),

is controlled by the scaling parameters σdp, and σds. These control

the degree of edge preservation for σp and σs in terms of the

Euclidean distance from the centre voxel within the kernel

window. Smaller values impose greater weighting on voxels

closer to the centre voxel, resulting in greater edge preservation.

The radial Gaussian functions for the distance weights are

normalised to the SPECT voxel size.
Simulated SPECT data

The STIR simulated SPECT data aimed to model two noise

levels from a NEMA IEC phantom study presented in previous

work (36). Briefly, the phantom experiment had an 8.5:1 sphere-

to-background ratio and was acquired on a dual-head Intevo 6

Siemens SPECT/CT system with Medium-Energy-Low-

Penetration (MELP) collimators with an acquisition matrix size

of 256 × 256 (resampled to 128 × 128), with 120 projections

acquired over 360° (3° sampling) using continuous rotation mode

and with body contouring on. The study was acquired with a

30 s per projection angle dwell time. Aliquot measurements

determined that the spheres and background compartment had
177Lu radioactivity concentrations at scan time of approximately

2,784 kBq/ml and 317 kBq/ml, respectively. A ground-truth

digital reference object (DRO) was generated by manually
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https://doi.org/10.3389/fnume.2023.1124283
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 1

PET-prior intensity weights for different values of σp for a simulated PET image of the NEMA IEC body phantom. Left: 5 × 5 window placed on the edge of
the largest sphere (37 mm diameter), where the centre row is extracted to demonstrate the support of σp values 1, 5, and 15 in SPECTRE reconstruction
method. Right: a 5 × 5 window placed on the centre voxel of the smallest sphere (10 mm diameter) to demonstrate the impact of σp on lower contrast
structures.
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segmenting a CT image of the IEC phantom and assigning the

measured activity concentrations to the sphere and background

compartments. The DRO was resampled to the SPECT voxel size

(4.8 mm cubic voxels) and co-registered with the SPECTRE

reconstructed image of the experimentally acquired data

presented in previous work (36).This was done so that realistic

non-circular projection radii (from the experimental SPECT

projection data) could be used in the simulation. The DRO was

forward projected in STIR with a 2D and 3D PSF using an

analytically determined 177Lu collimator-detector response

function (CDRF) (39), and “full” attenuation modelling using an

estimated µ-map (40). Poisson noise was added to the noise-free

simulated projections based on an experimentally determined
177Lu system sensitivity of 12.2 cps/MBq per gamma camera.

Two noise levels were generated, each reflecting the typical

number of counts detected using a clinical acquisition protocol

following a typical administered therapeutic activity of 8 GBq of
177Lu-(DOTA-Octreotate—“LUTATE”). The first set of SPECT

data has counts typical of an early imaging time-point, and the

other reflecting the typical number of counts acquired at a later

imaging time point. The two noise levels are referred to as low-

noise “PN1” (“Poisson-Noise level 1”) and high-noise “PN2”

simulations, respectively. A simplified schematic of the

simulation process is shown in Figure 2. The PN1 and PN2

simulated SPECT data were reconstructed in STIR on a 2016
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MacBook Pro with a 3.3 GHz Intel Core i7 processor with 16 GB

of RAM.
Simulated PET prior(s)

The PET-priors were generated by applying a 7.5 mm FWHM

Gaussian filter to the ground truth (GT) DRO to approximately

model the global spatial resolution relative to clinical 68Ga PET

images (2, 36). To simplify and focus the parameter optimization

study, PET image noise, spatially variant PSF, and reconstruction-

related artifacts were not modelled in the priors. While these PET

image characteristics are expected to influence the SPECTRE

reconstructed image, we decided that since this is the first in-

depth exploration of the HKEM parameter space in the context

of the SPECTRE reconstruction approach, adding further

complexities such as PET image noise may complicate things

unnecessarily. This should, however, be the subject of future

work. Two PET-priors were investigated: one uses an “optimal”
PET-prior that includes all regions of elevated activity, and the

other uses a “lesion-less” PET-prior that is missing several

regions of elevated activity (28, 17, and 10 mm spheres are

missing, see Figure 3). Hence, the SPECTRE reconstructions

with the lesion-less PET-prior have three PET-SPECT mutual

features and three SPECT-unique features. The standard
frontiersin.org
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FIGURE 2

Schematic showing the process of simulating SPECT projection data in STIR. Ground truth DRO forward projection uses an analytically calculated
collimator-detector response function (CDRF) to produce noise-free sinograms. Poisson noise is added to the simulated sinograms to reflect the
number of counts that may be acquired under experimental and/or clinical imaging protocols.

FIGURE 3

The two PET-priors used in the SPECTRE reconstructions. (A) Optimal PET-prior generated by applying a 7.5 mm FWHM Gaussian filter to the GT DRO, (B)
“Lesion-less” PET-prior with the 28, 17, and 10 mm spheres removed.

Marquis et al. 10.3389/fnume.2023.1124283
deviation in the optimal and lesion-less PET priors is 71.74 and

71.10, respectively.
Regions of interest analysis

Circular ROIs and 3D VOIs were created to best match the

known cross-sectional areas and spherical volumes of each

sphere, with the number of voxels rounded down if the known

cross-sectional area/volume was exceeded. This was done to

ensure that the ROIs/VOIs were not larger than the ground truth

object. For the background, the ROI/VOI were drawn freehand,

avoiding potential spill-in/out from the spheres/phantom edge.

The ROIs/VOIs were propagated to the slice(s) of each

reconstructed image to obtain the mean, maximum, and

standard deviation in each of the spheres and the background

compartment. Image-based metrics used for the comparison are
Frontiers in Nuclear Medicine 05
the contrast recovery coefficient (CRC) (41), sphere SNR (6,

42–46), and the root-mean-square error (RMSE). The CRC, SNR,

and RMSE were calculated as follows:

CRC ¼ ((xVOI=BVOI)� 1)
((Asphere=Abkg)� 1)

(5)

SNR ¼ xVOI � BVOI=BsVOI (6)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(COV2RC2)þ (RC� 1)2

q
(7)

where �xVOI and BVOI are the image-based radioactivity

concentrations in the sphere and background compartments,

respectively, and metrics Asphere and Abkg are the ground truth

radioactivity concentrations (2,784 and 317 kBq/ml, respectively).
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BσVOI is the standard deviation in the background compartment,

and COV and RC are the sphere coefficient of variation and

mean sphere recovery coefficients, respectively. The RMSE was

only calculated for the three largest spheres since the COV

contains the standard sphere standard deviation, which may lead

to erroneous conclusions when a small voxel sample size is used.

The CRC, SNR, and RMSE for both SPECT-unique features

(sphere diameters 28, 17, and 10 mm) and mutual PET-SPECT

features (sphere diameters 37, 22, and 13 mm) were analysed to

investigate the impact of each HKEM parameter. Where

applicable, coefficient of variation, mean bias, and maximum bias

were calculated for SPECTRE and OSEM_RM reconstructions

using the three largest ROIs (background compartment, 37, and

28 mm sphere). The mean and maximum bias were calculated as

follows:

Mean Bias(%) ¼ 100� (�xVOI � Atrue)
(Atrue)

(8)

Max Bias(%) ¼ 100� (�xVOI max � Atrue)
(Atrue)

(9)

where �xVOI and �xVOI max are the mean and maximum radioactivity

concentrations in the VOI/ROI, and Atrue is the ground truth

radioactivity concentration, which for sphere bias and

background bias are Asphere (2784 kBq/ml) and Abkg (317 kBq/

ml), respectively.
Investigation 1, 2D SPECTRE
reconstructions with missing PET support

The first SPECTRE investigation was performed using the 2D

PN1 simulated data and the “lesion-less” PET-prior (shown in

Figure 3B) to evaluate the impact of the HKEM parameters

on various image-quality metrics for PET-SPECT mutual

features and SPECT-unique features. The HKEM algorithm

reconstruction parameters for this investigation are summarised

in Table 1 and were chosen based on a preliminary exploration

of parameters that demonstrated a high degree of PET &

SPECT update image support (low values of σs, σp, σdp and

σds) to more relaxed support (larger values of σs, σp, σdp and

σds). Kernel window sizes larger than NN = 7 were not

investigated due to the impractical reconstruction times

required when applied to 3D data. Each 2D SPECTRE

reconstruction was performed for 20 iterations using 12 subsets,
TABLE 1 A summary of the HKEM parameters used in the PN1 2D SPECTRE
reconstructions using the “lesion-less” PET-prior. All reconstructions used
20 iterations with 12 subsets.

Baseline HKEM parameters Investigated parameters
σp = 1, σdp= σds = 1, NN = 5 σs = 0.1, 1, 5

σs = 1, σdp = σds = 1, NN = 5 σp = 0.1, 1, 5

σs = 1, σp = 1, NN = 5 σdp & σds = 1, 3, 5

σs = 1, σp = 1, σdp = σds = 1 NN = 3, 5, 7

Frontiers in Nuclear Medicine 06
with full attenuation correction and 2D RM using an analytical
177Lu CDRF. The reconstructed images were converted from

counts to units of kBq/ml.
Investigation 2, OSEM_RM and SPECTRE
reconstructions using the optimal PET-prior

Parameters from the “lesion-less” PET-prior investigation

showing improved CRC, SNR, and RMSE in features

supported by the PET image (37, 22, and 13 mm diameter)

were used to reconstruct the PN1 (low-noise) and PN2 (high-

noise) 2D data using OSEM with RM (OSEM_RM) and

SPECTRE. The SPECTRE reconstructions used the “Optimal”

PET-prior containing all six spheres, as shown in Figure 3A),

and HKEM parameters σp = σs = 5, σdp = σds = 5, NN = 5.

SPECTRE and OSEM_RM reconstructions were performed for

5, 10, 15, and 20 full iterations using 12 subsets. The PN1 and

PN2 data were also reconstructed using OSEM without RM

(OSEM std) for 4 iterations using 12 subsets and with a post-

reconstruction Gaussian filter of 8 mm FWHM applied. All

OSEM and SPECTRE reconstructions used full attenuation

correction.
Investigation 3, 2D and 3D reconstruction
validation using OSEM_RM and SPECTRE

To validate the 2D optimization approach, the 2D and 3D

PN1 (low noise) simulated data were used to investigate the

similarities between the 2D and 3D OSEM_RM and SPECTRE

reconstructed images. HKEM parameters with the Optimal

PET-prior were altered to explore the parameter space (HKEM

parameters σp = 5, σs = 2, σdp = σds = 15, NN = 5). SPECTRE and

OSEM_RM reconstructions were performed in 2D and 3D from

4 to 40 full iterations in increments of 4 iterations using 12

subsets (a total of 10 quantitative reconstructions for each

series). The 2D ROI and 3D VOI COV %, mean bias,

maximum bias, and SNR for the 2D and 3D reconstructed

images were measured. Estimating the absorbed dose to lesions

following RNT not only relies on the quantitative accuracy of

our SPECT-reconstructed images but also on the accuracy of

our segmented volumes. To assess the impact of SPECTRE on

segmentation, we compared SPECTRE to OSEM_RM using a

42% fixed threshold (FT) segmentation method (47). The 42%

FT threshold method was applied to all six IEC phantom

spheres in the ground truth. DRO, 3D OSEM_RM, and

SPECTRE reconstructed images and the resulting segmented

volumes were compared to the known sphere volumes.
Results

The results follow the same ordering as presented in the

methods.
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TABLE 2 Coefficient of variation (COV %) in the background compartment
for OSEM_RM and SPECTRE reconstructions using the “lesion-less” PET-
prior. Note some redundancy due to the reuse of the baseline parameters
(σp = σs= 1, σdp = σds= 5 and NN= 5). BKG is short for “background”.

Parameter Value BKG COV %
σs 0.1 15.9

1 9.9

5 10.6

σp 0.1 9.8

1 9.9

5 11.1

σdp= σds 1 18.8

3 10.5

5 9.9

NN 3 16.4

5 9.9

7 7.1

OSEM_RM – 29.2

Marquis et al. 10.3389/fnume.2023.1124283
SPECTRE reconstructions with missing PET
support

Nine separate SPECTRE and a conventional OSEM

reconstruction with resolution modelling (OSEM_RM, 20it12s)

were used with the lesion-less data to measure the COV, CRC,

SNR, and RMSE in Table 2, Figures 4, 5A,B, respectively.
FIGURE 4

Exploration of the HKEM algorithm parameters using the “lesion-less” PET-pri
each sphere is shown to investigate the impact of each parameter on PET-SPEC
σp parameter, (C) varying σdp and σds parameter, (D) varying NN parameter. Resu
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In Table 2, the noise in the background compartment is shown

to be highest for the OSEM_RM reconstruction (COV= 29.23%) and

all SPECTRE reconstructions show improved noise characteristics

with reduced BKG COV %. The CRC in each sphere for the

investigated SPECTRE parameters using the lesion-less PET-prior

is shown in Figure 4. SPECT update intensity weight (σs) shows

improved CRC in the two smallest SPECT-unique spheres (spheres

4 & 5, 17, and 10 mm diameters, respectively). Larger values of σs
show improved CRC in all PET-SPECT mutual features. Using a

PET-prior intensity weight (σp) equal to 5 for PET-SPECT mutual

features (spheres 1–3, diameters 37, 28, and 22 mm), produced

significantly higher CRC over σp values of 0.1 and 1. For SPECT-

unique features, σp does not appear to significantly influence the

CRC. Euclidean distance weights (σdp and σds) showed improved

CRC for SPECT-unique features. The opposite is true for the PET-

SPECT mutual features, where more relaxed distance weights

(higher values of σdp and σds) have a slightly higher CRC. The

CRC for PET-SPECT mutual features appears to be mostly

unaffected by the size of the kernel window. Larger kernel window

sizes (e.g., NN = 7) appear to over-smooth the two smallest

SPECT-unique features (spheres 4 and 6), resulting in lower CRC,

yet also achieved the highest CRC for the largest SPECT-unique

feature (sphere 2–28 mm diameter).

For each of the SPECTRE reconstructions, the SNR in all six

spheres and the RMSE in the three largest spheres, are shown in
or in SPECTRE reconstructions of the PN1 2D simulated data. The CRC in
T mutual and SPECT-unique features. (A) varying σs parameter, (B) varying
lts are shown for the 20th iteration of the SPECTRE (HKEM) reconstructions.
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FIGURE 5

2D PN1 data was reconstructed with the SPECTRE reconstruction approach using the “lesion-less” PET-prior. Impact of HKEM parameters on the (A)
signal-to-noise ratio (SNR) in all six IEC phantom spheres, and (B) root-mean-square-error (RMSE) in the three largest IEC phantom spheres, for each
of the SPECTRE reconstructions. The three smallest spheres were not included in the RMSE analysis due to the small voxel sample size. The SNR and
RMSE are shown for SPECTRE reconstructions at 20 full iterations. PET-SPECT mutual spheres are displayed as black/solid, and SPECT-unique
spheres are displayed as unfilled/dashed.
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Figures 5A,B, respectively. For the SPECT update intensity weight

(σs) a value of 1 produced the highest SNR in SPECT-unique

features. For PET-SPECT mutual features σs values of 1 and 5

produced a similar SNR. The lowest σs value investigated (σs =

0.1) produced the lowest SNR across all six spheres due to the

higher noise present in the background compartment (see

Table 2). The lowest RMSE is achieved with a σs value of 5,
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which is most evident in sphere 2 (SPECT-unique). For the

investigated PET-prior intensity weights (σp) the sphere SNR

appears to be mostly unaffected. For PET-SPECT mutual

features, a σp value of 5 produced significantly lower RMSE over

σp values of 0.1 and 1 for the SPECTRE reconstructions. For

SPECT-unique features, σp does not appear to have a significant

influence on the RMSE. Larger distance weights (higher values of
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σdp and σds) resulted in improved SNR and RMSE for both mutual

and unique features. Larger kernel windows produce higher SNR

for both PET-SPECT mutual features and SPECT-unique

features, except for the smallest sphere (10 mm diameter). The

use of larger kernel windows also resulted in lower RMSE for

both PET-SPECT mutual features and SPECT-unique features,

with the improvement being more drastic for the SPECT-unique

feature (sphere 2, 28 mm diameter). As a result, the “optimal

PET-prior investigation” used parameters σp = σs = 5, σdp = σds = 5

and NN = 5. The kernel window size (NN = 5) was chosen due to

its clinical practicality over the use of larger kernel windows

(lower computation time and is less susceptible to SPECT-unique

feature suppression).
OSEM_RM and SPECTRE reconstructions
using the optimal PET-prior

Standard OSEM reconstructions and SPECTRE reconstructions

of the PN1 (low noise) and the PN2 (high noise) 2D-simulated

SPECT projection data are shown in Figure 6, and a plot of the

mean (left) and maximum (right) bias vs. COV % in the two

largest spheres and background compartments for the OSEM_RM

and SPECTRE reconstructions are shown in Figure 7.

In Figure 6, the visual improvement in the SPECTRE images is

evident. This is supported in Figure 7, which shows that the

SPECTRE reconstructions have improved bias and COV % in the

two largest spheres when compared to the OSEM_RM

reconstructed images. The COV % and maximum bias in the
FIGURE 6

Reconstructed SPECT images of the low-noise PN1 (top row) and high noise P
slice for SPECT reconstructions: (A) OSEM std (4it) with an 8 mm Gaussian
reconstructions, both with 20it and 2D RM (using 177Lu CDRF). The same win
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background compartment ROI also show improved noise

characteristics for the SPECTRE reconstructions (with lower

COV % and single maximum pixel bias compared to

OSEM_RM). Figure 8 shows, for both the PN1 and PN2 data

sets, that the SPECTRE reconstructions have a higher SNR

compared to OSEM_RM for each sphere at all iterations. Using

the PN1 data, the average sphere SNR for SPECTRE (54.2)

shows a factor of 2.96 improvement over the OSEM_RM (18.3)

at the last (20th) iteration. With the PN2 data, the average

improvement in SNR of SPECTRE over OSEM_RM is even more

pronounced (∼6×). However, the SNR for both the OSEM_RM

and SPECTRE reconstructions is significantly lower than the

PN1 example for the smallest sphere (sphere 6, 10 mm).

The mean and maximum recovery coefficients in each sphere for

OSEM std, OSEM_RM, and SPECTRE reconstructions are shown in

Figure 9. The plot shows that the SPECTRE reconstructions of both

the PN1 and PN2 data have better recovery of the true radioactivity

concentration in all six spheres compared to the conventional OSEM

reconstructions. The plots also show that SPECTRE reconstruction

has better maximum (single voxel) recovery when compared to

OSEM_RM, which shows significant overshoots of the true

radioactivity concentration in the three largest spheres.
2D and 3D reconstructions using OSEM_RM
and SPECTRE

The optimal SPECTRE reconstruction parameters derived from

the 2D investigations translated to similar quantitative
N2 (bottom row) 2D simulated SPECT data showing the same central axial
filter, (B) OSEM_RM, and (C) SPECTRE (σp = σs = 5, σdp = σds = 5, NN= 5)
dow has been applied to each series.
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FIGURE 7

Mean bias (left) and max bias (right) vs. COV % for OSEM_RM and SPECTRE (σp = σs = 5, σdp = σds = 5, NN = 5) reconstructions of the 2D low noise PN1 (top
row), and high noise PN2 (bottom row), simulated IEC phantom data. Results for three VOIs are shown: the 37 mm and 28 mm spheres, and background
compartments, for 5, 10, 15, and 20 iterations. Red arrows used to show increasing iterations.
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improvements when applied to the 3D case, and the SPECTRE

reconstructed images showed improved quantification in terms of

recovery and uniformity over conventional reconstructions.

OSEM_RM and SPECTRE reconstructions performed in 2D and

3D were qualitatively similar, and the quantitative improvements

afforded by the SPECTRE reconstruction approach over

OSEM_RM were also similar. In Figure 10, like Figure 6, the

visual improvement in the SPECTRE images is striking. This figure

shows the center slice of OSEM_RM and SPECTRE reconstructions

of the 2D (24th iteration) and 3D (40th iteration) PN1 simulated

data, with the iterations chosen based on similar background noise

for OSEM_RM. However, the SPECTRE reconstructions

background noise at 2D 24it and 3D 40it is not as closely matched.

This is shown in Figure 11, where the mean and maximum bias vs

the COV % for the two largest spheres and background

compartment are compared with 2D on the left and 3D on the right.

In this figure, the COV % in the background compartment for the

2D and 3D SPECTRE reconstructions have no overlap, unlike the

OSEM_RM reconstructions that have similar background COV % at

2D 24it and 3D 40it.

SPECTRE shows an average reduction in noise (background

COV %) compared to OSEM_RM by a factor of approx. 2.7 and

3.3 over 8–40 iterations for the 2D case and 3D case,

respectively. Mean bias in the two largest spheres had similar
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improvements in quantitative accuracy in the 2D and 3D cases

when comparing SPECTRE to OSEM_RM; for the images shown

in Figure 10, the mean bias (in the 2D case) was reduced by a

factor of 2.6 and 2.2 for spheres 1 and 2 respectively, and (in the

3D case) by a factor of 2.5 and 1.9 for spheres 1 and 2,

respectively. The SNR for each sphere in the 2D and 3D

SPECTRE reconstructions of the PN1 data using HKEM

parameters σp = 5, σs = 2, σdp = σds = 15, NN = 5, are shown in

Figure 12. As with COV %, the SNR in the 2D and 3D

OSEM_RM reconstructions appears to be more congruent than

for the 2D and 3D SPECTRE reconstructions. In general, the

sphere SNR for the 3D reconstructions is higher than the 2D

reconstructions. The average improvement in sphere SNR across

all iterations was 2.8 and 3.4 for the 2D and 3D case,

respectively. Lower SNR in the 2D compared to 3D images is

largely a result of relatively higher noise (COV %) in the

background compartment and this difference is more exaggerated

in the SNR between the 2D and 3D SPECTRE images.

In Figure 13, using images reconstructed with both

OSEM_RM and SPECTRE (40it12s), the segmentation accuracy

of the regions of elevated activity was evaluated using a 42%

fixed threshold. The average % volume difference from ground

truth for the OSEM_RM and SPECTRE reconstructions is 158%

and 26%, respectively. Demonstrating that the SPECTRE
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FIGURE 8

Signal-to-noise ratio (SNR) vs. number of iterations in the three largest (top row) and three smallest (bottom row) IEC phantom spheres for OSEM_RM and
SPECTRE (σp = σs = 5, σdp = σds = 5, NN = 5) reconstructions of the 2D-simulated low noise PN1 (left column), and high noise PN2 (right column), SPECT
projection data.
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reconstructions have significantly improved segmentation accuracy

across all sphere sizes when using the 42% FT method.
Discussion

The investigations presented in this work further demonstrate

that the SPECTRE reconstruction approach shows promise for

improving SPECT image quality and RNT dosimetry estimates.

The SPECTRE-reconstructed images consistently showed

improved quantification in terms of recovery and uniformity over

the conventional reconstruction methods, and reconstructions

performed in 2D closely resembled the 3D case for both

OSEM_RM and SPECTRE reconstructions, both qualitatively and

in terms of quantitative improvements. Each of the following

discussion sections pertains to each investigation and follows the

same order presented in the methods and results sections.
SPECTRE reconstructions with missing PET
support

The “lesion-less” PET-prior investigation highlighted several

important insights into the HKEM algorithm when applied to

the SPECTRE reconstruction approach:

(i) Distance weights that promote features closer to the central

voxel (i.e., smaller σdp and σds values) produce noisier images.
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(ii) A smaller kernel window size may not sufficiently suppress

noise.

(iii) Small σs values also contribute to high background COV %,

where in the reconstruction updates, small intensity

differences due to noise act as features in the SPECT

update image kernel k(n)s f j and are propagated into the

resulting SPECTRE reconstructed image.

It should be noted that in this study, because the PET-prior was

based on a noiseless image, small PET-prior intensity weights

(σp = 0.1) promoted smoothing. However, this result should be

treated with caution because small PET-prior intensity weights are

edge-preserving with noisy PET images, this may not be the case.

Conversely, if σp is too large, fainter structures and/or low-intensity

edges present in the PET-prior might not add sufficient support to

the SPECTRE reconstruction. This is evident in the smallest sphere

(10 mm diameter), which suffers from large partial volume losses. A

few important, albeit expected, findings were revealed:

(i) Larger kernel windows can over smooth SPECT-unique

features if the window is larger than the structure.

(ii) The use of larger kernel windows and larger distance weights

produces improved noise properties in the background

compartment and shows improved recovery in PET-SPECT

mutual features.

(iii) Higher SPECT update image intensity weights (smaller σs
values), smaller distance weights (σds & σdp), and smaller

kernel windows, all contribute to improved SPECT-unique

feature recovery.
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FIGURE 9

Mean (left) and maximum (right) recovery coefficients for each of the IEC phantom spheres for each reconstruction of the low noise PN1 (top row), and
high noise PN2 (bottom row), 2D simulated data. Three reconstructions are shown: standard OSEM (4it12s) with a Gaussian filter of 8 mm FWHM (OSEM
std), OSEM_RM, and SPECTRE (σp = σs = 5, σdp = σds = 5, NN = 5), both using 20 iterations and 2D 177Lu CDR compensation.
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Similar observations have been made in studies using the kernel

method to reconstruct PET data using MR side information;

Hutchroft et al. found that the use of larger kernel windows

yielded better performance for mutual MR-PET features (37);

Deidda et al. demonstrated that relaxed distance weights

(larger Euclidean distance weights) produced improved noise

characteristics for reconstructions of low-count PET data

(12, 38). A less obvious finding from this investigation was that

relaxed PET-prior intensity weights (high σp values, low edge

preservation) and relaxed distance weights (large σds and σdp
values) can produce improved recovery in PET-SPECT mutual

features. This is likely due to the simulated PET image having

worse spatial resolution than anatomical priors (e.g., CT and

MR) that are more commonly used in guided reconstructions.

OSEM_RM and SPECTRE reconstructions
using the optimal PET-prior

Because image reconstruction is fundamentally a deblurring/

denoising problem, contrast recovery improves as more iterations

are performed (Figure 8). However, in the case of OSEM_RM
Frontiers in Nuclear Medicine 12
(where a denoising mechanism is absent), amplification of noise

dominates; hence the noise increases at a rate faster than the

improvement in contrast recovery, leading to poorer SNR. In

contrast to this, SPECTRE reconstruction shows comparatively

lower noise amplification at higher iterations and the COV % in

the background compartment for the SPECTRE reconstructions

remains relatively constant as more iterations are performed. As a

result, with each iteration the SNR in the five largest spheres for

the SPECTRE reconstruction does not decrease as quickly as

OSEM_RM, allowing for additional iterations to be performed for

improved recovery and SNR in the smallest sphere. Improved

recovery and SNR in SPECTRE reconstructions also manifest as

improved mean and maximum recovery coefficients when

compared to OSEM_RM (Figure 9). SPECTRE reconstructions

have a maximum (single voxel) recovery that does not overshoot

the true value as much as OSEM_RM; this is important as

SUV metrics become increasingly adopted in quantitative SPECT

imaging, where SUVmax is a commonly reported statistic (48, 49).

The relative improvement SPECTRE sees over OSEM_RM is most

evident with the low count data, both in terms of quantitative

accuracy (improved recovery) and improved noise characteristics.
frontiersin.org

https://doi.org/10.3389/fnume.2023.1124283
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 10

Reconstructed SPECT images of the PN1 (low noise) 2D and 3D simulated SPECT projections showing the same central axial slice: (A) 2D OSEM_RM for
24 iterations, (B) 3D OSEM_RM for 40 iterations, (C) 2D SPECTRE for 24 iterations, and (D) 3D SPECTRE for 40 iterations. SPECTRE reconstructions used
the “optimal” PET-prior and HKEM parameters σp = 5, σs = 2, σdp = σds = 15, NN = 5.
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2D and 3D reconstructions using OSEM_RM
and SPECTRE

To make studies of this type computationally feasible, it is

desirable to use 2D simulations, which drastically reduce the

computational time compared to 3D. Both the 2D and 3D

reconstructions used masks to reduce the number of voxels

considered in the calculation; for the 3D reconstructions, the mask

reduced the number of voxels by ∼80%, significantly reducing the

reconstruction time. For example, in this study, a typical 2D

OSEM_RM reconstruction requires ∼110 s to compute 40

iterations compared to 4.6 h for 3D; faster by a factor of ∼150. For
2D SPECTRE, reconstructions took approximately 296 s to

compute 40 iterations for NN= 5, whereas 3D SPECTRE required

∼5 h. Hence, it is important to show correspondence between the

2D and 3D reconstructions and their parameters.

The OSEM_RM and SPECTRE reconstructions translated well

from 2D to 3D. The primary difference between the 2D and 3D

SPECTRE reconstruction metrics resulted from the differences

between their background noise, whereas superior SNR in the

3D SPECTRE reconstructions resulted the improved noise

characteristics and not improved sphere recovery. We have

identified two factors that are consistent with our observations.

The first is the difference in the use of 2D and 3D CDR, where
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in the case of 2D CDR, fewer voxels, and thus fewer counts,

contribute to the individual voxel update estimate, leading to

higher noise (50–54). The second factor (unique to SPECTRE) is

a result of the 2D vs. 3D kernel window (5 × 5 for 2D

reconstructions, and 5 × 5 × 5 for 3D reconstructions); the 2D

kernel window contains fewer voxels for the comparison and

thus appears to suppress noise less efficiently compared to the

3D case (likely due to more voxels being considered in the 3D

case, leading to better noise averaging). Despite the differences

between the 2D and 3D SPECTRE reconstructed images, it is

apparent that the 2D exploration and optimization approach

provided valuable insights.

Finally, we looked at segmentation performance. This study

was conceived from a theranostic point of view, where SPECT

reconstructed images are used to estimate the adsorbed radiation

dose delivered to a volume of interest. Radionuclide therapy

dosimetry estimates often report on the mean absorbed dose

delivered to a volume, and thus the segmentation method and

image characteristics are significant contributing factors to the

accuracy of the image-based absorbed dose estimates. This is

particularly important for lesion dosimetry, where, unlike organ

dosimetry, there often is no anatomically discernible boundary to

help with segmentation (e.g., coming from the accompanying

CT). Instead, segmentation generally has to rely solely on the
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FIGURE 11

Mean bias (top row) and maximum bias (bottom row) vs. the coefficient of variation (COV %) for OSEM_RM and SPECTRE (σp = 5, σs = 2, σdp = σds = 15,
NN = 5) reconstructions of the 2D (left column) and 3D (right column) low noise simulated IEC phantom data. Three VOIs are shown in each plot:
the 37 mm sphere, the 28 mm sphere, and the background compartment. Data is shown from 8 to 40 iterations in increments of four iterations
between data points (9 different reconstructions for each series in total).
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reconstructed SPECT image itself, and currently there is no

consensus on the best way to approach this with the current

limitations on SPECT imaging of RNT. This task is difficult, and

depends on the spatial resolution, image reconstruction

algorithm and any post-filtering, size and shape of the volume,

and noise/noise-related artifacts (55, 56). While improving noise

properties, such as the sphere SNR, indirectly contribute to

improved accuracy of absorbed dose estimates, the improved

morphological properties provided by the PET-prior improve

segmentation and concordance with ground truth. The SPECTRE

reconstructions have significantly improved segmentation

accuracy across all sphere sizes when using the 42% FT method,

suggesting that the SPECTRE reconstructions are better suited

for the application of FT segmentation methods, when compared

to conventional OSEM reconstructions, leading to more accurate

image-based lesion dosimetry estimates.
Limitations and general discussion

Translation of HKEM parameters used in this investigation to

clinical patient data should be done with care. Parameters that
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show improved SNR for simulated data may not produce

reconstructed images that have improved task performance. For

instance, for improved RNT dosimetry estimates, better RCmean,

RCmax, and lower RMSE might be better metrics to optimise as

they may correlate more strongly with segmentation and

dosimetry task performance. Likewise, for SPECT-unique

features, larger kernel windows can reduce the recovery even if

the SNR is improved. This highlights that each of the metrics

presented in this work needs to be considered in parallel, and

that optimization depends on the imaging task at hand.

In contrast to previous studies of HKEM, where MR side

information was the guiding modality, this study implicitly

assumes that PET-SPECT features, or indeed radionuclide

distribution in a theranostic setting, are largely similar (this is

true even for the lesions-less images, where only limited regions

of the phantoms differed). The implementation of PET images as

a-priori information for guiding SPECT reconstructions presents

new challenges. For objects like the IEC phantom, where

similarities between the PET-prior and SPECT projection data

are expected, larger kernel windows and more relaxed distance

weights will yield better results (37). Furthermore, in clinical

implementations of SPECTRE, where differences between the
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FIGURE 12

Signal-to-noise ratio (SNR) vs. number of iterations in the three largest (top) and three smallest (bottom) IEC phantom spheres for OSEM_RM and
SPECTRE (σp = 5, σs = 2, σdp = σds = 15, NN = 5) reconstructions of the PN1 low noise 2D (left) and 3D (right) simulated SPECT projection data. Data is
shown from 4 to 40 iterations in increments of 4 iterations between data points (10 different reconstructions for each series in total).

FIGURE 13

Accuracy of volume segmentation using a 42% FT segmentation
method for the GT DRO, OSEM_RM, and SPECTRE reconstructed
images (20 iterations).
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PET and SPECT data are expected (and co-registration of the PET/

SPECT images is challenging), the use of larger kernel windows

and larger Euclidean distance weights may lead to the

suppression of SPECT-unique features. This is possible even for

perfectly co-registered PET-SPECT data if certain HKEM

parameters are used (i.e., parameters that promote smoothness,

such as high σp and large distance weights, in conjunction with

large kernel windows). We add that the PET and SPECT
Frontiers in Nuclear Medicine 15
radionuclide distribution functions are dependent on the post-

administration imaging time and may differ due to one modality

being imaged later in its distribution time course. Future

investigations of the SPECTRE reconstruction approach should

investigate this and optimise the HKEM parameters using a

noisy PET-prior to see how its noise impacts the SPECTRE

reconstructed images. Another potential issue is the time delay

between diagnostic PET imaging and therapy, where changes in

patient morphology and progression of the disease could lead to

lower concordance between mutual information shared in the

SPECT data and guiding PET images. We do not expect this to

be an issue for most patients, but if disease progression is

expected then another PET scan could be performed prior to

therapy. The success of SPECTRE also relies on accurate co-

registration between the PET image and SPECT data; future

clinical investigations looking at this reconstruction approach

should aim to minimize these factors by taking care of patient

positioning and administration protocols.
Conclusions

To the best of our knowledge this is the first in-depth

exploration of PET-guided SPECT reconstructions, and as such,

it reveals several insights that need to be considered when using

the SPECTRE reconstruction approach. This work expands upon

our previous investigation where we first demonstrated this
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reconstruction approach. Exploration and optimization of the

SPECTRE approach benefited from both fast analytical SPECT

simulations and faster SPECTRE reconstruction times afforded

by first considering the 2D case. The impact of HKEM

parameters for both PET-SPECT mutual features and SPECT-

unique features was investigated using simulated data from the

NEMA IEC body phantom test object. Comparisons were made

to conventional OSEM_RM reconstructions using metrics such

as mean and maximum bias, COV %, sphere recovery

coefficients, sphere SNR, and RMSE. The improvement in

SPECT image quality over conventional reconstruction methods

was demonstrated in the context of accurate radionuclide therapy

absorbed dose estimates. A novel accelerated algorithm

exploration approach was also investigated whereby simulations

and reconstructions were first performed in 2D and then applied

to the 3D case, and the feasibility of this approach was validated

by comparing results from the two. This investigation into the

SPECTRE reconstruction approach further demonstrates a

significant potential for improved SPECT image quality, leading

to more accurate SPECT-based lesion dosimetry estimates when

conventional segmentation methods are used.
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