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Introduction: Conventional magnetic resonance imaging (MRI) has limitations in
differentiating tumor recurrence (TR) from radionecrosis (RN) in high-grade
gliomas (HGG), which can present with morphologically similar appearances.
Multiparametric advanced MR sequences and Positron Emission Tomography
(PET) with amino acid tracers can aid in diagnosing tumor metabolism. The role
of both modalities on an individual basis and combined performances were
investigated in the current study.
Materials and Methods: Patients with HGG with MRI and PET within three weeks
were included in the retrospective analysis. The multiparametric MRI included T1-
contrast, T2-weighted sequences, perfusion, diffusion, and spectroscopy. MRI was
interpreted by a neuroradiologist without using information from PET imaging.
18F-Fluoroethyl-Tyrosine (FET) uptake was calculated from the areas of
maximum enhancement/suspicion, which was assessed by a nuclear medicine
physician (having access to MRI to determine tumor-to-white matter ratio over
a specific region). A definitive diagnosis of TR or RN was made based on the
combination of multidisciplinary joint clinic decisions, histopathological
examination, and clinic-radiological follow-up as applicable.
Results: 62 patients were included in the study between July 2018 and
August 2021. The histology during initial diagnosis was glioblastoma,
oligodendroglioma, and astrocytoma in 43, 7, and 6 patients, respectively, while
in 6, no definitive histological characterization was available. The median time
from radiation (RT) was 23 months. 46 and 16 patients had TR and RN
recurrence, respectively. Sensitivity, specificity, and accuracy using MRI were 98,
77, and 94%, respectively. Using PET imaging with T/W cut-off of 2.65,
sensitivity, specificity, and accuracy were 79, 84, and 80%, respectively. The best
results were obtained using both imaging combined with sensitivity, specificity,
and accuracy of 98, 100, and 98%, respectively.
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Conclusion: Combined imaging with MRI and FET-PET offers multiparametric assessment
of glioma recurrence that is correlative and complimentary, with higher accuracy and
clinical value.
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Introduction

Gliomas are classified based on their molecular characteristics

in the 2021 WHO Classification of Tumors of the Central

Nervous System (1). High-grade gliomas (HGG) account for 14%

of all tumors and 49% of malignant tumors (2). Glioblastoma

multiforme (GBM) is the most common malignant type of

primary astrocytomas, associated with poor prognosis with

median survival in the range of 15–18 months from

contemporary clinical trials (3, 4). The survival of grade 3

astrocytoma and oligodendrogliomas are better, in the range of

10–14 years (5). The standard treatment in HGG includes

maximal safe resection followed by adjuvant chemoradiation and

chemotherapy (6–8). Disease recurrence is encountered during or

a few months after completion of maintenance chemotherapy in

GBM depicting aggressive tumor biology, or after several years of

treatment completion in IDH-mutant gliomas. Also, following

radiation (RT), treatment-related changes in the form of

radionecrosis (RN) can be encountered in a proportion of

patients, which can mimic progressive disease (9–11). The

spectrum of RN ranges from asymptomatic to severe neurological

worsening, with the majority responding to medical

decompressive therapy, with some refractory cases requiring

surgery or anti-angiogenic therapy with Bevacizumab (12, 13).

According to the Response Assessment in Neuro-Oncology

(RANO) criteria, FLAIR/T2 hyperintensity is used as a stand-in

for the tumor’s nonenhancing component. When compared to

the Macdonald and RECIST criteria, the RANO was just as

effective at spotting radiological progression before clinical

deterioration (14–18).

Magnetic resonance imaging (MRI) forms an integral role in

the management of brain tumors aiding in diagnosis, treatment

planning, response evaluation, and surveillance (19, 20). On

conventional MRI sequences, accurate diagnosis of disease

recurrence can be challenging since treatment-related changes

can often present with similar morphological appearances (21).

The use of advanced MR sequences in the form of perfusion,

arterial spin labeling (ASL), and MR spectroscopy (MRS) can be

of particular interest to differentiate recurrence from RN due to

different underlying pathological processes, which otherwise can

present with a morphologically similar appearance on

conventional sequences (22, 23).

The role of positron emission tomography (PET) is emerging in

brain imaging, aiding in the identification of different tumor

histologies or differentiating treatment-related changes post-therapy

from disease recurrence (24). The uptake of amino acid tracers is

independent of the integrity of the blood-brain barrier, hence the

evaluation of non-enhancing gliomas can be done with amino acid
02
PET (25–27). Among amino acid tracers, O-[2-(18F)-fluoroethyl]-

L-tyrosine (FET) has become the most widely used radiotracer for

brain tumor diagnostics (28, 29). Since tumor-induced metabolism

is reflected by cellular proliferation utilizing amino acids, the use of

FET-PET can potentially differentiate tumor progression from RN

which is an inflammatory process. Therefore, in conjunction with

MRI, PET can provide more accurate diagnosis especially in

clinically equivocal situations (30, 31).

This study compares imaging features of MRI with amino

acid PET tracer O-(2-[18F] fluoroethyl-L-tyrosine (FET) to

differentiate tumor recurrence from radionecrosis in high-grade

gliomas.
Materials and methods

Patient selection

The current study was a retrospective analysis at a tertiary care

cancer center. The study was conducted after clearance from the

Institutional Ethics Committee (IEC), and a waiver for obtaining

informed consent was granted. Patients with histologically proven

HGG (grade 3 astrocytoma or oligodendrogliomas, GBM) during

index presentation were included in the study. All patients were

treated with maximal safe resection followed by adjuvant RT

with concurrent temozolomide followed by adjuvant

temozolomide as per standard institutional practice. During the

adjuvant treatment and after completion, patients were followed

up with MRI in regular intervals of 6–12 months or sooner if

prompted clinically. Additional PET imaging was considered in

cases of newer findings on an individual basis as decided

by the responsible physician following a discussion with

neuroradiologists. To be considered eligible for the current study

patients were required to have MRI and amino acid imaging

available within 3 weeks of each other without any oncologic

treatment or neurosurgical intervention (medical decompressive

therapy was allowed). Patients with lower grade glioma,

brainstem gliomas, non-glial tumor on histology, incomplete

imaging studies, or a gap of more than three weeks between two

imaging modalities (MRI and FET) were excluded.
Instrumentation

The MRI was performed on a 1.5 Tesla, Philips Ingenia

(Amsterdam, Netherlands). MR imaging sequences for complete

diagnostic evaluation of the brain included an axial FLAIR

sequence (TR/TE, 8,000/80 ms; TI, 2000ms; section thickness,
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5 mm); a T2-weighted turbo spin-echo sequence (TR/TE, 3,000/

120 ms; section thickness, 5 mm); DWI (TR/TE, 5,400/90 ms; b

= 0, 400, 1,000 s/mm2); and PWI/perfusion EPI (TR/TE, 1,400/

40 ms). Measurements were performed both with and without

the application of a contrast agent prebolus before applying the

intravenous main bolus (gadolinium-based agent, 0.1 mmol/kg

bodyweight; infusion rate, 3.5 ml/s followed by 20 ml of normal

saline flush). Corresponding anatomical MRI including T2- and

contrast-enhanced T1-weighted images were available, as well as

other sequences such as Fluid attenuation inversion recover and

gradient echo. The protocols for the perfusion measurements

were adapted to the scanner performance.

For FET PET, patients were injected with 5–6 mCi (185–222

GBq) of F-18-FET on the day of imaging. Dedicated static

imaging of the brain was performed at 20 min post-injection

using a Philips Gemini TF TOF-64 PET/CT scanner (PET

crystal-LYSO). After obtaining a scout image, a plain and post-

contrast CT scan of the brain was performed in the craniocaudal

direction (120 kV, 250 mAs/slice, thickness-3 mm, increment-

1.5 mm, pitch of 0.938, and FOV of 300 mm). PET scanning was

performed immediately after CT acquisition without changing

the patient’s position on the scanning table.
Image interpretation

All MRI scans were reviewed independently on a high-

resolution GE multisync LCD monitor with 5 and or 12 MP

resolution neuroradiologists who were blinded to the PET

findings. On T2-weighted imaging, T2 intermediate to dark

signal intensity areas, excluding areas of hemorrhage and

necrosis, were considered suspicious for recurrence. For MR

perfusion imaging, we used the automated MR Neuro Perfusion

application within the Philips IntelliSpace® software toolbox. To

allow for vessel exclusion and tumor margin identification, the

estimated perfusion maps were coregistered and used as an

overlay on anatomical MRI. ROI were placed on areas showing

T2 intermediate signal which showed solid enhancement. These

areas were checked on GRE to avoid bleeds. Necrosis was also

avoided. ROI measuring between 30 and 50 mm2 were drawn at

2 to 3 places and the highest value was recorded in each case.

An equally sized ROI was placed in the contralateral, normal-

appearing brain tissue for calculation of the maximum rCBV

(rCBVmax = CBVtumor/CBVnormal tissue).

In the case of FET PET, all reconstructed images were viewed

on a display system having extended brilliance workspace software

(EBW) version 4.5.3.40140, Philips Healthcare. An independent

nuclear medicine physician analyzed the images, and tumor-to-

contralateral white matter ratio (T/Wm) was used as a

semiquantitative parameter for image interpretation. It was

defined as the ratio of SUVmax of the lesion to the SUVmean of

the contralateral white matter. It was calculated by placing a 3D

region of interest (ROI) over the area corresponding to the

suspicious area on MRI which also included all pixels above SUV

max of 3.5, and another ROI over contralateral white matter,
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adjusted in axial, sagittal, and coronal planes. Based on prior

studies, an optimum T/Wm cutoff of 2.65 was used (32).
Outcomes analysis

The ground truth for assignment of recurrence vs. treatment

changes was designated based on a multidisciplinary joint neuro-

oncology meeting (JNOM) compromising of specialists from

neuroradiology, nuclear medicine, neurosurgery, radiation

oncology, medical oncology, and neuropathology. All the patients

were individually discussed in JNOM after both imaging

modalities were done, and decisions were taken based on

imaging features from both MRI and PET and histopathology

findings when surgery was considered. In cases of indeterminate

findings, short interval imaging was considered, and final

interpretation based on follow-up findings was considered as

endpoints for the current analysis whenever available.
Statistical analysis

Patient demographic data and treatment-related data were

acquired from the patient’s electronic medical records and

radiation charts. The sensitivity, specificity, positive predictive

value, negative predictive value, and accuracy were calculated for

the imaging modalities both individually and combined.

Descriptive statistics were used to describe the distribution of

various factors across the two outcome groups, with the Pearson

chi-square test or Fisher’s exact test for categorical variables. All

statistical analyses were performed with the SPSS software

package (Version 20.0; IBM, Armonk, NewYork). For all

statistical tests, a p-value < 0.05 was considered as a significant

difference.
Results

In the study, 62 patients were included between July 2018 and

August 2021. The median age of the patients was 44 years (range:

22–74 years). Out of the total patients, 45 were male and 17 were

female. Histopathology at initial diagnosis was grade 3

oligodendroglioma for 7 patients, while 6 had anaplastic

astrocytoma, 43 had glioblastoma and 6 were characterized as

high-grade gliomas (not further characterized). On the basis of

IDH mutation, 28 cases were mutant type, 32 cases were wild

type, and 2 cases had no data regarding the same. The mean

interval between the last date of radiation and PET/CT or MRI

scans was 23 months (range, 2–84 months). Table 1 summarizes

the disease and treatment-related characteristics of the two groups.

Among 62 patients, 16 were classified as having radionecrosis,

and 46 were finally classified as having recurrent brain tumors

based on the outcomes criteria outlined in the earlier section

[Figures 1–6].

The sensitivity, specificity, PPV, and NPV for determination of

a tumor recurrence in a treated case of high-grade glioma with
frontiersin.org
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TABLE 1 Overview of patient characteristics.

Patient characteristics (n = 62) Recurrence Radiation
necrosis

Gender
Male 38 7

Female 8 9

Tumor characteristics

Diagnosis
Oligodendroglioma 3 4

Astrocytoma, IDH-mutant 3 3

Glioblastoma, IDH-mutant, WHO grade IV 9 2

Glioblastoma, IDH-wild type, WHO grade
IV

24 7

Glioblastoma, IDH status unknown 1 0

High-grade glioma, NOS, IDH-mutant 5 0

High-grade glioma, NOS, IDH-wild type 1 0

Molecular markers
IDH-Mutant 19 9

IDH-Wild type 25 7

IDH Not available/ inconclusive 2 0

ATRX-Lost 13 3

ATRX-Retained 20 12

ATRX-Equivocal 2 0

ATRX-Not available 11 1

Laterality of tumor
Right 23 6

Left 16 9

Bilateral 7 1

Treatment-related
Radiotherapy with concurrent
chemotherapy

46 16

Interval between last therapy and MRI,
months, median (range)

24 months
(6–84 months)

21 months
(2–67 months)
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conventional MR imaging were 98.0%, 76.9%, 94.4%, and 90.9%

respectively. 35 out of 46 cases of recurrence showed T2

intermediate to dark areas. 41 out of 46 cases of recurrence

showed rCBV greater than 1.40. The most common

enhancement pattern seen in recurrent lesions was solid nodular

(18 cases), followed by thick rim enhancement (16 cases).

In case of FET PET CT, the sensitivity, specificity, PPV and

NPV for determination of a tumor recurrence in a treated case
FIGURE 1

Axial T1 + Gd (A) and T2-weighted (B) images in a case of glioblastoma shows T
(C) shows increased uptake (T/W ratio: 4.85) in the same area. Follow-up M
components with likely infiltration into the cerebral peduncle. These features

Frontiers in Nuclear Medicine 04
of high-grade glioma were 78.8%, 84.6%, 95.3% and 50%

respectively. The median T/Wm ratio was 3.1 (0–5.8), with an

average T/Wm of 3.4 in cases of TR.

In cumulative analysis (MRI and FET PET CT combined), the

sensitivity, specificity, PPV and NPV for determination of a tumor

recurrence in a treated case of high-grade glioma was 97.9%, 100%,

100% and 91.6% respectively [Table 2].

In 4 cases, MRI yielded a false positive diagnosis. Out of these 4

cases, FET-PET yielded a true negative diagnosis in two cases and

false positive diagnosis in the other two cases. In 4 cases, FET-PET

yielded a false negative diagnosis. In one case of Li Fraumeni

syndrome with GBM and metastatic breast cancer, MRI yielded a

false negative result.
Discussion

Routine diagnosis and treatment monitoring of brain tumors is

usually based on contrast-enhanced MRI. Radionecrosis is a

consequence of radiation injury to normal brain tissue, which

results in peritumoral white matter necrosis and endothelial cell

dysfunction (33). This manifestation usually occurs between 6

months and 2 years after the completion of radiotherapy (11).

Although in a proportion of patients, RN will be asymptomatic

on surveillance imaging, symptoms may include features of

raised intracranial pressure, worsening of neurological deficits, or

new onset seizures. The symptoms and timing of symptoms are

indistinguishable from that of tumor progression. Therefore,

clinicians require standardized neuroimaging of these lesions to

help establish a diagnosis and potentially guide therapy. The gold

standard for differentiating tumor recurrence from radiation

necrosis remains histopathological evaluation. However, tissue

diagnosis is an invasive procedure associated with the risk of

major complications.

Conventional MRI, along with advanced sequences like

diffusion-weighted imaging, perfusion-weighted imaging, and

MRS are often considered the standard of care for estimation of

treatment response and surveillance following treatment

completion for gliomas (34–36). However, early phases during

evolving necrosis or recurrence can present with similar features
2 intermediate signal intensity areas with thick rim enhancement. FET-PET
RI (D,E) after 3 months showed increase in size of both solid and cystic
confirmed tumor recurrence.
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FIGURE 2

Axial T2-weighted (A), T1 +Gd (B), perfusion curve (D,E) and FET-PET (C) images in a case of grade III oligodendroglioma shows T2 hyperintense areas in
the right centrum semiovale with surrounding edema. This lesion shows a “Swiss-cheese” pattern of enhancement (B) and hypoperfusion (D). FET-PET (C)
shows no significant uptake (T/W ratio: 1.6) in the same area. These features were suggestive of radionecrosis.

FIGURE 3

Axial T2-weighted (A), T1 + Gd (B), perfusion map (C) and FET-PET (D) images in a case of glioblastoma shows T2 intermediate areas (arrow) in the right
parasagittal location with surrounding edema. Thick peripheral rim of enhancement (B) and hyperperfusion (C) is seen, with ROI1 placed in the perilesional
area and ROI2 placed in normal white matter, separated by the demarcation labelled Axis 1. FET-PET (D) shows no significant uptake in the same area (T/
W ratio: 1.9). This was a case of tumor recurrence, with false negative results on FET-PET.

Sahu et al. 10.3389/fnume.2023.1040998
on MRI, showing contrast enhancement, mass effect, and vasogenic

edema (37). FET-PET utilizes the preferential uptake of radiolabeled

amino acid tracers by tumor cells to produce an enhanced tumor-to-

background contrast. This has proved useful in the differentiation of
Frontiers in Nuclear Medicine 05
TR from RN, as well as various other indications like monitoring of

treatment, prognosis, or grading of glioma. Our study demonstrated

the best results using both MRI and FET-PET in conjunction, with

an accuracy of 98.3% to detect TR.
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FIGURE 4

Axial T2-weighted (A), T1 + Gd (B), perfusion map (C) and FET-PET (D) images in a case of glioblastoma shows T2 intermediate areas (arrow) in the right
frontal lobe. Thick peripheral enhancement (B) and hyperperfusion (C) is seen in ROI1 placed in the enhancing component and ROI2 in the normal white
matter. FET-PET (D) shows no significant uptake (T/W ratio: 2.2) in the same area. This was a case of radionecrosis, with false positive results on MRI.

FIGURE 5

Axial T1 + Gd (A), perfusion map (B), FET-PET (C) and fused MRI and FET-PET images in a case of glioblastoma shows areas of thick nodular enhancement
in bilateral posterior parietal lobes with hyperperfusion (B). FET-PET (C) shows significant uptake (T/W ratio: 3.6). Fused images (D) shows corresponding
areas of increased perfusion and uptake, suggestive of recurrence.

Sahu et al. 10.3389/fnume.2023.1040998
On T2-weighted imaging, radiation necrosis is seen as a central

necrotic component with increased signal intensity (SI), while the

peripheral portion is seen as low SI. Perilesional edema is

commonly seen (37). Recurrent disease, meanwhile, is seen as T2

intermediate to dark signal intensity with similar imaging

features as the known primary tumor. Most viable tumor sites

are highly cellular tissues containing large amounts of

membranes and macromolecules; the highly cellular component

of cerebral glioma would exhibit less hyperintensity on T2WI
FIGURE 6

Axial T2-weighted (A) and T1 +Gd (B) images in a case of glioblastoma showe
showed no uptake in that area. Follow-up MRI (D,E) after 6 months showed c
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(38). Schwartz et al. demonstrated that lesions with a

hypointense arc on T2 and a heterogeneous center are likely a

neoplasm, either glioma or metastasis. Another study by

Dequesada et al. described a feature called lesion quotient, which

was defined as the proportional value of the maximum cross-

sectional area of a nodule with distinct borders (on the T2-

weighted sequence) with the enhancing area on the T1-weighted

post gadolinium sequence on a comparable axial section (39). It

had high predictive value, sensitivity, and specificity for
d an enhancing nodule anterior to the post-operative cavity. FET-PET (C)
omplete resolution of the lesion.
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TABLE 2 Comparison of sensitivity, specificity, PPV, NPV and accuracy.

Study Sensitivity Specificity Positive predictive value Negative predictive value Accuracy
MRI 98.08% 76.92% 94.44% 90.91% 93.85%

95% CI

(84.99% to 98.30%)

FET PET CT 78.85% 84.62% 95.35% 50% 80.00%

95% CI

(68.23% to 88.90%)

Combined Studies 97.96 100% 100% 91.67 98.33%

95% CI

(91.06% to 99.96%

Sahu et al. 10.3389/fnume.2023.1040998
identifying the presence of radiation necrosis alone (39). It is a

well-known fact that cellular tumors are hypointense on T2-

weighted images. The lesion quotient is the proportion of T2

hypo intensity within the enhancing nodule and can help in

differentiating tumor recurrence from radiation necrosis (40).

Our study concurs with the findings demonstrating T2

intermediate to dark areas in 35 out of 46 cases of tumor

recurrence. The T1-relaxation shortening on the passage of the

contrast agent after intravenous injection of contrast causes a

signal increase in T1-weighted MRI, causing better tissue

delineation between diseased or injured tissues, also called

dynamic contrast-enhanced (DCE) MRI (30). The commonly

seen enhancement patterns in radiation necrosis are “soap-

bubble-like,” “swiss-cheese-like,” and “cut green pepper”. Swiss

cheese lesions result from diffuse necrosis affecting the white

matter and cortex with a diffuse enhancement of feathery

margins and intermixed necrotic foci (37).

The metabolic signatures of brain tumors have been extensively

studied using single and multivoxel proton MRS techniques.

Several studies have revealed that in tumor tissue, choline levels

are higher while N-acetyl-aspartate (NAA) levels are lower than

they would be in normal brain parenchyma. Certain tumors,

such as high-grade gliomas, frequently exhibit resonance related

to lactate or lipids. During radiation therapy, proton-MRS of

brain tumors has been demonstrated to be helpful for detecting

recurrence. Previous studies have discussed the clinical utility of

proton MRS using the Cho/Cr ratio to distinguish residual/

recurrent glioblastoma from necrosis (41).

Dynamic susceptibility-weighted contrast-enhanced MRI is a

T2*-weighted technique to measure relative cerebral blood

volume (rCBV), which allows for measurements of the vascular

environment surrounding a tumor. Several studies have shown

different mean rCBV cutoff values of 0.71(2009) (42), 1.49

(2011) (43), and 1.75 (2011) (44) to distinguish radiation

necrosis from tumor recurrence reliably. Law et al. attained

95.0% sensitivity and 57.5% specificity at 1.75 as the threshold

value (2003) (45). Shin et al. calculated a cut-off value of 2.93 for

the rCBV ratio sensitivity 90.9%, specificity 83.3% (46). In this

study, a cutoff of 1.48 was calculated using ROC curve analysis.

Two cases with raised rCBV turned out to be radiation necrosis.

The possible reason for the same is the ROI of rCBV being kept

at a hemorrhagic area within the treatment site. The areas of

hemorrhage have also contributed to false positive findings in

FET-PET.
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[18F]-2-Fluoro-2-deoxy-D-glucose (FDG) is the most

commonly used metabolite in most of the PET scans. However,

due to the lower contrast of lesions from the normal cerebral

cortex, the use of FDG-PET scans is often challenging in routine

neuro-oncology (30, 31). The cerebral uptake of radiolabeled

amino acids is usually low, but it is typically increased in brain

tumors. This produces an enhanced tumor-to-background

contrast. Also, the uptake of amino acid tracers is independent of

the integrity of the blood-brain barrier, hence the evaluation of

non-enhancing gliomas can be done with amino acid PET. The

ability of amino acid PET to distinguish between changes caused

by the treatment and tumour progression has also been

established. Additionally, it is used for a number of other

purposes, including grading gliomas and evaluating therapy

progress. The radiotracer O-[2-(18F)-fluoroethyl]-L-tyrosine

(FET) has emerged as the most used amino acid tracer for the

diagnosis of brain tumours. A few more are MET and FDOPA

(31, 47). The amino acid transport system L for large neutral

amino acids, namely the subtypes LAT1 and LAT2, are

responsible for the increased uptake of MET, FET and FDOPA

in gliomas and brain metastases (30, 31). A feature that

distinguishes FET from MET and FDOPA is the high metabolic

stability of FET, as it has been demonstrated that MET and

FDOPA undergo some metabolism and are incorporated into

protein, whereas FET is not metabolized. Furthermore, studies

have shown that over-expression of LAT1 is closely associated

with a malignant phenotype and proliferation of gliomas (31).

Our study utilized a T/Wm cutoff of 2.65 in our analysis with

T/Wm >2.65 suggestive of TR and T/Wm <2.65 suggestive of

RN. This was based on prior studies that showed a cutoff of 2.65

yielded a sensitivity of 80% and specificity of 87.5% (32). Tumor

recurrence or radiation necrosis is always associated with

inflammation. There have been instances of non-specific focal

18F-FET and 11C-MET uptake near hematomas, cerebral

ischemia, brain abscesses, acute inflammatory demyelination,

sarcoidosis, and radiation necrosis. Additionally, reactive

astrocytosis is seen around brain tumours and radiation therapy

is known to trigger astrogliosis. The efficacy of this approach for

surgical resection and radiation therapy planning in recurrent

gliomas may depend critically on whether increased 18F-FET-

uptake in such regions causes an overestimation of tumour size.

However, 18F-FET uptake in the region of experimental gliomas

in the form of astrogliosis was only marginally more than that

seen in human peritumoral tissue (48–53).
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TABLE 3 Patient-wise data of the diagnostic process.

Case
no.

Age Histopathology Interval from RT
completion (in months)

rCBV MRI
diagnosis

T/Wm
ratio

FET-PET
diagnosis

Final
diagnosis

1 47 Glioblastoma 21 0.47 Radiation
necrosis

0.01 Radiation
necrosis

Radiation
necrosis

2 54 Glioblastoma 15 1.8 Recurrence 3.3 Recurrence Recurrence

3 26 Glioblastoma 16 1.8 Recurrence 3.6 Recurrence Recurrence

4 37 High-grade glioma 8 1.5 Recurrence 3.4 Recurrence Recurrence

5 57 Glioblastoma 26 1.5 Recurrence 2.6 Recurrence Recurrence

6 59 Glioblastoma 12 4.7 Recurrence 3.8 Recurrence Recurrence

7 44 Glioblastoma 7 1.8 Recurrence 3.2 Recurrence Recurrence

8 41 Glioblastoma 49 2.5 Recurrence 3.1 Recurrence Recurrence

9 39 Glioblastoma 18 2.4 Recurrence 3.3 Recurrence Recurrence

10 26 High-grade glioma 19 1 Recurrence 2.7 Recurrence Recurrence

11 43 Glioblastoma 45 4.9 Recurrence 3.4 Recurrence Recurrence

12 26 High-grade glioma 22 1.4 Recurrence 4.8 Recurrence Recurrence

13 31 Glioblastoma 6 1.5 Recurrence 3.3 Recurrence Recurrence

14 40 Glioblastoma 16 4.3 Recurrence 3.1 Recurrence Recurrence

15 48 Anaplastic
oligodendroglioma

46 1.6 Recurrence 3 Recurrence Recurrence

16 35 Glioblastoma 22 3.5 Recurrence 5.5 Recurrence Recurrence

17 50 Glioblastoma 18 2.5 Recurrence 3.5 Recurrence Recurrence

18 49 Anaplastic astrocytoma 18 2 Recurrence 4 Recurrence Recurrence

19 40 Glioblastoma 7 1.6 Recurrence 2.6 Recurrence Recurrence

20 56 Anaplastic
oligodendroglioma

8 2.6 Recurrence 4.2 Recurrence Recurrence

21 45 Glioblastoma 58 2.8 Recurrence 3.5 Recurrence Recurrence

22 58 Glioblastoma 17 1.75 Recurrence 2.6 Recurrence Recurrence

23 46 High-grade glioma 84 3.4 Recurrence 3.6 Recurrence Recurrence

24 72 Glioblastoma 6 2.2 Recurrence 3.5 Recurrence Recurrence

25 54 Glioblastoma 15 4.8 Recurrence 3.6 Recurrence Recurrence

26 56 Glioblastoma 27 1.43 Recurrence 2.9 Recurrence Recurrence

27 49 Glioblastoma 13 3.4 Recurrence 3.6 Recurrence Recurrence

28 44 High-grade glioma 23 1.3 Recurrence 4.1 Recurrence Recurrence

29 32 High-grade glioma 32 2.09 Recurrence 4.56 Recurrence Recurrence

30 58 Glioblastoma 25 1.6 Recurrence 3.5 Recurrence Recurrence

31 37 Anaplastic astrocytoma 31 1.9 Recurrence 5.8 Recurrence Recurrence

32 31 Glioblastoma 20 2.7 Recurrence 3.4 Recurrence Recurrence

33 44 Glioblastoma 3 3 Recurrence 2.6 Recurrence Radiation
necrosis

34 50 Glioblastoma 10 2 Recurrence 5 Recurrence Recurrence

35 56 Glioblastoma 10 11 Recurrence 4.8 Recurrence Recurrence

36 25 Glioblastoma 19 2.8 Recurrence 2.8 Recurrence Recurrence

37 33 Glioblastoma 15 1.9 Recurrence 3.5 Recurrence Recurrence

38 28 Glioblastoma 26 2 Recurrence 3.7 Recurrence Recurrence

39 50 Glioblastoma 11 2.8 Recurrence 3.4 Recurrence Recurrence

40 57 Glioblastoma 18 2.2 Recurrence 3.6 Recurrence Recurrence

41 72 Glioblastoma 11 1.8 Recurrence 3 Recurrence Recurrence

42 41 Anaplastic
oligodendroglioma

80 1.7 Recurrence 3.1 Recurrence Recurrence

43 40 Glioblastoma 31 0.6 Recurrence 3.2 Recurrence Recurrence

44 34 Anaplastic astrocytoma 16 Recurrence 2.7 Recurrence Radiation
necrosis

45 31 Glioblastoma 27 0.8 Radiation
necrosis

3.08 Recurrence Recurrence

46 74 Glioblastoma 8 2 Recurrence 2.3 Radiation
necrosis

Recurrence

47 32 Glioblastoma 4 2 Recurrence 1.9 Radiation
necrosis

Radiation
necrosis

48 47 Glioblastoma 24 1.7 Recurrence 2.2 Radiation
necrosis

Radiation
necrosis

(continued)
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TABLE 3 Continued

Case
no.

Age Histopathology Interval from RT
completion (in months)

rCBV MRI
diagnosis

T/Wm
ratio

FET-PET
diagnosis

Final
diagnosis

49 43 Glioblastoma 24 0.8 Recurrence 2.2 Radiation
necrosis

Recurrence

50 32 Glioblastoma 13 1.7 Recurrence 1.9 Radiation
necrosis

Recurrence

51 51 Glioblastoma 22 1.5 Recurrence 2.1 Radiation
necrosis

Radiation
necrosis

52 40 Anaplastic astrocytoma 73 1.8 Recurrence 0.01 Radiation
necrosis

Recurrence

53 36 Anaplastic
oligodendroglioma

67 1.47 Recurrence 1.8 Radiation
necrosis

Radiation
necrosis

54 38 Anaplastic
oligodendroglioma

21 0.9 Radiation
necrosis

1.5 Radiation
necrosis

Radiation
necrosis

55 42 Anaplastic astrocytoma 15 0 Radiation
necrosis

1.8 Radiation
necrosis

Radiation
necrosis

56 49 Glioblastoma 29 0.87 Radiation
necrosis

2.2 Radiation
necrosis

Radiation
necrosis

57 35 Anaplastic astrocytoma 15 0 Radiation
necrosis

2.2 Radiation
necrosis

Radiation
necrosis

58 47 Glioblastoma 2 1.08 Radiation
necrosis

1.9 Radiation
necrosis

Radiation
necrosis

59 63 Glioblastoma 15 0 Radiation
necrosis

1.6 Radiation
necrosis

Radiation
necrosis

60 63 Glioblastoma 24 0.8 Radiation
necrosis

1.6 Radiation
necrosis

Radiation
necrosis

61 36 Anaplastic
oligodendroglioma

4 0.48 Radiation
necrosis

0 Radiation
necrosis

Radiation
necrosis

62 48 Anaplastic
oligodendroglioma

63 1.3 Radiation
necrosis

2.4 Radiation
necrosis

Radiation
necrosis
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Static PET imaging provides a single snapshot of

radiopharmaceutical concentration. On the other hand, dynamic

PET consists of acquiring sequential series of images as the

tracer distributes in the tissues, followed by kinetic curve analysis

to provide parametric images. Static 18F-FET scans have shown

to have higher accuracy for glioma grading than dynamic scans

(54). Moreover, dynamic FET-PET imaging is a time-intensive

process and was deemed to be less feasible given the constraints

of a busy institute such as ours.

The true diagnostic positive rate of MRI (sensitivity) was

98.08%, and the true diagnostic negative rate (specificity) was

76.92% in this series. These favorable results of MRI should be

considered carefully, as they might be biased by the retrospective

study design: all patients with suspected tumor recurrence were

considered for PET. Rachinger et al., compared FET-PET with

MRI involving 46 patients; the sensitivity and specificity of FET-

PET for the detection of recurrent tumors were 100% and 93%,

respectively, compared with 93% and 50% for MRI (55). A

recent systematic review and meta-analysis on the discriminators

of pseudoprogression and true progression in high-grade gliomas

demonstrated that dynamic susceptibility contrast perfusion MRI

(DSC-MRI) and DWI showed the highest diagnostic accuracy

(56). In our study, the lower specificity of MRI compared to

FET-PET can be attributed to a selection bias as FET-PET was

ordered only for patients with equivocal findings on MRI. As

FET-PET was not performed in cases with unequivocal

progression on MRI, overall specificity of MRI was lowered. In
Frontiers in Nuclear Medicine 09
this study, the gold standard used was either surgical excision or

stereotactic biopsy.

Studies have utilized simultaneous FDG-PET/MR imaging to

evaluate the diagnostic performance of functional MR imaging

and PET parameters when used individually and in combination

and have concluded that these add synergistic benefits when

utilized together. Parameters like rCBVmean (mean relative

CBV), ADCmean, Cho/Cr, and maximum and mean target-to-

background ratios were statistically significant in the detection of

recurrent lesions with an accuracy of 77.5%, 78.0%, 90.9%,

87.8%, and 87.8%, respectively, and a maximum AUC was

achieved by combining FDG and MRI parameters (57).

For imaging these lesions, it is important to remember that

certain diagnostic tests may be more sensitive or specific than

other more conventional tests. The principal basis of most

imaging is to differentiate metabolically active tissues by

analyzing the cell-specific uptake in malignant tissue, which

would always be higher than the metabolic activity of necrotic

tissue. An imaging modality that incorporates the most

discrimination (highest specificity) may be the most reliable test

for distinguishing TP from RN. In our study, both MRI and FET

PET have comparable specificity, however, this might be due to

the fact that the number of cases with true negatives was less.

In contemporary clinical practice, the response assessment for

high-grade gliomas are guided by the Response Assessment in

Neuro-Oncology (RANO) criteria (58–60). The importance of

detecting early recurrences with good accuracy is important for
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clinical practice as well as for deciding on patients eligible for

clinical trials addressing recurrent glioma. In an ideal situation, it

would be more prudent to identify early true recurrences since

small volume recurrences might be amenable for effective salvage

treatments, and early initiation of therapy might improve

survival. As a corollary, detection of RN avoids overtreatment,

reducing the morbidity of aggressive treatment regimens, and can

guide the initiation of steroids to decrease the inflammatory

process at play in RN. One of the major limitations of RANO

imaging-based assessment is the use of morphological assessment

using conventional MRI sequences, which can be challenging to

differentiate RN from progression in a substantial number of

patients. In clinical practice, it will be appropriate to consider

MRI as the preferred modality for routine surveillance and use

FET-PET in conjunction where MRI findings are equivocal. Also,

we suggest the utilization of advanced imaging techniques

whenever available, which can provide insights into the

underlying pathological alterations. Also, better reproducibility

such as rCBV (perfusion MRI), and Choline: NAA ratio (MRS),

can mitigate the subjective variations in the interpretation of

morphological features alone.

The study was performed in a small but uniform group with a

short interval between the two imaging modalities. All cases were

discussed individually on a multidisciplinary tumor board which

added further robustness to our data, however, there was limited

availability of histopathological evidence in the majority.

Furthermore, because only patients with equivocal MRI findings

and limited therapy choices were referred to FET-PET imaging,

it is likely biased towards challenging cases. The role of the

administration of steroids is unclear, as it was initiated in many

cases following the MRI, and this could have possibly reduced

the inflammatory changes in cases of RN, thereby allowing for

better interpretation of FET-PET imaging. While the use of MRS

and perfusion imaging along with conventional MRI further

improved results, newer techniques such as arterial spin labeling

(ASL) MR perfusion also need to be studied in this context.

Further studies with larger sample sizes, as well as the

development of an MRI-based scoring system, are being pursued

to develop a robust and reproducible model.
Conclusions

Our findings support the use of MRI and [18F]FET PET in

combination to distinguish RN from recurrence in gliomas with

excellent accuracy. To improve clinical decision-making, we

propose a stepwise approach as a resource-saving and cost-
Frontiers in Nuclear Medicine 10
effective strategy with regular MRI-based surveillance and using

FET-PET in conjunction for patients with equivocal MRI findings.
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