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One of the major concerns in future deep space missions to the moon and Mars is the

increased radiological risk of astronauts. They will be exposed to enhanced levels of

ionizing radiation from natural sources, such as galactic cosmic radiation, radiation

from the Sun including high-energy charged particles at solar particle events (SPEs),

and radiation belts surrounding the Earth (1, 2). The accumulated radiation dose over

a long-term mission to Mars is estimated to reach 1 Sv or more, depending on

duration, shielding and time in the solar cycle (3). Although it is a rare event, SPE

particles could further increase their doses to a serious level up to as high as 10 Gy

(4), which is far beyond the dose limit for radiation workers (5), and could induce

severe acute deterministic effects such as deterioration of blood-forming function (6),

reproductive potential (7), cataract (8) and even death by acute radiation syndrome.

With these concerns, space agencies such as the National Aeronautics and Space

Administration (NASA) of the USA and Japan Aerospace Exploration Agency (JAXA)

have developed dose-limitation criteria for controlling the space radiation exposure of

astronauts below an acceptable level. Table 1 shows the previous career dose limits for

NASA (1) and the current limits for JAXA (9) astronauts involved in low-Earth-orbit

missions. The limits of NASA were determined to constrain the increasing cancer risk

incurred by an astronaut to 3%; more precisely, the limits for NASA astronauts were

not to exceed 3% risk of exposure-induced death from fatal cancers at a 95%

confidence level based on a statistical assessment of the uncertainties in the risk

projections (10). As the unit–dose cancer risk generally increases with age (5, 11, 12),

the dose limit became higher for older astronauts than that for young ones. In addition,

at the same age range, a limit value for female astronauts was higher than that for male

ones, reflecting the fact that the breast has a notably higher radiosensitivity (5, 11, 12).

As inferred from the values in Table 1, these dose-limitation criteria allowed older

male astronauts to have more opportunities of space travel than young or female

astronauts, which could be regarded as a problem of inequality. Then, the National

Academy of Sciences (NAS) in United States recently made a recommendation of

applying a 600 mSv age and gender independent career limit of effective dose based

on a median estimate to reach 3% cancer fatality for 35-year-old females (13),

withdrawing the age and gender specific limits. This recommendation is expected to

allow equivalent flight opportunities for all male/female astronauts of different ages
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TABLE 1 Previous career dose limits for the astronauts of NASA (USA)
(1) and current limits for JAXA (Japan) (9) involved in low-earth-orbit
space missions.

Space agency (country) Male (Sv) Female (Sv)

NASA (USA) 1.5 Sv for 25 y 1.0 Sv for 25 y
2.5 Sv for 35 y 1.75 Sv for 35 y
3.25 Sv for 45 y 2.5 Sv for 45 y
4.0 Sv for 55 y 3.0 Sv for 55 y

JAXA (Japan) 0.6 Sv for 27 y 0.5 Sv for 27 y
0.7 Sv for 31 y 0.6 Sv for 31 y
0.8 Sv for 36 y 0.65 Sv for 36 y
0.95 Sv for 41 y 0.75 Sv for 41 y
1.0 Sv for 46 y 0.8 Sv for 46 y

The limit value is given as effective dose for the age of the first flight exposure.

Yasuda and Sihver 10.3389/fnume.2022.997718
(13). Following this recommendation of NAS, NASA updated

the standards for crew health in 2022 (14). In the new

standards, the total career effective dose of an astronaut due

to space flight radiation exposure shall be less than 600 mSv

and this limit is universal for all ages and sexes. It is also

required that radiation exposure from all sources below the

limit shall be further minimized following the principle of “as

low as reasonably achievable (ALARA)”.

This concept has been criticized by some researchers for the

reason that it could have negative impacts on crew health and

safety and violate the principles of radiological protection (15).

It is worried also that such a lower annual dose limit would

make a Mars mission unfeasible since the cumulative dose in

one mission is expected to far exceed 600 mSv. While,

recognizing the fact that the risk of radiation-induced cancer

can considerably change among individuals and also under

different radiation dose rates, the National Aeronautics and

Space Administration (NASA) had requested National Council

on Radiation Protection and Measurements (NCRP) in United

States to evaluate the risk of radiation-induced lung cancer in

populations exposed to chronic or fractionated radiation to

learn whether differences exist when exposures occur gradually

over years contrasted with the acute exposure received by the

Japanese atomic-bomb survivors. In response to the request

from NASA, NCRP launched a scientific committee and have

been working to prepare a commentary (16) on this issue with

accompanying recommendations for NASA.

Considering such a fluid situation on the radiological

protection criteria for astronauts, the authors like to present

here a different viewpoint which might mitigate the ongoing

discussion on radiological protection of astronauts. Apart

from the possible ethical issue of discriminating people by age

or gender, it is known that elderly people have generally more

health problems related to aging. Any person inevitably

becomes vulnerable with age through various types of

deteriorative changes due to many causes (17, 18), although

the pace of aging varies among individuals (19, 20). Some of

the typical aging symptoms that could be commonly

experienced before age 65 years (general retirement age in

many countries) are as follows:

- Loss of muscle mass and strength (21)

- Weakening and embrittlement of bones (osteoporosis) (22)

- Loss of arterial elasticity (atherosclerosis) and other

cardiovascular changes (23)

- Difficulty in focusing eyes on close objects (presbyopia)

- Lowering hearing ability of ears (presbycusis)

- Cardiovascular diseases

- Menopause associated with hot flash, disruption in sleep,

subsequent osteoporosis, etc.

In addition, risks for cognitive impairment (dementia,

Alzheimer’s disease, Parkinson’s disease, etc.) (24), cataracts (8),

and carcinogenesis (12, 23) increase with age. With advancing
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age, individuals also tend to have difficulty coping with various

stresses such as strenuous exercise and environmental changes;

and those stresses tend to cause functional deterioration of

some of their organs such as the heart, urinary organs, and

brain. The senescence-associated health deterioration can be

different between male and female people, as women have

some biological advantage related to their ability to bear a child

and the physiological systems that permit pregnancy (25).

For preventing the occurrence of a serious problem caused by

the aging of astronauts in long-term deep-space mission, it is

desirable to carefully consider all possible age- and gender-

related deterioration of health when selecting the astronauts

who will take up difficult tasks during a long space mission for

up to few years. While young astronauts are generally tough

and swiftly acting, experienced older astronauts are more

knowledgeable and prudent, which would make them more

reliable when facing unexpected troubles. The current criteria

of NASA on crew health management (14) does not clearly

indicate how to evaluate and balance the unique competences

of individual astronauts who will work together for a long

period in the same mission. According to these facts, the

authors propose to deal with the age- and gender-dependent

radiation sensitivity as one of the major qualifications required

for astronauts involved in a deep space mission.

The conceptual basis of this idea can be illustrated with a

radar chart as shown in Figure 1. This chart has six axes of

major requirements on qualifications of astronauts with two

example patterns of typical scores of young and older

astronauts. The requirements assumed here are (1) physical

strength related to muscles, bones, and cartilage; (2)

physiological soundness related to cardiovascular, renal,

digestive, respiratory, and immune systems; (3) sensory

capability related to perceptions with eyes, ears, nose, and

nerves; (4) cognition and memory related to the neuroimaging

functions mainly controlled by brain; (5) knowledge and

judgement supported by acquired intellectual base and

experience; and (6) radiological health which could be

quantified as an inverse quantity of radiation sensitivity

regarding carcinogenesis. Older astronauts could have higher
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FIGURE 1

Example of scoring in regard to major requirements on qualification of astronauts and assumed typical scores of young and old candidates.
Radiological health (i.e., the inverse of radiosensitivity) should be one of the requirements for astronauts involved in long-term space missions.
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scores on the knowledge, judgement and radiological health,

while their scores on physical strength, physiological soundness,

sensory capability, and cognitive functions would be lower.

For the success of future deep-space missions, it will be

crucial to carefully select healthy astronauts who can show

strength against not only psychosomatic stress including

radiation-induced cancers, but also the inevitable aging effects

during a long traveling period of up to few years; possible

appearance of different-quality age-associated symptoms

should be projected in the process of crew selection. In this

sense, a routine health surveillance programme based on the

general principles of occupational health will take a vital role

for assessing the initial and continuing fitness of the

astronauts for achieving their intended tasks as a team in a

specific space mission. With these efforts, it is expected that

a well-balanced team of male and female astronauts covering

a broad range of age will be formed, so that the scores

regarding all requirements as shown in Figure 1 could be

maximized as a whole.

In conclusion, the diversity in formation of a team of

astronauts is preferably to be pursued for successful deep

space missions in the future. For this, further studies for
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overcoming various aging-related health issues are needed to

smash the current highest score.
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