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Artificial intelligence and machine learning (AI/ML) is poised to disrupt the
structure and delivery of healthcare, promising to optimize care clinical care
delivery and information management. AI/ML offers potential benefits in
healthcare, such as creating novel clinical decision support tools, pattern
recognition software, and predictive modeling systems. This raises questions
about how AI/ML will impact the physician-patient relationship and the practice
of medicine. Effective utilization and reliance on AI/ML also requires that these
technologies are safe and reliable. Potential errors could not only pose serious
risks to patient safety, but also expose physicians, hospitals, and AI/ML
manufacturers to liability. This review describes how the law provides a
mechanism to promote safety and reliability of AI/ML systems. On the front
end, the Food and Drug Administration (FDA) intends to regulate many AI/ML
as medical devices, which corresponds to a set of regulatory requirements
prior to product marketing and use. Post-development, a variety of
mechanisms in the law provide guardrails for careful deployment into clinical
practice that can also incentivize product improvement. This review provides an
overview of potential areas of liability arising from AI/ML including malpractice,
informed consent, corporate liability, and products liability. Finally, this review
summarizes strategies to minimize risk and promote safe and reliable AI/ML.
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Introduction

Artificial intelligence and machine learning (AI/ML) is poised to disrupt the

structure and delivery of healthcare, promising to optimize care clinical care delivery

and information management. AI/ML offers potential benefits in medicine, such as

creating novel clinical decision support tools, pattern recognition software, and

natural language processing to streamline clinical encounters. AI/ML adds an

additional component into the physician-patient relationship, raising questions about

the appropriate role of AI/ML and ethical duties of physicians. Effective utilization

and reliance on AI/ML also requires that these technologies are safe and reliable. This

review describes potential flaws in the technology ranging from problems with the

input data, choices that developers make during the building or training process, and
Abbreviations
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how the program is eventually deployed. Potential errors could

not only pose serious risks to patient safety, but also expose

physicians, hospitals, and AI/ML developers and

manufacturers to liability.

This review describes how the law provides a mechanism to

promote safety and reliability of AI/ML systems. On the front

end, the Food and Drug Administration (FDA) intends to

regulate many AI/ML as medical devices, which corresponds

to a set of regulatory requirements prior to product marketing

and use. Post-development, a variety of mechanisms in

healthcare tort law provide guardrails for careful deployment

into clinical practice and incentivize product improvement.

This review provides an overview of potential areas of liability

arising from AI/ML including malpractice, informed consent,

corporate liability, and products liability. Finally, this review

summarizes strategies to minimize risk and promote safe and

reliable AI/ML throughout the life cycle of development,

testing, implementation, oversight, and evaluation.
Promises of AI/ML

As of 2021, FDA approved or cleared more than 350 medical

devices that use AI/ML (1). FDA states the greatest potential

benefits of ML resides in its ability to create new and important

insights from the vast amount of data generated during the

delivery of healthcare (1). The healthcare encounter can amass

data from sources including claims data, imaging, EHR

documentation, genetic information, medical device sensors,

and patient generated information from wearable devices (2).

Medical AI/ML sifts through data curating knowledge, sorting

complex interactions, and identifying patterns. The National

Academy of Medicine (NAM) envisions AI/ML as a tool to

advance clinical care delivery and optimize information

management by offering predictions, improving performance,

identifying risks, and enhancing communication (2, 3).

NAM describes three categories of use cases for AI/ML in

healthcare: health monitoring systems, administration, and

tools during the clinical encounter (2).
Health monitoring systems

Health monitoring systems include wearable devices or

sensors that track patient behavior and vitals. This can

include heart rate sensors, sleep sensors, glucose monitors,

activity trackers, and medication reminders (2, 4, 5). Wearable

devices or remote monitoring could address the problem of

intermittent data collection by feeding patient information

directly into the EHR. This information could provide dual

alerts to the clinician as well as patient facing alerts, such as

progress tracking or reminders such as when to take a

medication (2).
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Health monitoring tools could provide insight and data on

patient behavior outside the clinical setting that can better

inform clinical decisions. As one example, prior to undergoing

cardiac surgery a clinician could track patient weight, glucose,

meals, heart rate, sleep, and activity. AI/ML may be able to

provide patient specific risk assessment for operative planning,

risk of complications, and post-surgical monitoring (6). Home

monitoring systems can assist in additional contexts, such as for

checking post-operative patients, or monitoring older adults and

tracking the person’s location in the home, time in bed, falls, or

other aspects of patient behavior (2).

While each of these data points provides additional

information about the patient with the goal of more precise care,

health monitoring tools in particular also pose significant privacy

concerns. Granular details about a patient’s sleep, meals, activity,

and location through sensors entails the most private aspects of a

person’s life. Moreover, some stakeholders anticipate even

greater expansive data collection and connectivity across devices.

NAM envisions the ability to link connected information from a

patient’s phone (which would include social contacts and

conversations), and consumer purchasing information (such as

whether the patient’s report of eating certain foods matches his

purchasing records) (2).
Administrative tasks

AI/ML can streamline certain administrative tasks in

healthcare management and practice. Practice managers can use

AI/ML to identify peak times to modify clinical staff scheduling,

optimize wait times, and identify patient no-shows (2). Natural

Language Processing (NLP), a system for building a computer’s

ability to understand human language and transform text into

readable structured data could also be useful for administrative

tasks, such as clinical notetaking (7). Physicians report they

spend almost half of their time working with inputting data into

the EHR and other desk work such as data entry and search

tasks (7). During the clinical encounter, physicians can use NLP

as a tool to search and retrieve the most relevant portions of the

patient record to view (8). NLP can also serve as scribe to take

notes, using AI/ML as a filter to record only the most important

points and directly input them into the clinical record. Finally,

following the patient visit, AI/ML can assist with coding, billing,

and internal automated fraud or abuse detection (2, 8, 9).
Clinical decision support

AI/ML offer potential benefits during the clinical encounter

through Clinical Decision Support systems (CDS).

CDS can interpret large amounts of data from a patient’s EHR

such as imaging, lab results, patient history, medication, admission

history, genetic testing, and other data points (10). Physicians
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could oversee feeding this data into theCDS,whichwould compare

this information along with guidelines against an intervention

threshold to provide a recommendation (4). Physicians could use

CDS to support a diagnosis, predict an outcome, plan treatment,

prescribe and manage medications, and interpret imaging (11).

CDS can sort and manage relevant clinical guidelines, providing

a real time recommendation based on specific patient

characteristics (12).

Many CDS systems incorporate ML, which enables

computers to utilize data, learn from a dataset, and decipher

patterns, recognize new correlations, and make predictions

about the data without explicit programming (13). ML

systems are classified as either supervised, where the system

works by collecting a large number of training data that

contains labeled inputs, or unsupervised, where the system

uses unlabeled data to discern underlying patterns, outliers,

and produce a representation of the data (6). AI/ML can also

be categorized as locked or adaptive (13, 14). In locked

systems, the same input will always produce the same result

unless the developer modifies the program. Developers build

adaptive systems, on the other hand, with the intention that

they will self-update based on new data, so the input could

yield a different output over time (13, 14).

CDS that integrates ML could provide potential benefits,

particularly in oncology. For example, CDS could incorporate

patient age, tumor size, tumor biology, and other data points

the in EHR to determine the course of action for a patient

with cancer (6, 10). Physicians could use CDS to select a

specific type of chemotherapy, predict patient responsiveness

to treatment, individualize chemotherapy dosing, or tailor

radiation treatments (7, 10, 11). In an adaptive system, ML

would learn from prior cases to calibrate medication dose,

consider adjuvant therapies, or how to adjust radiation to

minimize damage to surrounding tissue (12). Proponents of

integrating CDS view the tool as a mechanism to provide

precision medicine and individualized patient care that

maximizes patient benefit and reduces risks (7, 10).

CDS could also improve healthcare quality and patient

safety through drug management. CDS can assist physicians

with selecting the appropriate type or dose of medication

tailored to patient characteristics, provide reminders on drug–

drug interactions, patient drug allergies, and alerts for error

detection (such as wrong dosage) to reduce preventable

medication errors (3, 15).
Imaging and diagnostic medicine

Proponents of AI/ML describe useful applications in

imaging and diagnostic medicine. Deep learning and ML can

excel at pattern recognition and predictive modeling, which

could be applied in radiology, pathology, dermatology, or

during surgical procedures. AI/ML can assist by sorting and
Frontiers in Nuclear Medicine 03
prioritizing images, screening cases, and offering clinical

predictions (2, 4, 16). AI/ML can streamline practice by

highlighting items a physician may miss, flag images for

review, and sort through the images the system classifies as

lower priority that the physician may dismiss (2, 7). In

dermatology, AI/ML can screen lesions to assess whether they

are benign or malignant and provide guidance for follow up

testing with a dermatologist or oncologist (7, 16, 17). These

same capabilities extend to applying AI/ML in other areas of

oncology, such as detecting neoplastic lesions during

colonoscopy, or assessing liver lesions using ultrasound

imaging (16, 18). Finally, AI/ML incorporating CT or MRI

can create 3D interactive anatomy models that provide

information on tumor size, location, and patient vascular

structure for surgical planning (19).

Some evidence suggests that AI/ML in imaging and

diagnostic medicine could improve efficiency and accuracy in

diagnosis, mitigate interobserver variability, and facilitate

better decision-making (5, 16). Several studies suggest deep

learning diagnostic systems are more effective than physicians

in oncology, for example AI/ML demonstrating higher rates of

correctly detecting melanoma or breast tumors as compared

to specialists (17, 20). On the other hand, initial systems that

appear to have high rates of accuracy may exhibit errors or

lower accuracy once tested in clinical practice, which occurred

with IBM Watson’s partnership with Sloan Kettering. IBM

initially envisioned Watson as a disruptive product to

revolutionize oncology; however, the program contained

multiple errors and incorrect treatment recommendations due

to faulty training data (20, 21). Finally, radiologists further

note that they do not simply “look at pictures,” but that their

assessment involves complex decision-making, assessing

numerous clinical factors with practice experience that

involves more than simple detection (20).
The relationship between AI/ML
and physicians

What’s different about AI/ML?

For decades, physicians have used clinical guidelines and

decision support systems based on statistical models as a tool

in the practice of medicine. While early statistical models

curated medical knowledge to create static clinical decision

support systems, modern AI/ML builds highly complex

programs involving extensive data, designed to learn from

previous datasets, decipher new patterns, and relies on

adaptive models that may change recommendations over time

based on inputs (13). The machine’s vast layers of neural

networks are often referred to as a “black box,” or opaque

based on the lack of transparency and explainability to

outside observers (7, 20, 22). Thomas suggests this has the
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potential to outsource decision-making to the algorithm, which

centralizes power in the algorithm and poses several concerns if

physicians use the algorithm without sufficient validation and

oversight (23).

Schweikart notes that AI/ML relies on diffuse development,

where multiple parties such as several software and hardware

developers potentially work in different locations, on different

components, to create one product (22). Diffuse development

without conscious coordination raises concerns about

cohesion, oversight during development, and accuracy of the

final product (20, 22). If AI/ML’s reasoning cannot be fully

understood by outsiders or explicitly stated based on

complexity, this further raises questions about who is driving

the decisions in healthcare and the balance of power between

AI/ML and the physician.
The role of AI/ML and the physician

Many stakeholders have addressed the issue about the

appropriate interaction between AI/ML and the physician (5,

16, 20). Terry envisions different types of AI, where some

tools could enhance or even substitute physician tasks as a

means to improve physician performance, avoid

administrative drudgery, minimize risk, and reduce time and

expense (16). Some technology experts propose the concept of

“enveloping,” and creating parameters of microenvironments

to contain AI/ML, which preserves useful features while

maintaining human control (23).

Other AI/ML developers, however, may aim to create

systems that run without humans in the loop in a manner

that substitutes or supersedes physician practice (22). Unlike

traditional clinical guidelines or statistics-based decision

support tools, AI/ML tools are distinct based on the intention

for them to drive, or even replace, physicians’ independent

judgment (22). Several experts caution against automating

certain decisions without adequate insight about whether the

recommendation is clinically optimal for the patient (4, 12,

15, 20). Froomkin et al. note that AI/ML may make decisions

that are unpredictable or unclear to the physician, but

correctly follow the ML algorithm (20). This constitutes a

feature of AI/ML, but simultaneously raises questions about

whether the physical can, or should, follow the

recommendation or his own clinical judgment (20).

A closed loop system may lead to diagnostic monoculture,

where clinical decisions in certain subspecialties reflect only

the AI/ML recommendations, and physicians lose the ability

to discover newer or better treatments (20). Overreliance on

AI/ML may also result in physician deskilling, the loss of

critical medical knowledge and skills, and decrease physicians’

ability to identify errors (20). While physician skill in certain

areas may decrease, they would need to acquire new
Frontiers in Nuclear Medicine 04
education and training for how to interact with new AI/ML

systems (2).
Maintaining physicians in the loop

The American Medical Association (AMA) states that AI/

ML should enhance and scale human expertise rather than

attempt to replace or replicate physicians (5). Notably, the

practice of medicine is a distinct function specifically

regulated by states laws called medical practice acts. These

state laws provide precise rules for who can prescribe or

administer medication, treat or diagnose disease, perform

surgery, or render a medical opinion (16). Physicians, unlike

machines, are also subject to legal, professional, and ethical

standards of the profession such as a fiduciary obligation to

the patient, truthfulness, confidentiality, and reasonable care

(4). Physicians are also bound by ethical duties such as

beneficence (maximizing benefit to the patient) and

nonmaleficence (minimizing potential harm or risk). These

ethical obligations require physicians to view the patient

before them as people with distinct medical and psychosocial

needs, rather than a constellation of symptoms.

The practice of medicine is also more than simply

dispensing advice, but provides a critical human component –

compassion, touch, and empathy (4, 10). As Terry aptly notes,

physician engagement with each patient upholds not only

ethical values underpinning medicine, but can translate to

understating patient circumstances, which can also lead to

improved diagnostic or treatment insights (16).

AI/ML operates without the boundaries of physicians’

ethical standards, and without the assessing the context of

each recommendation. Froomkin et al. highlight that AI/ML

used fixed performance criteria, but does not have the ability

to self-correct to incorporate new dimensions into its value

system (20, 24). Accordingly, while AI/ML may appear more

efficient, consistent, or streamlines, this also comes at a cost

of evaluating each specific patient’s needs. The exceptional

nature of the practice of medicine along with potential for

error leads some stakeholders to assert that humans must

remain in the loop (20, 24). AI/ML can inform clinical

decision-making, but physicians must have final control to

render their professional opinion in patient care.
Potential errors and patient safety

Potential errors when developing and
deploying AI/ML

AI/ML relies on feeding data into an algorithm to produce

accurate outputs, but data can be incomplete, missing, or biased

(25). AI depends on data standardization, structure and
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organization. The sheer amount of data and fragmentation from

multiple sources of records can increase risk of errors in data

collection, particularly if different systems use different

terminology, descriptions, and labels (26). If different

healthcare institutions collect or label data differently, AI/ML

trained at one institution and used at another institution may

result in errors (3). If AI/ML programs use NLP to capture

and record patient data directly into the EHR, the program

may capture the wrong word or exclude different terminology,

skewing important information in the patient’s EHR.

If the EHR is connected to a continuously learning AI/ML

system, this error could reverberate through the entire

program (7, 25). Thomas notes that some medical data is not

a recording of actual patient experience, but rather filtered

through the physician’s perception of the patient’s state (25).

Price notes the problem of contextual bias, where medical AI

developed at a high resource environment such as an

academic medical center may not be representative in low

resource settings (7). Unrepresentative data could skew

diagnostic and therapeutic patterns that AI sees, providing

clinically inappropriate suggestions when applied to low

resource settings (3). Nishida and Kudo also describe the

potential problems of overfitting (overestimating the model’s

performance based on previously unencountered data) or

underfitting the data (where a low capacity model is used

relative to problem complexity and data size) (17). To address

such potential errors, developers can work with physicians

and content area experts to be involved in correctly

labeling the data, select hyperparameters for input and

recommendations, and tune the data (17, 25).

Current literature describes a variety of errors in AI/ML (12,

15, 27, 28). Errors can arise from a number of factors, such as

software upgrades, changes to underlying datafield or code,

changes in terminology, inadvertent enabling or disabling a

rule, upgrading clinical information system, or database

corruption (27).

Challen et al. provides an extensive description of eleven

discrete quality and safety issues in AI/ML classified by

whether the error occurs in the short term, medium term, or

long term (12). In the short term, Challen et al. explains the

potential problems of distributional shift, insensitivity to

impact, black box decision-making, and unsafe failure mode

(12). As one example of black box decision making, Challen

et al. provides the example that an AI/ML tool that analyzes

x-ray images may be inaccurate based on incorrect training

data, but the opacity of the algorithm means the physician

may not recognize the error, and it will not be apparent until

prolonged use (12). Medium term errors include automation

complacency/bias, reinforcement of outmoded practice, and

self-fulfilling prediction (12). As an example of self-fulfilling

prediction, a system trained on oncology outcomes may

predict poor prognosis for certain patients, leading the

physician to suggest palliative care rather than curative
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treatments, reinforcing poor prognosis outcomes (12). Finally,

long-term errors include negative side effects, reward hacking,

unsafe exploration, and unscalable oversight (12). As an

example of negative side effects, AI/ML may learn to perform

one function, such as an autonomous ventilation following

surgery, but the system fails to take into account the wider

context, such as inducing long term lung damage (12).

Lyell et al. classify errors in CDS as either omission or

commission errors (15). Omission errors refer to when a

physician fails to detect an error in the CDS, such as an

incorrect treatment recommendation, prescription dose, wrong

drug not indicated by clinical guidelines, or other failure to

detect an anomaly. As one example, AI/ML tools that use

mammography to detect breast cancer could miss lesions, or

misclassify malignant lesions as benign (29). Lyell et al.

classifies commission errors, on the other hand, as when

physicians comply with incorrect recommendations or accept

false positive alerts (15). Both errors may be driven by

automation bias, or overreliance on CDS where the physician

uses automated cues from the CDS to replace independent

clinical assessment. The “black-box” highly complex nature

of AI/ML also makes it difficult or impossible for the

physician to understand the reasoning behind the CDS

recommendation, creating uncertainty for a physician when

comparing clinical judgment against the AI/ML

recommendation as a means to prevent error (4, 15).

In addition to unintentional errors in CDS, Taitsman et al.

warn against intentional bias and corruption from commercial

influences (30). In 2020, the EHR vendor Practice Fusion

agreed to pay $145 million to resolve criminal and civil

allegations that it accepted kickbacks from fourteen

pharmaceutical manufacturers in exchange for building CDS

software designed to increase prescribing of manufacturers’

products (30, 31). According to the Department of Justice, in

exchange for “sponsorship” payments, Practice Fusion

permitted companies to influence the development and

implementation of CDS alerts by setting the criteria that

would trigger the alert or even draft the alert language (31).

The U.S. Attorney prosecuting the case noted that CDS

software in EHRs constitutes an important an important

technology to inform clinical decision-making, but that

prescribing decisions must be based on accurate data, reflect

the patient’s medical needs, and may not be tainted by

“corrupt schemes and illegal kickbacks” (31).
Impact of errors from AI/ML

In a study to assess rates of omission and commission errors

in CDS, Lyell et al. tested the rates of omission and commission

errors recruiting medical students to use a simulated e-

prescribing system (15). Researchers informed participants

that although testing found CDS alerts are highly accurate,
frontiersin.org
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they are “occasionally” incorrect and each participant should

double check drug reference prescribing information (15).

Researchers aimed to find omission errors, where the

participant failed to detect a genuine prescribing error and

commission errors, where the participant did not prescribe a

safe medication because of a false positive alert from the CDS.

Lyell et al. found when compared to scenarios with no CDS,

correct CDS reduced both types of errors by 58.8% (15).

However, when CDS provided participants incorrect

information, this increased prescribing errors by 86.6% (15).

Notably, Lyell at al. concluded that participants had difficulty

determining when CDS was wrong, but also had difficulty

determining when the CDS was correct (15). CDS also can

strongly influence physicians’ own judgment: Goddard et al.

found evidence of commission errors from physicians changing

their responses in test scenarios from correct to incorrect

answers after being provided with an incorrect CDS advice (15).

Translating these findings to clinical practice, physicians may

have difficulty determining when CDS alerts are accurate and

beneficial and should accept the recommendation, when to

ignore or override the CDS, and identifying when the CDS

missed a critical detail (11, 15).

BothWright et al. and Stone describe how changes in software,

hardware, lab instruments, terminology or logic in the alert builder

can all contribute to errors in CDS once deployed in practice, such

as failure to fire, providing an incorrect or unsafe treatment

recommendation, or overfiring (27, 28). In one example, Stone

describes a case study where logic in the CDS alert builder did

not account for categories of drug overlap (28). In this case, a

patient was already taking al alpha/beta-blocker, but the system

recognized this as a separate category than a beta-blocker, and

generated an alert recommendation that the physician prescribe

a beta-blocker (28). Wright et al. describe a similar case, where a

change in an external drug classification system caused a system-

wide spike in alerts recommending redundant prescribing (27).

Wright et al. also describe a case study where alerts failed to fire,

such as stopping reminders to check TSH levels for patients on

thyroid medications based on certain thresholds (27).

NAM notes that predictive models may help physicians

asses patient risk, but methods that learn associations between

inputs and outputs can be unreliable or dangerous when used

to drive medical decisions without independent physician

review (2).
Accuracy in testing may not equate to
clinical performance

Choudhury andAsan highlight that the accuracy ofAI/ML in a

model does not necessarily match the clinical efficiency or

performance in practice (3). Choudhury and Asan performed a

systematic literature review including 53 eligible studies that used

or integrated AI/ML into clinical care (3). While initial testing
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may report high rates of accuracy, Choudhury and Asan assert

that testing accuracy may differ from clinical performance,

especially if AI/ML is tested on a small subgroup, use a small

sample size, or if prediction models do not account for missing

data (3). Choudhury and Asan also note that different studies

use varying evaluation metrics to measure AI/ML performance

(3). Some developers may report accuracy against previous

versions of the same product as benchmark, rather than

measuring against standard physician practice. In one example,

Choudury and Asan describe how a developer advertised that its

cardiovascular risk algorithm improved from one version to the

next (3). However, the original algorithm that physicians used

for eight years overestimated the risk of cardiovascular disease,

which affected one-third of all surgeries performed during that

time-period, exposing patients to potential overtreatment risks

and unnecessary surgery (3).

Habli et al. note that if developers promise AI/ML safety,

physicians will rely on these assurances (32). Developers’

safety assurances provides physicians confidence that the

potential patient safety risks of using AI/ML are reasonably

low. However, some developers’ testing systems may not

account for the dynamic characteristics of the clinical setting

because they cannot account for context, developers may only

use limited data points, and the intended function cannot be

fully represented until the system is actually deployed into

clinical practice (7, 32). The adaptive nature of ML and

changing clinical environments as AI/ML learns over time

raise continuous questions of program confidence and patient

safety (7, 32). Habli et al. assert that considerations of safety

are not fully resolvable during design because certain issues

may only become apparent once a healthcare institution begin

to use AI/ML system (32).
Risks to patient safety

Errors in AI/ML and CDS specifically can cause unintended

adverse consequences and pose risks to patient safety (13, 28).

This may include problems with the data used to develop the

algorithm, choices the developers make in building or training

the model, or how the AI/ML program is eventually deployed

(13). Despite potential benefits, CDS are not perfectly accurate

and can dispense erroneous advice. Inappropriate use can lead

to the deterioration in quality of patient care such as false

positives, false negatives, or add to physician workload (11).

As Price aptly notes, AI/ML errors are different from other

errors in medicine (7). A programming error does not merely

affect a line of code, but can induce patient harm by

providing unsafe, inappropriate, or missing a recommendation

(25). Compared to a single error by one single physician,

errors in AI/ML can potentially impact thousands of patients,

resulting in mass injuries (26). Understanding the functioning

of complex AI/ML requires technical knowledge that is not
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common among clinicians. Most physicians do not have

training to identify errors and glitches, or recognize when AI/

ML is providing a suboptimal or faulty recommendation (3).

Wright et al. concludes that malfunctions are widespread (27).

In a survey of twenty-nine Chief Medical Officers (CMOs) on the

topic of CDS errors in their healthcare institution, only two CMOs

reported noCDSmalfunctions (27). Thirty-eight percent of CMOs

report finding CDS error four or more times per year (27). Wright

et al. found users reported the error 83% of the time, and as CDS

become more complex there are more areas of potential failure

(27). Notably, 62% of CMOs were “not very” or “not at all”

confident that existing processes in their healthcare institution

were sufficient to prevent or detect CDS errors before reaching

the end user (27). Importantly, Wright et al. also found that

although end users knew of CDS malfunctions and risks to

patient safety, software developers were mostly unaware of these

outcomes and surprised by the frequency of errors (27).

Potential errors in conjunction with risk to patient safety

leads several experts to caution against automation bias (4, 15,

20, 32). Haupt defines automation bias as when physicians

over-rely on AI/ML, which reduces vigilance in information

seeking and processing (4). If physicians over-rely on AI/ML,

or CDS in particular, the physician may only provide a

cursory review of the output or recommendation. In

radiology, for example, if the physician relies on CDS without

independent evaluation, then the physician may be more

likely to overlook certain cancerous lesions on imaging tests if

the AI/ML designates it as benign.

However, as Habli et al. point out, one of the central purposes

of AI/ML is to delegate partial cognitive decision-making to a

machine as a means to save time and improve decision-making

accuracy (32). If physicians spend time developing their

own opinion about the patient and whether the AI/ML

recommendation aligns with their opinion and assess the

potential for errors in the AI/ML, this undermines these purposes.

Haupt asserts that physicians should maintain an index of

suspicion that the prediction may be wrong, and determine

whether the recommendation aligns with the specific patient (4).

Stone suggests that physicians should not blindly follow CDS, but

consider that CDS may be missing data, the recommendation

may incorporate faulty data, or lack accurate logic that could

undermine its accuracy (28). Similarly, Lyell et al. recommend

using CDS as an independent check for errors rather than relying

on CDS as a replacement for physician judgment (15).
Federal regulation of AI/ML products
in healthcare as medical devices

Background on medical device regulation

Federal regulations provide an important mechanism to

standardize requirements for developers to demonstrate the
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safety and reliability of AI/ML products. NAM states that

regulation should cover validation, implementation, and

maintenance of AI/ML (2). FDA intends to regulate many AI/

ML products as medical devices, which corresponds to a set

of regulatory requirements prior to product marketing and

use (14). The Federal Food Drugs and Cosmetic Act defines a

medical device as: “an instrument, apparatus, implement,

machine… or other similar or related article…intended for

use in the diagnosis of disease or other conditions, or in the

cure, mitigation, treatment, or prevention of disease” (33).

FDA asserts that AI/ML has the potential to transform

healthcare and produce “high value applications” such as

earlier detection, more accurate diagnoses, and personalized

care (14).

For medical products, FDA regulates according to a risk-

based classification system, based on the device’s intended use

and level of risk to patients if the device is inaccurate or

harmful (13, 34). Most products that are medical devices that

use AI/ML are classified as software as a medical device

(SaMD) (13, 14).

Class I products entail low risk, such as software that

displays a glucose reading. Class II products entail moderate

to high risk, such as AI/ML that sorts and classifies medical

imaging findings. For most Class II devices, manufacturers

must undergo a Premarket Notification 510(k) review to

obtain FDA clearance prior to marketing and selling the

product (35). A 510(k) review is a process where the

manufacturer demonstrates the product is safe and effective

for its intended use and substantially equivalent to an existing

device on the market and has the same intended use and

characteristics (35, 36). For other Class II devices,

manufacturers can undergo a de novo request, which is a

marketing pathway for novel medical devices where the FDA

relies on general or special controls to provide reasonable

assurances that the product is safe and effective for its

intended use (37). Lastly, Class III medical devices are high

risk products that are life supporting, life sustaining, or

substantially important in maintaining human health (34).

Manufacturers must undergo a full premarket review approval

process and demonstrate the product’s safety and effectiveness

for the intended use. Once the device enters the market, FDA

uses a risk-based approach to determine whether changes or

updates would require additional regulatory review.
Certain types of software are exempt
from regulation

In 2016, Congress passed the 21st Century Cures Act, which

amended the Food, Drug, and Cosmetic Act to exclude certain

software functions from the definition of “medical device” and

corresponding regulatory requirements (38). Products must

meet four specific criteria:
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(1) the product is not intended to acquire, process or analyze a

medical image of signal;

(2) the product’s purpose is only to display, analyze, or print

medical information (e.g. clinical guidelines) or patient

information (e.g. the patient’s chart);

(3) the product can collect information about the patient and

support a recommendation but does not treat the patient,

make treatment recommendations, or provide a definitive

diagnosis; and

(4) the healthcare provider must be able to independently

review the basis of the recommendation (38).
FDA guidance provides examples that meet these criteria,

such as software that displays or prints test results, displays

drug labeling information, or uses the physician’s diagnosis to

display current treatment recommendations for a common

illness such as influenza that cites the source of the clinical

guidelines (38).
FDA’s framework for regulating
AI/ML software

In 2019, FDA issued Guidance on Clinical Decision Support

Software that applied FDA’s risk based device framework using

a matrix that combines the seriousness of the medical condition,

the significance of information that the medical device provides,

and whether developers design the product to be used by

healthcare providers or patients (38).

On one side of the risk matrix, FDA provides three

categories of medical conditions: non-serious, serious, and

critical (38). Non-serious conditions refer to short-lived or

self-limiting conditions, where an accurate diagnosis if

important, but not critical to mitigate long-term irreversible

public health consequences. An example of a non-serious

condition would include managing mild to moderate seasonal

allergies. FDA defines serious conditions as when an accurate

diagnosis or treatment is of vital importance to avoid

unnecessary interventions or obtain a timely intervention,

such as avoiding an unnecessary biopsy. Lastly, critical

conditions refer to when an accurate or timely diagnosis is

necessary to avoid death, long-term disability, or serious

health deterioration. Critical conditions would include the

example of avoiding paralysis.

The other side of the risk matrix provides three categories to

classify the significance of the information. FDA classifies the

first category as CDS that is designed to inform clinical

management, such as providing information on treatment,

diagnosis, prevention, or aggregating relevant information.

Next, driving clinical management refers to CDS designed to

use in aiding treatment, diagnosis, or triage for early signs of

a condition or disease. Lastly, treating or diagnosing refers to
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making immediate or near term action to prevent or mitigate

a disease or condition, or diagnosing or detecting a disease.

Based on the intended use and function of the CDS in the

risk matrix, FDA specifies whether it considers the product as

a medical device and whether it intends to enforce regulatory

oversight (38). In general, FDA indicated it does not intend to

enforce oversight of CDS designed to inform clinical

management of non-serious conditions (38). As an example

of a non-serious condition, FDA states it would not enforce

regulatory oversight for a ML algorithm that classifies patient

specific data to provides alerts to the healthcare provider

about cholesterol management. However, FDA does intend to

enforce regulatory requirements for device CDS when the

product is intended to inform clinical management for serious

conditions or diseases and the healthcare provider cannot

independently evaluate the basis of the recommendation (38).

As an example, FDA describes that a ML algorithm designed

to identify postoperative cardiovascular events where input

and logics are not explainable to the healthcare provider

would need to undergo regulatory review. As a general rule,

the more serious the medical condition or disease, the greater

the risk if device is inaccurate, and the less transparency of

the product, the more likely the FDA will require the

manufacturer to undergo regulatory review.

Additionally, FDA also stated it intends to enforce

regulatory oversight of software devices that are not CDS,

which may particularly impact devices used by physicians in

radiology, oncology, and surgery (38). One example of

software devices that still must undergo regulatory review

would include products such as software that uses a patient’s

CT or MR imaging to create an individualized radiation

treatment plan. As another example, FDA described it would

also enforce oversight of software that uses a patient’s CT

scan to create a 3D model for surgical planning.

In contrast to the traditional regulatory process that evaluates

an individual, static device, the very premise of AI/ML is leveraging

patient data for continuous learning and product improvement. As

of 2019, FDA had only cleared or approved AI/ML devices that

relied on a locked algorithm (14). To adjust, FDA plans to offer a

Software PreCertification Program (14, 39). Rather than

reviewing individual devices, FDA would evaluate the developer’s

qualifications, processes to produce safe and effective devices,

and whether the developer can demonstrate compliance with

Good Machine Learning Practices (14, 39). Good Machine

Learning Practices include adhering to best industry best

practices for algorithm design, training, and testing (14). Prior to

submission, developers would describe the Predetermined

Change Control Plan, which would outline plans for future

device modifications with specific protocol for changing the

algorithm (14). Developers would submit the Predetermined

Change Control Plan with the device’s initial regulatory

application and describe processes relating to data management,

data retention, software performance evaluations, update
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procedures, and ongoing performance monitoring. If developers

make modifications within the bounds of the Predetermined

Change Control Plan, they would document the changes and

submit notice to the FDA. However, if modifications lead to a

new use (such as expanding to a new target population), this

would require undergoing a full review process.
FDA regulation moving forward

Following FDA’s Guidance on Clinical Decision Support

Software, several stakeholders including the AMA responded

with specific concerns (40). AMA noted FDA’s sole focus on

potential benefits of AI/ML and minimization of potential

risks (40). AMA expressed concern that FDA presumes

collecting and using more data constitutes an inherent good

and perpetuates the viewpoint that AI/ML merely reflects a

neutral and objective mathematical process. According to the

AMA, identifying variation or flaws in datasets is critical for

assessing impact to patient safety. AMA suggested that FDA

should connect developers’ goals for the AI/ML to measurable

patient outcomes to increase the transparency and assess the

impact of AI/ML.

In 2021, FDA published Software as a Medical Device

Action Plan, which builds upon principles from the 2019

guidance and outlined additional plans to increase

transparency to users and patients, address algorithmic bias,

and assess real world performance (39).
Liability for AI/ML

Regulatory standards provide a minimum threshold to

ensure products in the marketplace are safe and effective for

the intended use. Despite regulatory clearance or approval,

medical devices can still contain flaws, errors, defects, and

cause patient harm. Potential errors in AI/ML products could

not only pose serious risks to patient safety, but also expose

physicians, hospitals, and AI/ML manufacturers to liability.

Tort liability for AI/ML encompasses potential claims such as

malpractice, breach of informed consent, corporate negligence,

and products liability (10, 18, 20, 22). The tort law system

serves several important functions, including deterrence

(reducing unsafe products or medical practices), incentivizing

optimal standards (increasing quality products and attentive

patient care), and compensation for injuries.
Malpractice

Physicians have a duty to uphold the standard of care when

interacting and treating patients. If physicians deviate from the

standard of care, and this departure from the standard of care is
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the cause of an injury to the patient, the physician may be held

liable. Schweikart describes several potential scenarios that

could give rise to malpractice liability (22). First, AI/ML could

recommend a course of action, but the physician believes

another course of action is more prudent based on

professional experience (22). If the physician overrides the AI/

ML and the patient is injured, the patient may assert that the

AI/ML recommendation constitutes the standard of care and

the physician’s deviation from that standard was the cause of

his injury. Second, AI/ML may recommend a course of

treatment, the physician may follow the recommendation and

the patient is injured (22). The patient may assert that the

physician should not have followed the AI/ML because it was

wrong, and the physician’s decision to rely on the AI/ML is

what caused the patient’s injury.

Froomkin et al. note that the opacity of AI/ML poses

potential difficulties in the context of potential malpractice

claims (20). The lack of interpretability for neural networks

makes it difficult to pinpoint a specific source of error, if any,

in the ML based prediction system. This creates uncertainties

of deciphering whether the AI/ML made an error which the

physician should not have relied upon, or whether the

physician should have followed the AI/ML recommendation.

The “black box” nature means there is no practical way for

physicians to understand the reasoning or articulate the

decision-making process of the machine (20). This creates a

new duty for physicians to critically evaluate AI/ML they

use in practice, and potential liability for relying on faulty AI/

ML (18).
Informed consent

During a clinical encounter, physicians have a legal and

ethical obligation to inform patients of material information

pertinent to a treatment plan. Physicians have a duty to

disclose information about benefits, risks, and alternatives

relating to a proposed course of treatment (22). U.S.

jurisdictions reflect a split on how to determine what

constitutes material information. Some jurisdictions rely on

the “reasonable physician” standard, which states that

physicians have a duty to disclose information that a

reasonable physician under the same or similar circumstances

would disclose (6). Other jurisdictions, however, apply the

“reasonable patient standard,” which examines whether a

reasonable patient would attach significance to the risk and

want the physician to disclose that specific risk (6).

Several legal and ethics scholars have discussed whether the

doctrine of informed consent would require physicians to

disclose to patients when they are using or relying upon AI/

ML during the clinical encounter to make a diagnosis or

recommend a treatment (4, 6, 22, 41). Schweikart describes

potential problems relating to physicians using AI/ML and
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informed consent (22). If AI/ML presents treatment plans in

absolutes without pros and cons, this creates difficulty for

understanding the source of the recommendation, verifying its

accuracy, and how physicians should communicate this to

patients (22).

Cohen points out that the amount of required disclosure is

closely tied to perception of the technology (6). Those who

believe that adopting AI/ML entails potential risks or

proceeds too quickly would favor requiring the physician to

disclose to the patient if he uses or relies on AI/ML. From the

opposite perspective, those who believe AI/ML offers complex

but unassailable benefits favor nondisclosure.

Cohen adopts the position that physicians would not have a

duty to disclose when they use or rely upon AI/ML (6). Cohen

asserts that under the reasonable physician standard, physicians

would likely consider AI/ML’s recommendation as one step of

many along the decision-making process (6). Physicians do

not regularly disclose the minutiae of every step of their

decision-making to patients. In fact, according to Cohen, too

much disclosure is costly, inundates patients with complex

and confusing information, undermines patient’s distinguish

meaningful risks from trivial risks, and may lead patients to

distrust physician recommendations based on AI/ML (6).

Similarly, under the reasonable patient standard, Cohen

asserts that patients would not find a physician’s reliance on

AI/ML material, and patients only want a warrant of the AI/

ML’s credibility, which would be satisfied through regulatory

oversight (6).

Haupt and Findley et al., on the other hand, suggests that

physicians may have a duty to disclose when they use or rely

upon AI/ML (4, 41). This article suggests that under the

reasonable physician standard, physicians have a duty of

transparency when providing a diagnosis or treatment

recommendation. In this context, transparency equates to the

physician explaining in direct and simple terms the basis for a

decision, such as an imaging scan, genetic test, or other

diagnostic test. If physicians use AI/ML as another decision-

making tool, it may be reasonable that physicians have a duty

to disclose this to patients. Applying the reasonable patient

standard, some suggest that reasonable patients would find a

physician’s use of AI/ML constitutes a material fact that the

physician has a duty to disclose. Froomkin et al. note that

patients already have a negative reaction to AI/ML if a

physician discloses this during the patient encounter (20).

Similarly, Findley et al. report that patients show an aversion

or bias against algorithmic decisions (41). Some research

demonstrates that people prefer human physicians to AI/ML

for diagnosis, screening, and treatment (41). Other research

finds that some people accept AI/ML in diagnosis and

planning, but are less accepting of other technologies such as

partially autonomous surgeries (41). Under the reasonable

patient standard, this article suggests that if AI/ML

supplements or replaces a physician’s independent judgment
Frontiers in Nuclear Medicine 10
with an opaque or unexplainable algorithm, this may in fact

be material to the patient and triggers a duty for disclosure.
Corporate liability

Hospitals, healthcare systems, or physician groups could also

face liability from physician errors and injuries related to

malpractice. The doctrine of vicarious liability recognizes that

employers may be liable for acts committed by their employees if

the employees are acting within the scope of their employment

based on the theory that employers exercise a form of

supervision and control over their employees. If a patient alleges

a malpractice action against a physician relating to using AI/ML,

the patient may also bring suit against the physician’s employer

under the theory of vicarious liability.

Healthcare institutions could also face liability for corporate

negligence relating to using or relying on AI/ML in the facility.

Healthcare institutions have four non-delegable duties that they

owe directly to patients: (1) a duty to use reasonable care in the

maintenance of safe and adequate facilities and equipment; (2) a

duty to select and retain competent physicians; (3) a duty to

oversee all persons who practice medicine within the institution;

and (4) a duty to formulate, adopt, and enforce adequate rules

and policies to ensure quality care for their patients (42).

Under the first duty, institutions must ensure equipment is

working property and maintain a minimum level of safety. As

applied to AI/ML, this would correspond to confirming potential

AI/ML tools such as NLP programs connected to patient EHRs,

software imaging tools, and CDS operate (and continue to

operate) in an adequately safe manner without error. Second, if

the institution embeds certain AI/ML features (for example, all

clinical encounters use NLP for recording EHR notes), then the

institution may have a duty to ensure physicians’ competence in

interacting with such software by requiring minimum training or

education on AI/ML. Third, institutions’ duty to oversee

physician practice corresponds to credentialing physicians,

monitoring patient outcomes, flagging anomalies in physician

performance, and addressing instances where physician actions

increase risk of adverse patient outcomes. Institutions may have

a duty to credential certain physicians with adequate training to

use certain types of AI/ML. Institutions should also assess

whether physicians using certain types of AI/ML improves

patient outcomes and monitor for potential errors that could

pose risks to patient safety. Finally, institutions would need to

adopt rules and policies related to selecting, deploying, and

monitoring AI/ML tied to patient safety metrics.
Products liability

Patients who assert the AI/ML was the cause of an injury may

also bring suit against the manufacturer of the AI/ML. Products
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liability permits people to seek recovery and compensation when

they are injured by products that are not reasonably safe due to a

design detect, manufacturing defect, or the manufacturer’s failure

to warn (10, 20). Griffin provides an extensive description of

each type of products liability claim and potential examples in

the context of AI/ML (10).

Under a design defect claim, a product is defective in design

when (1) foreseeable risks of harm posed by the product (2)

could have been avoided or reduced by the adoption of a

reasonable alternative design and (3) the omission of the

alternative design renders the product not reasonably safe (10,

20). To succeed in this claim, the plaintiff must demonstrate

all of these three elements (10). First, the plaintiff would need

to show that the type of injury he suffered is foreseeable, such

as demonstrating how poor data can cause flaws in a ML

algorithm. Second, the plaintiff would show the manufacturers

could have used a reasonable alternative design, such as a

device without AI/ML, a different dataset, or a more user

friendly interface. Lastly, jurisdictions differ on the standard

they apply for what constitutes a product that is not

reasonably safe. Here, the question would focus on whether

the AI/ML performed as well as another AI/ML system or

met the performance specifications provided by the

manufacturer. Griffin provides useful examples when a

plaintiff may allege the product is not reasonable safe, such as

if the physician does not have adequate space to fully

document patient symptoms, or the patient received a delayed

diagnosis because the AI/ML relied on outdated imaging.

In manufacturing defect claims, the plaintiff must

demonstrate (1) product was defective, (2) that the product

caused the plaintiff’s injury, and (3) the defect existed at the

time the product left the manufacturer’s control (10). On

example of this type of claim in AI and robotics involves

Taylor v. Intuitive Surgical (10, 43). In this case, a patient

who underwent a prostatectomy by a physician using the da

Vinci robot alleged that the robot was defective when it left

the manufacturer. The plaintiff alleged the robot had

microcracking that caused electricity to escape during the

procedure that caused internal burning to the patient’s

rectum, resulting in a variety of post-surgical complications

including infection, renal failure, respiratory failure,

incontinence, and reliance on a colostomy bag (10, 43).

Though the trial court rule granted a ruling in favor for

Intuitive Surgical on this specific claim, it raises an important

consideration for other AI/ML manufacturers (43).

Manufacturers may also have a duty to warn institutions

that purchase the products and physicians that use the

products of potential risk. A manufacturer may be liable if a

plaintiff can show the product is defective because of (1)

inadequate instructions or warning (2) when the foreseeable

risks of harm posed by the product could have been reduced

or avoided by the provision of reasonable instructions or

warnings by the seller and (3) the omission of the warnings
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renders the product not reasonably safe. In at least one

jurisdiction, manufacturers have a duty to warn hospitals that

purchase the device in addition to warning the physician that

uses the device (43). The variety of potential errors in AI/ML

combined with Wright et al.’s conclusion that CDS

malfunctions are widespread suggests that manufacturers may

have a duty to warn institutions and physicians against using

AI/ML as the sole basis of diagnosis or treatment, but instead

one of several decision-making considerations (10, 26, 43).

Anticipating potential areas of liability can incentivize

physicians to critically evaluate their reliance on AI/ML,

promote institutional responsibility when implementing new

AI/ML into a hospitals and healthcare systems, and encourage

manufacturers to create more carefully designed products.
Steps to address accountability,
explainability, and reliability for AI/ML

Current literature provides a number of strategies to

anticipate and address issues of safety, accountability, and

reliability of AI/ML (3, 11, 17, 28, 32, 44). Developers and

healthcare institutions can use these strategies in conjunction

with FDA regulations to minimize legal risk, address potential

ethical concerns related to adopting AI/ML, and guide the

development of best practices.

Habli et al. state that the potential for errors raises questions

about safety assurances and moral accountability for potential

harm to patients (32). Physicians do not exercise control over

decisions or recommendations that the AI/ML makes, and

based on the opaqueness of AI/ML physicians’ ability to

understand how the system translates the data is difficult or

impossible (32). Some experts suggest that the lack of

explainability reduces the transparency of decision-making

and undermines the ability for physicians to remain

accountable when dispensing diagnostic and treatment

recommendations (32, 44). Froomkin et al. note that although

most algorithms have high traceability (running the same

program will achieve the same result), they also have low

explainability (they cannot provide a short narrative of why

the program arrived at this reasoning) (20).

Physicians’ moral accountability in professional judgment is

important because it deters professional complacency,

underpins patient trust in medical care, and fosters goodwill

from patients (32, 45). Zawati and Lang describe how

accountability and trust are integral components to the

healthcare system (45). Trust is closely aligned with the

concept of informed consent, and the patient’s belief that the

physician’s recommendation furthers the patient’s best

interests. Public trust is also connected to patients’ willingness

to follow treatment recommendations, or even seek treatment

in the first place. If patients perceive AI/ML has uncertain

accountability or ambiguity of who is really in control of the
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recommendation, patient trust in the healthcare system and

physicians may erode (45). Habli et al. asserts that moral

accountability acts as a mechanism to drive decision-making

that aligns with the patient’s best interest, but this creates a

problem if AI/ML instead drives clinical decision-making (32).

Mahadevaiah et al. outline five steps to minimize risk,

prioritize patient safety, and maximize user acceptance (11).

Char et al. provide complementary ethical considerations

mapped to steps of the AI/ML process, including during

development, implementation, evaluation, and oversight (44).
Product development

Char et al. begins with suggestions for developers, asserting

that developers should consider the reasons and transparency

behind algorithm design, training data, training process, and

validation data (44). Here, transparency standards should

identify whether the AI/ML is locked or adaptive, and

designed to be assistive or autonomous. Char et al. assert that

non-inspectable black box systems that lack explainability

pose risks to patient safety and are subject to catastrophic

failures (44). To remedy this during development,

manufacturers should create systems that are transparent and

auditable, with an “explainable architecture,” where developers

outline the decision-making process in a manner that is

familiar to physicians, aligns with human cognitive decision-

making processes, and is tied to clinical evidence (44).
Selection

Mahadevaiah et al. describes the process of selection,

whereby a team of interdisciplinary clinicians and health

professionals consider potentially adopting AI/ML (11).

Mahadevaiah et al. assert that implementing AI/ML such as

CDS should be part of a wider, coherent quality improvement

strategy (11). Char et al. suggest that the healthcare institution

should address the question of why it is selecting this clinical

area, articulate the desired outcome, and define the end goal

in relation to the AI/ML (44). Clinicians and health

professionals should assess areas where there is a clinical

quality gap relating to processes or patient outcomes, and

ensure data exists to suggest that implementing CDS would

reduce the quality gap. These assessments, according to

Mahadevaiah et al,. should compare performance metrics such

as time saved, diagnostic accuracy, health outcomes, or

process improvement from physician practice alone to

physicians using CDS (11).

Teams of technology experts working at the implementation

site such as the hospital can audit and review the proposed

algorithm design, training data, training process, validation

methods, and initial outcomes prior to clinical implementation
Frontiers in Nuclear Medicine 12
(44). While the AI/ML may still pose explainability barriers

to physicians, this interprofessional approach provides an

additional layer of review to mitigate against conflicts of interest

or error. Many experts recognize that by design, the AI/ML will

not be fully explainable to physician users (7, 20, 22, 25).

Developers and healthcare institutions should be able, at the

minimum, to provide an alternate checklist to physicians: how

the AI/ML was developed, potential risks of using it, limitations,

and whether it is appropriate for the physician’s patient

population (22).

During the selection process, healthcare institutions should

consider the content of information the AI/ML is designed to

provide to the physician. The healthcare institution should

ensure that the information is clinically relevant, brief, and

unambiguous (11). The strength of the evidence and behind the

recommendation should be apparent to the user. The AMA

suggests adopting a labeling system to alert users to relevant

information such as regulatory status (such as whether FDA has

approved or cleared the device), and percent representations of

safety and efficiency (40). Healthcare institutions should also

consider the usability of the AI/ML and the amount of training

required to operate the system.
Validation, performance and calibration

In this stage, the healthcare institution should verify

developers’ claims about completeness, data quality, and

effectiveness. Several authors caution that developers may

overstate product benefits and that institutions should create

independent testing methods using unenriched data to test

CDS performance in each institution’s system (3, 11).

Developers should work with healthcare institutions to test

the clinical completeness, comprehensiveness, consistency, and

repeatability of AI/ML in different settings (11, 17, 44).

Validation may include measures of sensitivity, specificity, and

positive predictive value (17). In the healthcare setting,

sensitivity refers to accuracy for providing true positive

results, while specificity refers to correctly generating a

negative result (44). A higher rate of sensitivity translates to

fewer missed diagnoses and missing treatment opportunities,

while a higher rate of specificity equates to fewer false

positives that could correspond to inappropriate and harmful

overtreatment.

Tomaszewski and Gillies describe validating the connection

between biological correlates, the disease process, and clinical

outcomes to the AI/ML output (46). In radiomics specifically,

Tomaszewski and Gilles suggest biological validation can

provide a critical connection between the result of radiomic

analysis and the clinical decision process (46).

Nishida and Kudo recommend calibrating the AI/ML and

measuring how effectively the predicted probability matches

the actual diagnosis (17). This is the stage where developers
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and healthcare institutions would work to identify the

acceptable level of variability, for example in assessing the

same lesion based on different images and work to adjust

parameter settings (17). Char et al. assert that to maximize

benefit and minimize harm, AI/ML must perform in

accordance with cardinal design features of safety, efficiency,

and equity (44). Safety requires AI/ML with features that

prevent injuries and hazards. For example, this could include

prospective planning to address typical error scenarios such as

unexpected, incorrect, or incomplete data, abrupt closure

(such as a power outage or system failure while using AI/ML),

and error messages (11). Efficiency refers to AI/ML that

solves the specific problem developers designed it to address

at reasonable costs, including the costs of false negative or

false positive diagnoses (44). Finally, equity refers to sharing

the advantages of AI/ML in a fair manner (44).

Mahadevaiah et al. outline several steps for pilot testing

CDS on real world cases in clinical practice (11).

Mahadevaiah et al. suggests testing CDS in parallel to the

existing workflow to assess clinical relevance, user acceptance,

physician adherence to CDS recommendations, impact on

patient decisions, and clinical outcomes (11). During this

stage, Mahadevaiah et al. describe customizing CDS to assess

and improve the appropriateness of alerts to avoid alert

fatigue (11). Stone states that the alert itself should provide

context and background for the recommendation, which will

increase transparency and enhance the physician’s ability to

accurately judge the appropriateness as applied to the patient

(28). To anticipate and address potential errors, a steering

committee consisting of developers/technology experts,

clinicians, and administrators can identify relevant issues,

difficult cases, or rare situations where CDS may fail (11, 28).

Mahadevaiah et al. assert that testing and improvements

during this phase will build future physician confidence and

acceptance (11).
Implementation, evaluation, and
oversight

Implementation entails designing and executing the rollout

plan, transitioning from an old workflow, and adopting a new

process that incorporates AI/ML in the healthcare institution

(11). Several experts recommend new education initiatives in

medical education and continuing education to prepare

physicians to evaluate and interpret AI/ML systems (3, 26).

In this phase, healthcare institutions should continue to

assess whether characteristics of AI/ML change in real world

applications and perform ongoing safety evaluations (44).

Some safety and quality issues, according to Habli et al. are

not fully resolvable during design stages and only become

apparent once the healthcare system deploys the product (32).

Quality assurance systems should assess performance and
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safety of AI/ML by measuring performance with set metrics

on efficiency and efficacy, which could include measuring the

sensitivity and specificity of AI/ML, change in patient health

outcomes, or resources saved such as productivity or costs.

Systems should build in mechanisms to receive and act upon

user feedback, such as rate of alert firing, errors, and anomaly

detection so the healthcare system can work to identify and

remediate problems in real time (11, 28). Mahadevaiah et al.

suggest tracking and monitoring when physicians followed or

declined a CDS recommendation, stating that this can offer

insights to modify the program or identify an undetected

malfunction (11).

Over time, health care institutions should monitor AI/ML

performance and quality to measure, mitigate, and correct for

external context drift and internal model drift. External

context drift refers to when patterns of clinical practice

change over time, changes in patient case mixture, or the

obsolescence of certain treatments of drugs (11). This can

lead to shift in the AI/ML where AI/ML such as CDS makes

recommendations that no longer align with the most recent

or best clinical guidelines (11). Internal model drift refers to

including new datasets, new cutoff values, or parameters for

recommendations and designing updates to reflect changes in

the models underpinning AI/ML (11). Finally, Mahadevaiah

et al. recognize that adaptive AI/ML and real time updates

offer the benefit of continuous improvement, but

simultaneously raise the risk of undetected degradation from

bias in input (11). Importantly, Habli et al. assert that safety

assurances should not be static, but rather dynamic

throughout the lifecycle of AI/ML (32).
Discussion

AI/ML tools such as CDS, pattern recognition software, and

NLP harness the potential to transform healthcare. Capitalizing

on data aggregation, AI/ML could provide useful alerts; offer

precise models to guide medication, radiation, and surgical

plans; increase personalized treatment recommendations; and

reduce physicians’ administrative burden. AI/ML offers the

promise of enhancing, complementing, and streamlining the

practice of medicine. Despite potential benefits, AI/ML carries

risks of potential errors during data collection, development,

and deployment. Unlike a single physician error, errors in AI/

ML impacts patients system-wide, and by design may be less

visible due to the opacity of AI/ML. Reducing risk of errors

and promoting reliable AI/ML is critical to protecting patient

safety.

This review provides useful points to consider for each of

the following stakeholders: (1) physicians/clinicians; (2) AI/

ML developers and manufacturers; and (3) hospitals and

healthcare institutions.
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AI/ML has the potential to disrupt the physician-patient

relationship, by scaling and augmenting – not replacing –

physician capabilities. The practice of medicine is governed by

state law and bound by ethical obligations that recognize

medicine constitutes more than mechanized advice, but a

human discipline of healing and compassion.

Physicians will likely require additional training to become

proficient in using new AI/ML systems, but should remain

cautious of automation bias, deskilling, or abdicating

judgment to the system. While correct AI/ML can reduce

errors, incorrect recommendations are both difficult to spot

and pose significant risks to patient safety. Accordingly,

physicians should maintain an index of suspicion when

interpreting an AI/ML recommendation and use AI/ML as an

additional piece of information or assistive tool rather than a

replacement for clinical expertise.

In the event that patients do suffer an injury arising from a

physician using AI/ML, physicians may face potential liability

for malpractice or lack of informed consent. Using AI/ML

creates a new obligation for physicians to critically evaluate

the AI/ML they use in practice, and potentially disclose to

patients when an AI/ML recommendation forms the basis of

a physician’s diagnosis or treatment recommendation. Federal

regulations classify many types of AI/ML as medical devices,

which provides a series of requirements designed for

developers and manufacturers to demonstrate evidence that

software is safe and effective for its intended purpose.

Developers and manufacturers should be aware that FDA’s

new regulatory model places a greater burden on developers

to demonstrate safety and effectiveness of the software over

the lifecycle of the product, including accounting for

algorithm changes, updates in hardware and software, or

shifts in clinical practice.

Developers should work closely with healthcare institutions

in the process of creating new AI/ML that is driven by clinical

need or part of a quality improvement strategy. Developers

should be aware that accuracy in testing does not equate to

accuracy in clinical performance, and that certain safety issues

require testing, validation and calibration in a healthcare

institution. Importantly, current literature demonstrates a

disconnect between developers’ perception of product

accuracy and the actual occurrence of errors and malfunctions

reported by physicians and health administrators. This

suggests that developers should integrate features to provide

ongoing product feedback to ensure developers are alerted to

(and can expediently correct) product errors.

In the event that patients do suffer an injury arising from a

physician using AI/ML, this also raises potential liability against

the developer or manufacturer. Liability provides a mechanism

of accountability for developers to carefully consider how to

minimize foreseeable risks of using AI/ML, such as sufficient

testing, validation, and design safety. Manufacturers may also

have a duty to warn institutions or physicians of the potential
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risks of using the product, including potentially providing a

label warning against using the AI/ML as the sole basis of

diagnosis or treatment.

Hospitals and healthcare institutions have an obligation to

carefully assess new technologies prior to adoption and

integration. Health administrators and corporate executives

should be aware that regulatory approval or clearance

provides a minimum standard when determining the safety

and efficacy of AI/ML, but that AI/ML may still contain

errors, defects, and flaws resulting in risks to patient safety.

Before selecting AI/ML to use in the institution, the

institution should address why it is selecting the product as

part of a quality improvement strategy, how the product will

improve clinical outcomes, or physician experience. The

institution should clarify what constitutes the desired outcome

metrics (time saved, diagnostic accuracy, health outcomes,

process improvement), and what data exists to support the

proposition that this product will lead to this objective.

Institutions will need to work closely with developers during

the validation, performance and calibration stages to test real

world performance and assess impact to workflow, user

acceptance, and actual patient outcomes.

Institutions have a legal duty to ensure they provide safe

equipment, adequately train and oversee physicians in the

institution, and enact policies and procedures to ensure

quality patient care. In the context of AI/ML, this places a

burden on the institution to assess the benefits and risks

before adopting new products, ensure physicians have

adequate education for the uses and limitations of AI/ML

products (including credentialing processes for using AI/ML),

and develop procedures for feedback mechanisms.
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