
TYPE Original Research

PUBLISHED 24 August 2022

DOI 10.3389/fnume.2022.960820

OPEN ACCESS

EDITED BY

David Izquierdo-Garcia,

Harvard Medical School, United States

REVIEWED BY

Nurmaya E�endi,

Universitas Muslim

Indonesia, Indonesia

Udunna Anazodo,

Western University, Canada

*CORRESPONDENCE

Claes Nøhr Ladefoged

claes.noehr.ladefoged@regionh.dk

†These authors have contributed

equally to this work and share last

authorship

SPECIALTY SECTION

This article was submitted to

PET and SPECT,

a section of the journal

Frontiers in Nuclear Medicine

RECEIVED 03 June 2022

ACCEPTED 01 August 2022

PUBLISHED 24 August 2022

CITATION

Ladefoged CN, Henriksen OM,

Mathiasen R, Schmiegelow K,

Andersen FL, Højgaard L, Borgwardt L,

Law I and Marner L (2022) Automatic

detection and delineation of pediatric

gliomas on combined [18F]FET PET

and MRI. Front. Nucl. Med. 2:960820.

doi: 10.3389/fnume.2022.960820

COPYRIGHT

© 2022 Ladefoged, Henriksen,

Mathiasen, Schmiegelow, Andersen,

Højgaard, Borgwardt, Law and Marner.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Automatic detection and
delineation of pediatric gliomas
on combined [18F]FET PET and
MRI

Claes Nøhr Ladefoged1*, Otto Mølby Henriksen1,

René Mathiasen2, Kjeld Schmiegelow2,3,

Flemming Littrup Andersen1,3, Liselotte Højgaard1,3,

Lise Borgwardt1, Ian Law1,3† and Lisbeth Marner3,4†

1Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of

Copenhagen, Copenhagen, Denmark, 2Department of Pediatrics and Adolescent Medicine,

Rigshospitalet, University of Copenhagen, Copenhagen, Denmark, 3Department of Clinical

Medicine, University of Copenhagen, Copenhagen, Denmark, 4Department of Clinical Physiology

and Nuclear Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark

Introduction: Brain and central nervous system (CNS) tumors are the second

most common cancer type in children and adolescents. Positron emission

tomography (PET) imaging with radiolabeled amino acids visualizes the amino

acid uptake in brain tumor cells compared with the healthy brain tissue, which

provides additional information over magnetic resonance imaging (MRI) for

di�erential diagnosis, treatment planning, and the di�erentiation of tumor

relapse from treatment-related changes. However, tumor delineation is a

time-consuming task subject to inter-rater variability. We propose a deep

learning method for the automatic delineation of O-(2-[18F]fluoroethyl)-l-

tyrosine ([18F]FET PET) pediatric CNS tumors.

Methods: A total of 109 [18F]FET PET and MRI scans from 66 pediatric patients

with manually delineated reference were included. We trained an artificial

neural network (ANN) for automatic delineation and compared its performance

against the manual reference on delineation accuracy and subsequent clinical

metric accuracy. For clinicalmetrics, we extracted the biological tumor volume

(BTV) and tumor-to-background mean and max (TBRmean and TBRmax).

Results: The ANN produced high tumor overlap (median dice-similarity

coe�cient [DSC] of 0.93). The clinical metrics extracted with the manual

reference and the ANN were highly correlated (r ≥ 0.99). The spatial location

of TBRmax was identical in almost all cases (96%). The ANN and the manual

reference produced similar changes in the clinical metrics between baseline

and follow-up scans.

Conclusion: The proposed ANN achieved high concordance with the manual

reference and may be an important tool for decision aid, limiting inter-reader

variance and improving longitudinal evaluation in clinical routine, and for future

multicenter studies of pediatric CNS tumors.

KEYWORDS

deep learning, decision support, convolutional neural network, brain tumor, CNS

tumor, children, neuro-oncology
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Introduction

Brain and central nervous system (CNS) tumors are the

second most common cancer type (21%) in children and

adolescents (1), and CNS tumors have poor prognosis and severe

late effects (1–3). The standard imaging method is magnetic

resonance imaging (MRI), which offers high sensitivity for the

detection of brain and spinal cord tumors. However, in the post-

treatment setting, MRI may be challenged in the differentiation

between treatment-related changes and tumor tissue, resulting

in lower specificity (4–9).

Positron emission tomography (PET) imaging with

radiolabeled amino acids visualizes upregulated active transport

in brain tumor cells compared with the healthy brain tissue,

providing additional information on metabolic properties. The

most commonly used tracers are O-(2-[18F]fluoroethyl)-L-

tyrosine ([18F]FET), [11C-methyl]-methionine ([11C]MET),

and 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine

([18F]FDOPA), which are recommended in neuro-oncology

imaging guidelines for children and adults for differential

diagnosis, treatment planning, and the differentiation of tumor

relapse from treatment-related changes (10–12). Pathological

amino acid accumulation measured using the tumor-to-brain

ratio (TBR) on static [18F]FET PET images can be used to

differentiate neoplastic and non-neoplastic tissues, provide

tumor grading, and estimate the biological tumor volume

(BTV) (11), which is prognostic for overall survival in post-

resection glioblastoma multiforme in adults (13). An analysis of

the tracer uptake dynamics using a time-activity curve (TAC)

extracted from 40 to 50min dynamic [18F]FET PET imaging

further increases diagnostic accuracy (14). Image-driven

biomarkers extracted through radiomic features have recently

shown potential for the differentiation of IDH-wildtype from

IDH-mutant genes (15), as well as for progression-free survival

and overall survival prognosis (16).

The results from studies performed on adult CNS tumors

might not be extrapolated to pediatric patients as pediatric

CNS tumors show clinical and biological features that are

distinct from adult tumors. However, [18F]FET PET can add

valuable information for clinical decision-making (5, 17), and

the combination of MRI and [18F]FET PET was recently shown

to improve the low specificity of MRI alone (1.00 compared with

0.48) while maintaining a high sensitivity across 64 pediatric

patients with 83 treated lesions (5).

Pediatric CNS cancers are rare with high heterogeneity in

tumor types, which warrants multicenter studies to validate the

abovementioned findings in a larger cohort of patients. This

requires a reproducible delineation of the tumor tissue, which

is a time-consuming task potentially subject to intraobserver

and interobserver variability (18). With the advancement

of artificial intelligence (AI), several tools exist for fully-

automatic segmentation of biological images, such as the

statistical inference method (16), the traditional machine

learning techniques (19), and the generic deep-learning-based

algorithms (20, 21). One such deep-learning method was trained

using 27 [18F]FET PET/CT adult subjects and achieved a high

dice-similarity coefficient (DSC) of 0.79 across 11 test subjects

with a manually delineated reference (22). To the best of our

knowledge, none of these algorithms have been tested on a

pediatric cohort of patients with [18F]FET PET CNS tumor.

Here, we aimed to develop and train an automatic

segmentation algorithm based on a large cohort of single-

institutional dataset of pediatric patients with CNS tumor to

delineate [18F]FET PET lesions and determine clinically relevant

metrics to perform a large number of multicenter trails using

automatic delineation avoiding the time consuming human-

drawn delineations.

Materials and methods

Deep learning models require large amounts of training data

to be accurate. In this study, we hypothesized that our deep

learning model would be more accurate if it was trained using

transfer learning from a larger cohort of adult patients, despite

differences in anatomy and tumor biology. Thus, we created two

datasets for this study. The first dataset consists of adult patients

with neuro-oncology examined with [18F]FET PET and serves

as a training set for the initial model. The second dataset consists

of pediatric patients serving for training and validation.

Patients

For the pediatric dataset, we included children and

adolescents with suspicion or diagnosis of primary CNS tumors

before the age of 18 years examined with [18F]FET PET

between February 2015 and January 2019. The patients were

part of a larger study of [18F]FET PET/MRI in primary

CNS tumors in children and adolescents approved by the

regional ethical committee (ID: H-6-2014-095) and registered

at Clinicaltrials.gov (NCT03402425) and acquired with written

informed consent for participation from parents. We refer to

the original study for detailed patient characteristics (5). The

dataset included scans performed at initial diagnosis, before or

after surgery, at the response assessment or at suspected relapse.

Compared with the original study, we limited the cohort to

patients with tumors in the brain, thereby excluding 10 patients

with tumors only located in the spinal cord and patients without

[18F]FET active tumor >0.1ml. A total of 109 scans from 66

patients were thus included. The median age was 10.6 years

(ranged 0.1–19.5 years). A total of 10 pediatric patients had

a minimum of three scans performed and were used for a

longitudinal evaluation (Section Analysis).

For the adult dataset, the department archive was

screened for clinical patients who underwent surgery for
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histologically proven glioma or intracerebral metastasis and

had simultaneously acquired [18F]FET PET and MRI using

our PET/MRI system between October 2018 and January

2021, and 233 [18F]FET PET/MRI scans were identified that

had a [18F]FET active tumor >1ml. No other inclusion or

exclusion criteria were imposed. This study was performed

according to the Danish legislation as a quality assurance study

with permission from the hospital administration. The need

for explicit written consent was not required according to

regulations since the study operated exclusively on anonymized

retrospective data. To comply with legal requirements, all

data were fully anonymized upon collection from the clinical

archives in compliance with the General Data Protection

Regulation (GDPR).

Imaging protocol

For the pediatric dataset, PET and MRI scans were

performed as previously described (23). PET and MRI were

performed on our hybrid PET/MRI system (3T Biograph mMR,

Siemens, Erlangen, Germany) to reduce the number of scanning

procedures (n= 86 scans) or alternatively in two sessions where

the PET scan was performed using a PET/CT system (Biograph

TruePoint, Siemens, Erlangen, Germany) and the MRI scan was

performed on a 3T MRI system (n = 23 scans). The PET scan

was performed according to international guidelines (11) and

included a 40-min dynamic acquisition commenced at the same

time as the intravenous injection of the tracer (3 MBq/kg), from

which a summed image was generated by reconstructing the last

20min of the acquisition. Attenuation correction of the PET

data acquired on the PET/MRI system was done using a co-

registered same-day low-dose CT image. The MRI protocol was

in accordance with the international guidelines (24, 25) and

included, among other sequences, a post-contrast 3D isotropic

T1-weighted MPRAGE (CT1w).

For the adult dataset, [18F]FET PET/MRI was performed

as previously described (26). The MRI protocol included a

pre-contrast 3D isotropic T1-weighted MPRAGE.

Image processing

Manual delineation of metabolically active tissue was

performed as previously described for both datasets (5, 27). In

brief, the delineation was performed inMirada (MiradaMedical,

Oxford, UK) by placing an auto-contour defining tumor tissue at

a threshold above 1.6 of the mean uptake in a background region

of interest (ROI) placed in healthy appearing gray and white

matter in a contralateral hemisphere to the tumor. Extratumoral

areas with high [18F]FET uptake, e.g., vascular structures, pineal

body, and skin, were identified on either the MR or PET image

and were not included. The delineation was performed by

a nuclear medicine specialist experienced in pediatric neuro-

oncology (LM) and adult neuro-oncology (IL) for the pediatric

and adult datasets, respectively.

Image preprocessing of the pediatric dataset involved brain

extraction followed by the resampling of MRI images to PET

resolution. Brain extraction was performed using the HD-BET

(28) on the CT1w images, but since this method removes the

lower part of the medulla oblongata that can contain CNS

tumors, we merged the brain mask with a medulla mask found

by rigidly aligning the MNI template (29) to the patient’s

CT1wMRI (reg_aladin and nifty-reg). We dilated the combined

brain and medulla masks for 20 iterations to compensate

for any registration or brain extraction inaccuracies. Image

preprocessing of the adult data only included brain extraction

using the HD-BET.

We trained an artificial neural network (ANN) to perform

the automatic segmentation using the U-Net architecture (30).

We utilized nnU-Net to train the ANN, which is an end-

to-end solution for data preprocessing and network training

(21). We used default nnU-Net settings for training a 3D

full resolution network with PET and CT1w images as input

and our ground truth label as target. Details regarding the

preprocessing, network architecture, and hyperparameters are

shown in Supplementary Table 1. We trained a total of three

nnU-Net architectures: (1) trained with only adult data, (2)

trained with only pediatric data, and (3) trained with pediatric

data with transfer learning from the adult network. The network

with transfer learning was trained with a reduced initial learning

rate of 10−4 but otherwise identical hyperparameters to the

other two architectures.

We trained the pediatric models using a 10-fold cross-

validation analysis to obtain delineations for all subjects. Each

network was therefore, on average, trained with 99 scans using

the nnU-Nets internal five-fold cross-validation, leaving 11

scans for testing in each fold.

Analysis

We had three main objectives. The first was to evaluate

the accuracy of the trained models for CNS tumor delineation

against the manually delineated volumes using the calculated

dice-similarity coefficient (DSC) metrics for each model output

against the manual reference. A DSC of 1 is achieved when

there is a complete overlap between the reference and ANN

delineation. We compared the statistical difference between

the models using the Wilcoxon signed-rank test in R version

3.6.1. The superior model was used for the subsequent

analysis. The sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV) at the voxel level

were calculated.

The second objective was to evaluate the clinically relevant

PET-metrics extracted using the delineated volumes on a
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FIGURE 1

Dice-similarity coe�cient (DSC) comparison of the three trained models for all pediatric scans (n = 109). The adult model was trained using only

adult fluoroethyl-L-tyrosine (FET) PET/MRI data (n = 233) and directly applied to the pediatric data. The pediatric model was trained using only

pediatric data, and the pediatric model w/TL was trained using the same data but transfer learned (TL) from the adult model. A Wilcoxon

signed-rank test was performed for statistically significant di�erences where ns indicates not significant and * indicates significance with a

p-value < 0.05.

patient-by-patient basis. These metrics include the most

commonly used semi-quantitative clinical metrics in the

diagnostic workflow. Similar to previous studies (27, 31),

we measured the mean and maximum tumor-to-background

ratio (TBRmean and TBRmax) within each biological tumor

volume (BTV) as well as the size of the BTV. These metrics

are commonly used as a criterion to discriminate between

active tumor tissue and reactive changes. The spatial location

of peak TBRmax was compared as this is often used for

biopsy target planning (32–35). Furthermore, we extracted

the time-activity-curve (TAC) for each patient and computed

the time-to-peak (TTP) in minutes of the full 40-min TAC.

Such kinetic imaging parameters might be prognostic of

overall survival (36), and may add valuable information for

the clinical decision-making in pediatric patients (17). For

each TAC, we assigned one of the following curve patterns

following (37): constantly increasing without identifiable peak

uptake (pattern I); peak at the midway point (>20min)

followed by a plateau or a small descent (pattern II);

and early peak (<20min) followed by a constant descent

(pattern III).

The third objective was to evaluate the performance of the

automatic segmentation in longitudinal datasets. We evaluated

the robustness of the ANN method over time by calculating

TBRmean, TBRmax, and BTV for each baseline and follow-up

examination, respectively, and compared each to the reference

manual delineation.

Results

The ANNs yielded a median DSC of 0.89 (95% CI: 0.83–

0.94) using the adult model, 0.90 (0.86–0.94) with the pediatric

model, and 0.93 (0.89–0.96) with the pediatric model with

transfer learning from the adult model (Figure 1). There was

no statistical difference between the adult and pediatric models

without transfer learning (the Wilcoxon signed-rank test, p >

0.05, 95% CI −0.04 to 0.01). The pediatric model with transfer

learning was significantly better than both the adult models

(p < 0.05, 95% CI −0.06 to −0.01) and the pediatric model

without transfer learning (p < 0.05, 95% CI −0.04 to −0.0003).

Thus, the pediatric model with transfer learning was chosen for

the remaining evaluation and will be referred to as the ANN

model. Figure 2 shows the worst, average, and best segmentation

performance of the ANN for representative cases selected using

the 2, 50, and 98% for DSC. The ANNmodel accurately detected

the CNS tumor in most cases (83% with DSC above 0.8) but

failed to locate the tumor in one case (Figure 3A).

The evaluation at the voxel level (Table 1) resulted in a

sensitivity of 0.90 (95% CI, 87.2–92.8%), a specificity of 1.0
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FIGURE 2

Delineation performance for three cases chosen at 2% (A), 50% (B), and 98% (C) of the dice-similarity coe�cient (DSC). The white line represents

the manual delineation (Ref.), while the red line is the artificial neural network (ANN) delineation. (A) A 17-year-old boy with a pilocytic

astrocytoma, DSC = 0.32. (B) A 14-year-old boy with a germinoma, DSC = 0.93. (C) A 7-year-old boy with a pilocytic astrocytoma, DSC = 0.98.

All three were scanned at primary diagnosis.

(99.9%−100%), a PPV of 0.85 (81.8–88.3%), and a NPV of

1.0 (99.9%−100%).

The clinical evaluation is shown in Figure 4. Using the

ANN-extracted TBR metrics correlates well with the reference-

extractedmetrics (r≥ 0.99). The ANN and reference delineation

resulted in similar BTVmeasurements, albeit with some outliers

for the smallest (<10ml) tumors. Examples of the largest

outliers are shown in Figures 3B,C. The spatial location of peak

TBRmax was identical in 96% of the cases and was 19, 31, and

38mm in the remaining three cases with an annotated tumor in

Frontiers inNuclearMedicine 05 frontiersin.org

https://doi.org/10.3389/fnume.2022.960820
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org


Ladefoged et al. 10.3389/fnume.2022.960820

FIGURE 3

Outlier cases. (A) The FET-positive area in the upper medulla failed to be delineated by the ANN, DSC = 0. (B) The ANN correctly delineates the

FET-positive area in the bottom of the operation cavity but incorrectly delineates a region in the pituitary region, DSC = 0.59. (C) The ANN

correctly detects the tumor but overestimates the area (22ml) compared with the reference (6ml) as the cortical pattern of uptake reflects

reactive changes after surgery and is not included in the manual reference delineation, DSC = 0.37.

TABLE 1 Confusion matrix at the voxel level across the set of 109

scans restricted to voxels within the brain and medulla mask extracted

during pre-processing.

Predicted/truth True False

True 1,178,883 89,657

False 77,127 171,502,554

both reference and ANN. The TTP calculated from the dynamic

PET data was identical in 85% of the cases and within ± one

frame in 99% of the cases. The assigned TAC patterns I–III were

congruent in all but one case, where a false positive lesion found

in the pituitary region (Figure 3B) overestimated the peak at the

initial frames.

The longitudinal evaluation of TBRmean, TBRmax, and BTV

are shown in Figure 5 for three representative subjects. The

direction and magnitude of the change between baseline, and

each follow-up scan was congruent for each clinical metric

between reference and ANN delineation for all 10 patients.

Discussion

This study evaluated the feasibility of a fully automated

detection and delineation method for pediatric CNS tumors

from [18F]FET PET andMRI.We proposed and trained anANN

that was pre-trained on adult subjects with brain gliomas (n =

233) and found an increased performance over training on the

pediatric subjects alone. This is, to the best of our knowledge, the

first study for automatic tumor delineation on pediatric patients

scanned with [18F]FET PET and MRI.

Most of the lesions were correctly found and accurately

delineated by the ANN, resulting in clinical metrics (TBRmean,

TBRmax, and BTV) with similar values regardless of the

delineation method. The TBRmax was the metric most robust

with only two scans notably deviating from the identity line. The

difference was in one case caused by the ANN not delineating

a FET-positive hotspot at the edge of a surgery cavity that was

otherwise correctly delineated, and in the other by the ANN

incorrectly delineating a vessel (Figure 3A). The high correlation

for the TBRmax metric and an agreement of peak TBRmax
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FIGURE 4

The comparison of the clinical metrics TBRmean, TBRmax, and BTV extracted with the ANN (x-axis) and the reference manual delineation (y-axis).

The biological tumor volume (BTV) is also plotted for the 0–35ml range for a better comparison of the smaller lesions. The black line is the

identity line and the red line is a linear fit to the points with the r-values indicated in the figure.

location indicates that, while absolute differences might exist

between manual and automatic delineated BTV, the spatial peak

is correctly found. This further allows for accurate automatic

placement of a circular or spherical volume-of-interest (VOI)

at TBRmax, which is an alternative to full tumor delineation

(37). As expected, the variation was higher for TBRmean values

since the metric is affected by even minor differences in the

delineation boundary. These findings are important since the

TBR metrics can be used clinically to separate the reactive

tissue from the tumor tissue and since implementing the ANN

method in daily clinical routine may save time and increase

inter-reader reproducibility.

Similar BTV was found with the reference and ANN

delineation methods. As expected, the largest relative errors

were found for the small tumors (BTV < 10ml) and could

often be attributed to a 1–2 voxel difference at the border (as

shown in, e.g., Figure 2A). We observed a few cases where the

ANN incorrectly delineated non-tumor tissue, e.g., a region
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FIGURE 5

Longitudinal evaluation with clinical metrics for three representative patients. # indicates the number.

in the pituitary region (Figure 3B). Such errors might be

attributed to the large heterogeneity of tumor types, location,

and patient age in the training cohort. The inclusion of more

patients might reduce the false positive delineations. Further

use of kinetic parameters, such as TTP, might also help with

the differentiation.

Central nervous system tumor delineation in pediatric

subjects requires knowledge about viable tumor location and

likely growth pattern. Figure 3C illustrates an example of the

latter where the ANN overestimates the tumor area, mimicking

the performance of a naïve TBR thresholding. For this patient,

the reference delineation is a result of a subjective decision of

the boundary location as the area of [18F]FET uptake above

the TBR threshold represents a typical cortical reactive pattern

after recent surgery (23). An ANN is not capable of mimicking

such subjective decisions when the cases are underrepresented

in the dataset. Thus, the manual inspection and correction of the

delineations is a requirement, in particular, if they are applied for

clinical routine use. The inclusion of more datasets with typical

treatment changes may improve performance.
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The clinical metrics are further important for the assessment

of treatment response (10). We found nearly identical metrics

(TBR and BTV) for the ANNwhen compared with the reference

delineation in the longitudinal dataset. This result indicates that

the use of our ANN is feasible in follow-up studies as any error in

BTV appears to be present in both the baseline and subsequent

follow-up examinations. Further studies with a larger cohort of

longitudinal datasets are required to confirm this finding.

The main limitation of our study is the low number

of patients in the test set since pediatric CNS tumors are

rare and highly heterogeneous. Even though the number of

patients exceeds similar studies for [18F]FET PET brain tumor

delineation (22, 36), the number of patients in each sub-category

is low when divided into tumor type and patient age. Future

inclusion of patients might therefore further improve the results

and minimize the false positive/negative tumors.

Comparison with alternative methods is challenging since

no automatic delineation method for pediatric CNS tumors

currently exists. Blanc-Durand et al. (22) proposed a deep

learning method for the segmentation of gliomas in [18F]FET

PET/CT scans of adult patients and achieved a mean DSC of

0.79 (22). The mean DSC in our dataset was comparatively

higher (0.86), suggesting the state-of-the-art performance of

our method.

The fast inference time for the ANN (<1min) suits well in

the clinical routine, as manual delineation is a time-consuming

task often associated with high inter-reader variance. The full

tumor delineation allows for the use of [18F]FET PET alongside

MRI for machine learning, deep learning, and radiomic models

for tumor classification and prognosis (38).

Conclusion

We implemented and validated an ANN for the automatic

delineation of pediatric CNS tumors. The method achieved high

concordance with the manual reference and performed on par

with the state-of-the-art [18F]FET PET delineation of brain

gliomas in adult subjects. The method allows for automatic

delineation with either no or limited user intervention, which

provides volumetric measurements of biological tumor volume

as well as clinically relevant metrics for differentiating tumor

tissue from treatment-related reactive changes. The ANN may

be an important tool for decision aid, to limit inter-reader

variance and improve longitudinal evaluation in clinical routine,

and for future multicenter studies of pediatric CNS tumors.
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