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1. Introduction

Positron emission tomography (PET) is a quantitative imaging technique based on

the detection of pairs of 511 keV photons originating from positron electron annihilation

to visualize the spatio-temporal distribution of a radiotracer in vivo. Next to X-ray

computed tomography (CT) and single photon emission tomography (SPECT), it is one

of the classical medical tomographic imaging techniques that allows to derive a three-

dimensional distribution of interest (e.g., the activity contration of the radio tracer)

based on themeasurement of projections of the distribution1 which enables non-invasive

imaging.

The possibility of deriving a two-dimensional function (distribution of interest) from

a set of line integrals (Radon transform) was already discovered by Radon (1). In addition

to the original inversion formula provided by Radon himself, many other algorithms

have been developed over the years, to derive the distribution of interest from the set of

measured projections2.

Some of these inversion (or reconstruction) methods are analytic—the most

prominent being the filtered backprojection algorithm—while others are iterative (e.g.,

maximum likelihood or penalized likelihood reconstructions). All analytic and iterative

reconstruction methods have in common that (back)projections need to be calculated

to derive the distribution of interest. For analytic methods, this is usually a single

backprojection, whereas for iterative methods many forward and backprojections need

to be calculated. For various reasons, iterative methods, e.g., early-stopped and post-

smoothedmaximum expectationmaximization with ordered subsets (OS-MLEM) (3–5),

have replaced analytic reconstruction techniques in PET for many years now which

means that a considerable computational effort is needed to reconstruct the image from

the measured data.

Due to tremendous advances in PET detector technology, the detection of the arrival

time difference of the two 511 keV photos with sufficient precision became feasible

over the years (6) such that today commercial clinical PET scanners with a coincidence

timing resolution of around 200–400 ps full with at half maximum (FWHM) exist. An

estimation of the arrival time difference 1t with given uncertainty σ1t offers additional

1 In PET, we use the general term “projection” for (weighted) line or volume integrals along a line

(LOR) or tube of response (TOR) connecting two photon detectors.

2 Moreover, inversion methods to invert the more general three-dimensional X-ray transform were

developed (2).
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information which allows to restrict the possible emission

location along the tube of response (TOR) into a distribution

with spatial uncertainty σ‖ along the TOR given by

σ‖ =
c

2
σ1t , (1)

where c is the speed of light. As shown in Figure 1, for

state-of-the-art time of flight (TOF) PET systems with TOF

resolutions between 200 and 400 ps, the uncertainty along the

TOR imposed by the TOF information is much bigger compared

to the uncertainty perpendicular to the TOR (σ⊥) due to the

detector width, photon acolinearity, positron range, detector

cross-talk and parallax effects.

The benefits of having TOF information for image

reconstruction, even in the regime where σ‖≫σ‖, are numerous

and include: improvements in the signal to noise ratio (7),

mitigation of limited angle artifacts (8), joint reconstruction

of activity and attenuation (9), faster convergence of iterative

reconstruction algorithms (10).

In a remarkable work, Kwon et al. (11) recently showed

that it is possible to build a PET imaging system based on the

detection of Cherenkov photons in two collimated detectors

that has a coincidence TOF resolution of 32 ps3 meaning that

σ‖ ≈ σ⊥. In their article, the authors argue that by having

detectors with such excellent coincidence TOF resolution a PET

“image can be directly obtained without any reconstruction

step” (direct positron emission imaging or reconstruction-

free PET).

In this article, we aim to discuss the potential and also

the limitations of reconstruction-free PET imaging, considering

the physics of the PET data acquisition process and the

statistical distribution of the acquired data. Before doing so in

the following sections, however, we first need to define what

“reconstruction-free” actually means. As mentioned by Kwon et

al., we can define reconstruction-free PET imaging as a method

that directly generates cross-sectional PET images from the

measured TOF PET data after applying a few simple analytic

corrections (e.g., using the measured TOF profile along a TOR

directly after correction for photon attenuation and detector

sensitivities). In other words, reconstruction-free PET should be

able to generate cross-sectional PET images without the need to

calculate time-consuming (weighted) line or volume integrals

and without requiring iterative techniques. Currently, no real

full-scale clinical PET systems with “perfect” TOF resolution

and adequate photon detection sensitivity exist and it remains

to be seen whether such systems will become reality 1 day

(6, 12, 13). However, since a roadmap and a challenge toward a

10 ps TOF PET system exist (14), thinking about what the image

3 Note that the presented system was a proof-of-concept prototype

that used two collimated detectors such that the sensitivity of this proof-

of-concept system was very low.

reconstruction process will look like and how it might differ

from the reconstruction process that is being used in current

state-of-the-art TOF PET systems is definitely important.

2. A statistical perspective on
reconstruction-free PET imaging

In this section, we take a look at the reconstruction problem

in PET systems with “perfect” TOF resolution from a statistical

perspective. To do so, we consider a PET scanner where the

uncertainty along the TOR σ‖ due to TOF is much smaller

compared to the uncertainty σ⊥ caused by finite detector size,

detector crosstalk, photon acolinearity and the positron range.

Moreover, to simplify the analysis in this section, we assume

that the counts in a given TOF bin in the measured data only

originate from one voxel in the image to be reconstructed4.

Note, however, that in realistic scanner geometries, every voxel

contributes counts to several bins in the measured data because

it is crossed by several TORs as shown in Figure 2. Using this

assumption mentioned above, the problem of reconstructing

all unknown voxel intensities can be separated into a set of

independent problems.

As in current PET systems with limited TOF resolution,

the measured data yi of systems with “perfect” TOF resolution

follow a Poisson distribution

yi ∼ Poisson(cijλj + s̄i) (2)

where i is a master index combining the index of the geometrical

TOR and the index of the TOF bin along that TOR, λj is the

unknown image intensity of a given voxel j, cij is the system

matrix element including the effects of attenuation along the

TOR, detection sensitivities and spatial blurring and s̄i is the

contribution scatter and random contamination with known

mean. The reconstruction problem is now to estimate the

unknown intensity λj from a set of measured values yi.

One possible approach to estimate λj is to use the maximum

likelihood estimator λML
j that can be obtained by maximizing

the Poisson loglikelihood that measures the likelihood the

measured data yi given an image estimate λ̂j

λ̂ML
j ∈ argmax

x

∑

i

−(cijλj + s̄i)+ yi log(cijλj + s̄i) (3)

leading to the necessary condition

0 =
∑

i

cij





yi

cijλ̂
ML
j + s̄i

− 1



 , (4)

4 This assumption does in general not hold for reconstructions with

voxel sizes that are smaller than σ⊥ or for ring-like PET scanners where

TORs that do not align with the voxel grid exist.
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FIGURE 1

Qualitative probability distribution of the location of two positron-emitting sources (one in the center and one toward the right edge) for a given

TOR on PET systems with di�erent TOF resolutions and ca. 5 mm wide crystals. With better TOF resolution the uncertainty along the TOR σ‖

decreases. At a TOF resolution of ca. 30 ps FWHM, σ‖ is comparable to the uncertainty perpendicular to the TOR σ⊥ in a PET system with 5 mm

crystals and a radius of 400 mm.

FIGURE 2

Schematic comparison of a TOF PET system with limited TOF resolution (σ‖ > σ⊥, top) and “perfect” TOF resolution (σ‖ < σ⊥, bottom) for two

positron-emitting sources (red and blue dots) and three geometrical TORs that are subdivided into “small” TOF bins. In the system with limited

TOF resolution, every TOF bin on a fixed TOR is a�ected by multiple sources as shown by the overlapping red and blue TOF kernels. In contrast,

in the system with “perfect” TOF, every TOF bin is only a�ected by one of the sources, such that a separation of the source locations based on

the measured data is possible. Note that in a scanner with realistic detector geometry (multi rings or two bigger parallel plates) every source

(voxel) contributes to measured data in multiple data bins (di�erent TOF bins on di�erent geometrical TORs.

which in the case of no additive contaminations (s̄i = 0), has the

analytic solution

λ̂
ML, s̄i=0
j =

∑

i yi
∑

i cij
. (5)

Unfortunately, if s̄i 6= 0 and cij > 0 for more than three bins

in the measured data, (4) has no analytic solution anymore.

Therefore, if we want to avoid iterative techniques to estimate

λj, other estimators for λj have to be used. One possibility for

an analytic estimator of λj in the case si > 0, is to use the

“precorrected” estimator

λ̂PCj =

∑

i yi − si
∑

i cij
. (6)

Another alternative is to use the unweighted least

squares estimator

λ̂LSj =

∑

i cij(yi − si)
∑

i c
2
ij

(7)
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or the weighted least squares estimator

λ̂WLS
j =

∑

i cij(yi − si)
/

wi
∑

i c
2
ij

/

wi
. (8)

All of the four estimators λ̂ML
j , λ̂PCj , λ̂LSj , and λ̂WLS

j have

advantages and disadvantages. The main advantage of λ̂PCj ,

λ̂LSj , and λ̂WLS
j is that they are unbiased and that they are

computationally efficient since analytic expressions for them

exist5. The main disadvantage of λ̂PCj , λ̂LSj , and λ̂WLS
j is that they

are not statistically efficient meaning that asymptotically they

do not reach the Cramer-Rao lower bound for their variance

(15). In contrast, the maximum likelihood estimator λ̂ML
j is

asymptotically consistent (unbiased) and statistically efficient.

However, in the presence of additive contaminations s̄i and

a limited acquisition time (in other words finite number of

acquired counts), λ̂ML
j is in general biased. The magnitude

of the bias depends on the expected number of the recorded

counts
∑

i ciλj + s̄i (a lower number of acquired counts leads

to more bias) and the ratio between contamination and “true”

counts in all data bins s̄i
/

(cijλj). Moreover, λ̂ML
j is also less

computationally efficient compared to the other estimators since

it can be only found with iterative techniques. The choice of the

most suitable estimator for λj will depend on

1. The given clinical task and whether low bias or low variance

is more important for that task. This trade-off between bias

and variance might be e.g., very different for a detection vs. a

quantification task.

2. The expectation of the total number of acquired counts
∑

i cijλj + s̄i. In a high count regime, λ̂ML
j is probably

the optimal estimator since it is statistically consistent and

efficient. For a quantification task in the low count regime,

one might prefer one of the other estimators because of the

bias of λ̂ML
j .

3. The available computational resources and time6.

We emphasize again that if λ̂ML
j is the preferred estimator—

e.g., due to its lower variance—iterative techniques can not

be avoided.

5 The “optimal” weights wi that minimize the variance of λ̂WLS
j are in

general unknown. A pragmatic choice that tries to resemble the unknown

true variances of yi might be min(ciλ̂
LS
j + s̄i , s̄i).

6 Note that the computational e�ort and time required to find λ̂ML
j for

a system with “perfect” TOF resolution will be much smaller compared

to systems with “imperfect” TOF resolution since the reconstruction

problem can be split into independent 1D subproblems.

3. Attenuation correction and
estimation of scattered coincidences

As we have seen in the previous section, estimation of

the unknown tracer concentration λj in a given voxel j in a

PET system with “perfect” TOF resolution requires accurate

knowledge of the systemmatrix elements cij and the expectation

of the additivive contaminations s̄i. In addition to the effects of

intrinsic detection efficiencies and the TOF weight between a

given voxel and a TOF bin along a geometrical TOR, the system

matrix elements cij must include the effect of photon attenuation

to obtain PET images with correct regional contrast and

absolute quantification. Knowing the 511 keV linear attenuation

coefficient µ at every position crossed by a TOR, photon

attenuation in PET can be modeled via a TOR-dependent factor

that can be calculated via the linear attenuation law

ai = e−
∫

TOR µ(x)dx . (9)

Therefore, to correctly model the effect of photon attenuation,

the calculation of line integrals through the known attenuation

image (the forward projection of the attenuation image) is

required. Strictly speaking, this means that quantitative PET

imaging without calculation of any line integral is not possible.

Note that it was shown that TOF PET data include attenuation

information themselves and that TOF PET data determine the

attenuation sinogram up to a constant (9). However, estimating

the attenuation sinogram from its derivatives and estimating

the missing constant usually requires more advanced iterative

techniques such as MLAA (16) or MLACF (17) including the

calculation of many forward and back projections.

In addition to the modeling of photon attenuation, the

amount of expected scattered coincidences that contribute to

s̄i in all data bins need to be estimated. Since the amount of

detected scattered coincidences depends on the attenuation as

well as the activity image, this estimation is usually done in an

iterative way. First, an initial PET image, where the contribution

of scattered coincidences is ignored, is estimated. This initial

image that overestimates the true activity concentration in

conjunction with the attenuation image is then used as input

to either an analytic scatter simulation (18, 19) including the

calculation of many (weighted) line integrals or as input for

dedicated Monte-Carlo simulations to produce a first estimate

of the expected amount of scattered coincidences in every

data bin. The first scatter estimate can then be used to re-

estimate the activity concentration and the updated activity

concentration estimate can be used to re-estimate the scatter.

This procedure is repeated until a stable estimate for the activity

concentration and scatter distribution is reached. Avoiding this

iterative procedure was only possible if scattered coincidences

could be rejected on the hardware level which is currently not

feasible. In theory, detectors with very good energy resolution

or directional information on every detected photon would be
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able to reject scattered coincidences, but reaching that seems

at least as challenging as reaching detectors with “perfect”

TOF resolution.

4. PET imaging requires noise
suppression

Since the available acquisition time and the amount of

radiotracer that can be safely injected into a patient are limited,

the acquired data in PET usually suffer from high levels of

Poisson noise that gets transferred into the reconstructed PET

image such that techniques for noise suppression are essential

to obtain images with practical signal to noise levels. In contrast

to PET systems with limited TOF resolution, the noise between

neighboring voxels in a system with “perfect” TOF resolution

will be uncorrelated, if the reconstruction can be split into

independent subproblems for every voxel. To suppress noise in

current PET imaging, two main strategies are commonly used.

First, the reconstructed image can be post-processed by either

applying a conventional smoothing filter or, more recently,

by feeding the reconstruction into a pre-trained convolutional

neural network (20, 21). Alternatively, instead of using the

maximum likelihood or any of the other estimators that describe

data fidelity, a maximum a posteriori estimate (MAP) estimator

can be used. This is possible by augmenting the Poisson

loglikelihood with a term that reflects prior knowledge on the

image to be reconstructed (e.g., smoothing priors penalizing a

given norm of finite forward differences between neighboring

voxels (22, 23). In general, optimizing the augmented MAP

objective function is only possible using iterative methods.

Recently, it was also shown (24–26) that the combination

of iterative reconstruction and trainable convolutional neural

networks into unrolled networks can be used to improve

the quality of PET images beyond what is possible with

classical methods.

5. Exploiting the resolution benefit
of ultra-fast TOF scanners

For state-of-the-art PET systems where σ‖ ≫ σ⊥, the

fundamental limit for the spatial resolution that can be achieved

is dominated by the detector size, photon acolinearity, scanner

radius and the positron range as described in Moses (27)

meaning that for those systems, the TOF information has

no beneficial impact on the spatial resolution. Interestingly,

based on Monte Carlo simulations of a ring-like ultra-fast

TOF PET system with very thin detectors7, Toussaint et al.

(28, 29) recently found evidence that in the regime where

7 Thin detectors were simulated to exclude the e�ect of depth of

interaction leading to parallax errors.

σ‖ ≤ σ⊥, TOF information enables PET imaging with

resolutions below the fundamental limit imposed by the

detector size, photon acolinearity, and the positron range. In

their work, Toussaint et al. used the iterative TOF-MLEM

algorithm to reconstruct the simulated data and could show

that the resolution in the TOF-MLEM reconstructions lead

to better resolutions when iterating long as also shown in

Gong et al. (30). To mitigate effects that lead to spatial

blurring in the reconstructed images, those effects (σ⊥,

σ‖) should be modeled as accurately as possible in the

reconstruction process. Since image deblurring in general is an

ill-posed and ill-conditioned inverse problem, regularization

and iterative methods will be required for finding a

stable solution.

6. Discussion

All in all, we can say that improving the TOF resolution

to a level where the TOF-induced uncertainty parallel to

the TOR is smaller than the uncertainty perpendicular to

the TOR, will definitely change the way that PET images

are estimated from the measured data. In many aspects,

the availability of “perfect” TOF resolution will simplify this

non-trivial problem. However, as discussed in the previous

sections, quantitative PET imaging without calculating line

integrals to include the effect of photon attenuation, or without

using iterative techniques to e.g., estimate the contribution

scattered coincidenes or to find the maximum likelihood

or maximum a posteriori estimator, is not feasible. As

demonstrated in the proof-of-concept by Kwon et al. (11),

in the absence of scattered coincidences, direct PET imaging

is in principle possible8. However, the question remains

whether simple direct (reconstruction-free) methods will yield

“optimal” image quality concerning image resolution and

noise compared to more advanced (iterative) reconstruction

techniques in realistic PET systems with “perfect” TOF

resolution. The road toward a clinical system with “perfect”

TOF resolution is still long and certainly full of expected

and unexpected challenges in the image formation process.

For any future PET system with better and better TOF

resolution that will be developed along this road, experts

in the fields of PET hardware design, modeling of PET

acquisition physics, estimation theory and inverse problems,

machine learning and image reconstruction have to closely

collaborate to ensure that the diagnostic information captured

in the acquired data is used in the best possible way.

Based on the statistical distribution of the acquired data

and the physics behind the acquisition process, it is possible

8 Note that the directly acquired data was also corrected for photon

attenuation by calculating the forward projection of the attenuation

image.
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that this process might include a step that deserves the

name “reconstruction.”
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