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Designing positron emission tomography (PET) tracers for targets in the central nervous
system (CNS) is challenging. Besides showing high affinity and high selectivity for their
intended target, these tracers have to be able to cross the blood-brain barrier (BBB).
Since only a small fraction of small molecules is estimated to be able to cross the BBB,
tools that can predict permeability at an early stage during the development are of great
importance. One such tool is in silico models for predicting BBB-permeability. Thus far,
such models have been built based on CNS drugs, with one exception. Herein, we
sought to discuss and analyze if in silico predictions that have been built based on
CNS drugs can be applied for CNS PET tracers as well, or if dedicated models are
needed for the latter. Depending on what is taken into account in the prediction, i.e.,
passive diffusion or also active influx/efflux, there may be a need for a model build on
CNS PET tracers. Following a brief introduction, an overview of a few selected in silico

BBB-permeability predictions is provided along with a short historical background to the
topic. In addition, a combination of previously reported CNS PET tracer datasets were
assessed in a couple of selected models and guidelines for predicting BBB-permeability.
The selected models were either predicting only passive diffusion or also the influence
of ADME (absorption, distribution, metabolism and excretion) parameters. To conclude,
we discuss the potential need of a prediction model dedicated for CNS PET tracers and
present the key issues in respect to setting up a such a model.

Keywords: central nervous system, PET tracer, blood-brain barrier, in silico prediction, QSAR models

INTRODUCTION

Neurodegenerative and neurological diseases, such as Alzheimer’s disease, schizophrenia,
Parkinson’s disease and multiple sclerosis affect millions of people worldwide and together they
comprise one of the world’s most important health challenges (1). Therefore, it is of utmost
importance to get a better understanding of the mechanisms of these diseases at a molecular
level. In this way current diagnosis, prognosis and treatments can be improved or even replaced
by better alternatives. Positron emission tomography (PET) allows us to study these diseases and
accelerate drug development, as well as to explore both new treatment opportunities and targets
(2, 3). However, as for traditional central nervous system (CNS) drug discovery, the development
of PET tracers for brain targets is a challenging task and there is a high attrition rate. A successful
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CNS PET tracer has to fulfill several criteria (Figure 1) in
regard to its pharmacology, structure, pharmacokinetics and
safety/toxicity (4–7). First of all, the tracer has to show a high
affinity and selectivity toward its intended target. Preferably,
the affinity (indicated with a dissociation constant Kd or an
inhibitory constant K i) should be in the low single digit nM
to sub-nM range. Secondly, the binding potential (BP), defined
as Bmax/Kd, ought to be equal or higher than 10. Here, Bmax

represents the maximum concentration of target binding sites.
Sometimes the term Bavail is used instead of Bmax for in vivo
purposes. The former is defined as the maximum concentration
of available target binding sites and used for in vivo purposes,
since for conditions in vivo not all sites will be available for
tracer binding due to occupancy by endogenous ligands (8, 9).
The value of BP gives a rough estimation of how likely a target
can be imaged by a specific tracer. Thus, the lower expression
level the intended target has, the higher affinity (a Kd value in
the sub-nM range) is needed for adequate imaging. A BP ≥ 10
should not be considered as a strict threshold, but as a rule of
thumb. For example, an important exception is [11C]raclopride,
which has a BP of 5.4 and is still an excellent tracer for
imaging of the dopamine receptor D2 (9). Even though the BP
gives an estimation of the potential image quality for a specific
tracer/target pair, the image quality is not solely dependent on the
signal arising from target-bound tracer (specific binding). The
background signal arising from non-specific binding also plays
a major role. Thus, low non-specific binding (NSB) is preferred
to allow sensitive imaging. Previously, NSB was thought to
mainly correlate to descriptors related to lipophilicty, e.g., the
logarithmic partition coefficient (logP) and the logarithmic
distribution coefficient at physiological pH (logD7.4) of the tracer.
However, this correlation is not perfect and other descriptors,
such as the charge state of a compound and the degree of
ionization at physiological pH have been reported to influence
as well (10–12).

From a chemistry point of view, the structure of the PET tracer
has to allow for late-stage radiolabeling with either carbon-11 or
fluorine-18 in high molar activity. Moreover, a suitable metabolic
profile of the tracer is required with no or minimal amounts of
radiolabeled metabolites taken up by the brain. Ideally, the tracer
should degrade outside the brain to less lipophilic metabolites
that cannot enter the brain. Possible metabolites that could be
formed should be taken into account already during the selection
of radiolabeling approach. Besides being metabolically stable to
reach its intended target in vivo, the tracer must also be able to
cross the blood-brain barrier (BBB). The BBB is playing a critical
role in protecting the brain against compounds circulating in the
blood stream by acting as a significant obstacle into the CNS (13).
To make passage even more problematic, the BBB also contains
numerous of efflux transporters, such as P-glycoprotein (P-gp),
the breast cancer resistant protein (BCRP) and the multidrug-
resistance proteins 1–3 and 5 (MDR1–3, 5). The main task of
these proteins is to transport exogenous compounds out from
the brain (14, 15). Obtaining tracers with a sufficient BBB-
penetration is often considered the major hurdle during the
development phase. An estimation is that only 2% of small
molecules are able to cross the BBB (16). Therefore, during

tracer development special attention should be given to screen for
and design structures that are BBB-permeable. Computational
methods for predicting brain uptake based on descriptors derived
from the molecular structure can guide and accelerate this
step in the development phase. The research regarding in silico
predictions for brain uptake is extensive and numerous models
have been reported over the years. Naturally, all reported models
except one have been based on CNS drugs and not CNS PET
tracers. Most often PET tracers are simply radiolabeled analogs
of already reported compounds showing affinity for the specific
target to be studied. However, due to significant differences in
administered dose (microgram vs.milligram), as well as the route
of administration (intravenous vs. oral) between CNS PET tracers
and CNS drugs, the covered space in ADME(T) (absorption,
distribution, metabolism, excretion, and toxicity) properties
often differ. As a result, in silico predictions that take such
parameters into account and are based on data derived from CNS
drugs, may not predict CNS PET tracers as accurately. In case of
only predicting passive diffusion, which is merely a compound’s
fusion into the lipid membrane and a non-saturable mechanism,
the favored property range for tracers and drugs should not be
different (17, 18). This, in turn, is further supported by the fact
that radiolabeling of CNS drugs is frequently used to study brain
penetration and biodistribution during the development phase.
This should not be confused with the assessment if a compound
entering the brain via passive diffusion will in fact have a high
enough brain uptake to be a successful imaging agent (18).

We will discuss if a dedicated in silico model for CNS PET
tracers is needed or if a model built on a CNS drug dataset
can be used for predicting brain uptake of CNS PET tracers as
well. To address this, we will provide a short historical overview
of in silico prediction models for BBB-permeability, and what
is needed in terms of establishing and validating such models.
Furthermore, we have highlighted a few selected contributions
with the aim of showing different types of computational
methods used. In addition, we have included a comparison of
eight different prediction models and classification rules using
a combination of previously reported CNS PET tracer datasets.
Finally, we will end with discussing the potential need of an
in silico BBB-permeability prediction dedicated to CNS PET
tracer development, as well as presenting the possible issues with
developing such a model.

DATASETS FOR IN SILICO MODELING TO
ASSESS BRAIN UPTAKE

In order to build a prediction model, a dataset of sufficient size
and quality is needed. The dataset has to include both positives
and negatives for what the model is going to predict. In theory,
experimental values used to define positives and negatives can
be retrieved based on either in vitro or in vivo measurements. In
the case of in silico models for BBB-permeability, positives will
be compounds that can cross the BBB, whereas negatives would
be compounds that cannot. Evidently, in vivo measurements are
always preferred and for BBB-permeability there are two types
of data that can be used for defining positives and negatives;
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FIGURE 1 | The suggested ideal criteria for a successful CNS PET tracer.

(A) numerical, and (B) categorical. The most commonly used
numerical data is the logarithmic brain:plasma concentration
at steady-state (logBB) as displayed in Equation (1). Several
logBB values have been collected and combined to create large
datasets (19).

logBB= log
Cbrain

Cblood
(1)

Another descriptor for BBB-permeability is the logarithmic
permeability surface-area product, expressed as logPS. PS
(measured in the unit mL/min/g brain) is obtained via in
situ brain perfusion studies and by using the Renkin-Crone
equation (Equation 2), where F is the cerebral blood or perfusion
flow rate and Kin is the unidirectional transfer constant. The
latter can be derived from Equation (3), in which Qbr is the
concentration, corrected for the vascular volume, of compound
in the brain, Cpf is the concentration of compound in the
perfusion fluid and T is the perfusion time (20–24). In contrast
to logBB, which is a measurement at steady-state, logPS is a
measurement of the initial permeability rate and can be seen
as a brain pharmacokinetic value. LogPS is more informative
than logBB, but less used since it is labor-intensive and has
a low-throughput (20, 21). Because of this, not much data
is available, which limits the use of these types of datasets
for establishing an accurately trained and validated in silico
prediction model. In addition, when using numeric data an
appropriate threshold for defining positives and negatives
is required.

PS = −Fln

(

1 −
Kin

F

)

(2)

Kin =
(

Qbr

Cpf

)

/T (3)

With regard to categorical data a compound is classified as
CNS+ or CNS–, based on its CNS activity, hence this type

of data has two assumptions. Firstly, for CNS+ compounds,
they certainly cross the BBB (or potentially an active metabolite
of the parent compound, e.g., in the case of prodrugs), but
the mechanism of action can vary among the compounds
including passive diffusion, carrier-mediated transport or
receptor-mediated transcytosis. The CNS+ classification can also
be misleading in cases when the compound has a low BBB
permeability, but still a high potency. Secondly, the classification
implies that the CNS– category does not cross the BBB, which
is not necessarily true. Some of these compounds may still
cross the BBB, but they do not show CNS activity. The lack
of CNS activity can be a result of no interaction with a CNS
target, rapid metabolism or the compounds are substrates for
efflux transporters (19). To sum up, the use of categorical data
makes it easier to find a CNS+ compound than identifying
a CNS– compound. Often, a combination of numerical and
categorical datasets is used, in which the numerical data have
been further defined with a threshold for classifying CNS+ and
CNS–, respectively. Furthermore, in categorical datasets, P-gp
substrates are sometimes included. Thus, predictions based on
such dataset will not only account for passive diffusion through
the BBB, but also the potential contribution of active transport
arising from P-gp.

The dataset that is applied for creating the model is called a
training set. However, a properly established model should also
have its performance validated. Shortly, the validation gives an
indication on how well the model can classify a dataset. The
actual validation is performed by screening an additional dataset,
called the test set. The latter should contain different compounds
than the training set. The performance of the model is assessed
by several commonly used statistical parameters as outlined in
Table 1 (25–27). Mind that even though accuracy (ACC) is one
of the most commonly used statistical parameters to evaluate
classification systems, it is not a proper measurement when
working with imbalanced dataset. Instead Matthew’s correlation
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TABLE 1 | Commonly used statistical parameters for evaluating the performance of a classification model.

Parameter Definition Formula

Accuracy (ACC) The total fraction of compounds
correctly classified in the dataset

ACC = TP + TN
n

Error rate (ER) The total fraction of compounds
incorrectly classified in the dataset

ER = FP + FN
n

= 1 − ACC

Sensitivity (Se) The ability of the model to find true
positives (TP)

Se = TP
TP + FN

Specificity (Sp) The ability of the model to find true
negatives (TN)

Sp = TN
TN + FP

False negative rate (FNR) Fraction of positives incorrectly
classified as negatives

FNR = FN
TP + FN

= 1 − Se

False positive rate (FPR) Fraction of negatives incorrectly
classified as positives

FPR = FP
FP + TN

= 1 − Sp

Positive predictive value
(PPV )

The fraction of TP out of the total
amount of instances classified as
positives. The PPV is also known
as precision

PPV = TP
TP + FP

Negative predictive value
(NPV )

The fraction of TN out of the total
amount of instances classified as
negatives

NPV = TN
TN + FN

Matthew’s correlation
coefficient (MCC)

MCC is also known as the mean
square contingency coefficient (φ).
It is a measure of association
between two binary variables

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FN)(TN + FP)

Corrected classification
rate (CCR)

CCR is a measure of the correct
classifications in the dataset

CCR = 1
2

(

TN
N

+ TP
P

)

TP = number of true positives (CNS+ compounds in the dataset classified correctly); TN = number of true negatives (CNS– compounds in the dataset classified correctly); n = total

number of compounds in the dataset (N + P); FP = number of false positives (true CNS– compounds classified as CNS+ by the model); FN = number of false negatives (true CNS+
compounds classified as CNS– by the model); N = total number of negatives (CNS– compounds) in the dataset; P = total number of positives (CNS+ compounds) in the dataset.

coefficient (MCC) and the corrected classification rate (CCR) are
more robust parameters to use for these types of datasets (27, 28).

OVERVIEW OF IN SILICO MODELS FOR
PREDICTION OF BLOOD-BRAIN BARRIER
PERMEABILITY

Already at the turn of the twentieth century, Meyer and Overton
discovered, in two independent studies, a correlation between
the partition coefficient in olive oil:gas and potency of common
anesthetic agents. The more lipophilic an anesthetic was (i.e.,
higher partition coefficient), the greater potency it had. This
later became recognized as the Meyer-Overton correlation for
anesthetics (29–31). From there on research was directed toward
understanding the composition and biophysical properties of
the BBB along with studying the BBB-permeability of different
charged and uncharged compounds. Not until around the 1970–
80’s the focus was moved toward investigating correlations and
relationships between different physicochemical properties of
compounds and how changes in these influence permeability
and brain exposure. Lipohilicity has long been recognized
as the key property influencing permeability, thus a heavy
reliance has been placed on optimizing only this descriptor to
increase permeability. However, with better understanding of the
physiology of the BBB it became apparent that other properties

play a part as well. Pioneering work by Levin et al., describes the
influence of size. The authors observed a relationship between
BBB-permeability, lipophilicity andmolecular weight (MW). The
permeability was improved with increasing logP (experimentally
measured in 1-octanol:water) for compounds having a MW <

400 g mol−1 (32). Another important study, conducted by Young
et al., showed the effect of the hydrogen bonding potential
(33). In fact, the rate-limiting step when a compound crosses
the BBB is suggested to be the hydrogen bonding interactions
of the compound to the hydrophilic part of the lipids in
the BBB (34). Molecular descriptors encoding for hydrogen
bonding information are, e.g., hydrogen bond acceptors (HBAs),
hydrogen bond donors (HBDs) and (topological) polar surface
area ((T)PSA) (35).

With more experimental data collected and correlations
investigated for numerous molecular descriptors (both
experimental and computed ones), groups started to set up
prediction models. The simplest type of prediction models
are “rules of thumb”. These give a rough and quick guidance
for what property range has the highest probability to favor
brain permeability. After Lipinski’s rule of five (36) for orally
administered drugs, a set of rules specifically for CNS drugs
were derived stating that a CNS drug should preferably have the
following properties: (A) MW ≤ 400 g mol−1; (B) computed
logarithmic partition coefficient (ClogP) ≤ 5; (C) HBAs ≤ 7; (D)
HBDs ≤ 3 (35). In contrast, van de Waterbeemd et al. suggested
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rules in which the upper limit for MW is 450 g mol−1 to favor
brain permeation, while PSA should be < 90 Å2 and logD7.4 in
the range of 1–4 (37). Following this, Kelder et al. narrowed the
PSA range a bit further to 60–70 Å2, as a result of studying the
PSA contribution for a larger dataset involving 776 CNS drugs
(38). Norinder and Haeberlein derived additional rules based
on the ones mentioned above and applied an additional dataset
reported by Clark (39, 40). Their first rule states that if the sum
of nitrogen and oxygen atoms (N+O) in a molecule is five or
less, the compound has a higher chance of brain permeation.
The authors also showed that this simple rule with other datasets
could predict as accurate as more complex models. Next, they
stated a second rule that predicts if logP-(N+O) of a specific
compound is positive, then its logBB is also positive and the
compound has a high probability to cross the BBB. Both of
these quick rules of thumb were able to predict the applied
datasets with high ACC (0.85 and 0.92, respectively) (39). It
should be noted that this is the ACC from the datasets used to
find the relationships. The rules were only validated with one
additional dataset comprising 29 compounds. Although, the
ACCs were again relatively high (0.72 and 0.79, respectively),
a validation with a larger dataset would have been preferred.
However, at that time there was limited access to such a dataset.
To follow this, Hitchcock and Pennington reported a set of rules
based on reviewing properties of, at the time, available CNS
drugs. The suggested property thresholds were: ClogP = 2–5,
computed logarithmic distribution coefficient at physiological
pH (ClogD7.4) = 2–5, MW < 500 g mol−1, PSA < 90 Å2, HBD
< 3 (41). A few years later, Manallack reviewed the literature
to study the distribution of the acid-base dissociation constant
(pKa) among 528 drugs. From these he made a subset consisting
of 174 CNS and 408 non-CNS drugs for which it was revealed
that CNS drugs rarely have acidic pKa values below 6, whereas
no CNS drugs had basic pKa values above 10.5 (42).

Amore extensive, andmore recent, property profile for CNS+
vs. CNS– was created by Ghose et al., who analyzed simple
physicochemical properties (and no ADME parameters) of a
categorical dataset comprising 317 CNS and 626 non-CNS drugs.
This high number of non-CNS drugs, actually more than the
number of CNS drugs, is an advantage of this work. They derived
a few guidelines that can be applied in lead optimization toward
getting a BBB-permeable structure. In summary, the analysis
resulted in the following guidelines: (A) TPSA < 76 Å2 (25–60
Å2); (B) at least one (1 or 2, including 1 aliphatic amine) nitrogen
atom; (C) < 7 (2–4) linear chains outside of rings; (D) < 3 (0 or
1) polar hydrogen atoms; (E) volume of 740–790 Å3; (F) solvent
accessible surface area of 460–580 Å2; (G) positive QikProp
parameter CNS (43). The latter is a software-specific function for
ADME prediction in the molecular modeling software package
Schrödinger R©, which limits its application for general use.

More advanced than applying simple rules of thumb is to
predict an actual value of logBB. The first purely computational
approach for this purpose was that of Kansy and van de
Waterbeemd. Multiple linear regression was carried out on
physicochemical property data from 20 compounds to generate
Equation (4), with a correlation coefficient (R2) of 0.84, a root-
mean-square error (RMSE) of 0.45 and a Fisher value (F) of

20 (44). Not surprisingly, the model was not very predictive
when applied on another dataset, which is most likely a result
of the limited number of compounds used to establish the
model. Abraham et al. also developed numerous equations to
predict logBB using larger datasets and with better performances
(39, 45). However, the calculations of the parameters were not
straightforward and rather time-consuming. A model relaying
on more easily calculated descriptors was set up by Clark. The
prediction model (Equation 5) was established with a training
set consisting of 57 compounds and it showed good performance
(R2 = 0.89, RMSE = 0.35, and F = 96). However, it was only
validated using two very small test sets comprising 6 and 7
compounds, respectively. On the other hand, the predicted logBB
was comparable to the experimentally determined ones for most
compounds (40). Finally, two logBB predictions (Equations 6 and
7) using a more extensive dataset were reported in 2010 by Vilar
et al. Equation (6) is based on two descriptors, ClogP and TPSA,
whereas the second prediction (Equation 7) is based on the same
descriptors, but with the addition of the sum of the number of
acidic and basic atoms (aacid and abase, respectively). The training
set consisted of 307 compounds all with experimental logBB
values determined by in vivo studies. Both models should be used
in the prediction of a new compound since they are set up based
on general logBB thresholds for CNS+ (logBB≥ 0.3, Equation 6)
and CNS– (logBB≥−1, Equation 7) classification. If the result of
the prediction of a tested compound is > 0, the prediction is that
its logBB is ≥ 0.3 for model 6 and logBB ≥ −1 for model 7. The
models were later validated using a test set (1,222 CNS+ and 235
CNS– compounds) based on categorical data (46). The authors
stated that it does notmatter that a categorical dataset was applied
in the validation, because CNS activity anyway implies BBB-
permeability. Indeed this is true, but as previously mentioned the
models may have difficulties finding CNS– compounds. Another
drawback is that the method is not really applicable for screening
a larger set of compounds. For instance, as a filter in virtual
screening campaigns.

logBB = −0.021 (±0.003)PSA− 0.003 (±0.001)MolVol

+1.643 (±0.465) (4)

logBB = −0.0148 (±0.001)PSA + 0.152 (±0.036)ClogP

+0.139 (±0.073) (5)

logBB = 0.5159 × ClogP− 0.0277 × TPSA− 0.3462 (6)

logBB = 0.2289 × ClogP− 0.0326 × TPSA− 0.5671

× (aacid + abase) + 2.3420 (7)

Moving forward to somewhat more advanced prediction models
reported the last decade when the available data for setting up
a dataset increased and additional descriptors could be applied.
Different modeling approaches have been used, e.g., partial least
squares regression (47–49), read-across (50) as well as machine
learning methods such as decision trees (51), k-nearest neighbors
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(52), neural networks (53), random forests (27), and support
vector machines (52, 54–56). Most of them predict logBB or just
classify compounds as CNS+ or CNS–. However, Suenderhauf et
al. reported prediction based on logPS with high CCR (∼0.90)
and MCC values around 0.80. This is one of the few reported
models based on only logPS data. They built two decision tree
models, which were induced for suitable splitting using two
paradigms, Chi-squared automatic interaction detector (CHAID)
and the classification and regression tree algorithm (CART).
The dataset used for establishing the models were based on a
dataset of 120 compounds with known logPS values. The dataset
was further categorized as CNS+ if logPS ≥ −2 (n = 65) and
as CNS– in case of logPS ≤ −3 (n = 55). To achieve better
separability during the training of the model, compounds in the
range in between the two cut-off thresholds (−2.1 and −2.9)
for CNS+ and CNS– were excluded from the dataset. A 10-
fold cross-validation strategy was used to evaluate the models.
In this way, the dataset was randomly split into 10 subsets. Out
of these, nine subtest were combined and used to train each
model and the remaining one was used during validation. This
process was repeated 10 times, until all subsets had been used
for training and validation. The applied descriptors in the two
different models differed, but they both included contributors to
lipophilicity, size and charge in the prediction. Figure 2 shows an
overview of the decision tree built with CHAID with the splitting
criteria outlined. Notably, the threshold for logP contribution in
these models was lower compared to other prediction models
and guidelines. The authors suggest this is an indication of active
transport involvement, since compounds suspected of being
actively transported were not excluded from the dataset (51).
However, it is not stated how many compounds this actually
concerns and if it is active influx and/or efflux. In addition, with
regard to the limited dataset and the fact that this conclusion is
based on the contribution of one property it may be misleading.

Succeeding in preparing a dataset with high quality and a
proper size is a constant challenge. As already stated, ∼98%
of all small molecules are estimated to not cross the BBB.
Therefore, if a dataset for validation should capture the reality,
only 2% of the compounds in there should be able to cross
the BBB. Martins et al. tried to address this issue in 2012
by using Bayesian statistics to create an unbiased dataset for
model training and validation. After screening the literature, they
created a dataset of totally 2,053 compounds, 1,570 CNS+ and
483 CNS– compounds. The dataset contained both numerical
and categorical data. To align the dataset, the numerical data
was further categorized as CNS+ in cases of logBB ≥ −1 and
as CNS– if logBB < −1. Compounds with a MW exceeding 600 g
mol−1 were excluded, resulting in 1970 compounds in the end. In
addition, 120 compounds were randomly withdrawn to be used
as a test set for validation of the generated models. The authors
tried four different descriptor sets, which in turn included
numerous different parameters. One set included calculated
fingerprints, while the three remaining sets included together
1,701 descriptors [see (27) for details]. Two different machine
learning algorithms, i.e., random forests and support vector
machines were used to create potential prediction models for
further validation. In the end, the best model was a random

FIGURE 2 | Schematic overview of the CHAID decision tree reported by
Suenderhauf et al. displaying the thresholds for each parameter in the
classification. alogP = the logP calculated according to Ghose and Crippen
(57); fPSA3 = the charge weighted partial positive surface area divided by the
total molecular surface area.

forests fitted with three of the different descriptor sets. The model
showed a high ACC (0.95), good Se (0.83), and moderate Sp
(0.71). Although, the Sp is comparable to other good-performing
BBB-permeability predictions and theMCC (0.74) was good (27).
The model was made available as a free web-based tool when
published (58).

Multiparameter optimization (MPO) desirability tools have
found application in BBB-permeability prediction as well. MPO
can assess the effects of several descriptors, balanced and weighed
with regard to their importance to the overall goal of the tool.
In this way, hard cut-offs in property ranges are not needed.
In combination with a desirability function, the contribution of
multiple components can be transformed via function(s) into
a single composite score. The transformation functions have
defined points indicating desirable and undesirable ranges of the
value of the specific component. In 2010, a group at Pfizer set
up a MPO tool based on key descriptors for CNS drugs. In total,
six descriptors (ClogP, ClogD7.4, MW, TPSA, HBD, and pKa
of the most basic atom) of 119 CNS drugs and 108 CNS drug
candidates were analyzed and aligned with ADMET parameters
such as permeability, low P-gp efflux liability, metabolic stability
and toxicity. These parameters were assessed in in vitro assays. All
descriptors were weighed equally and could have a transformed
desirability score ranging from 0 to 1. The transformed score of
each of these descriptors were summed up to yield the final CNS
MPO score, which can be between 0 and 6 (59).Table 2 shows the
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TABLE 2 | The descriptors with desirable/undesirable range indicated and functions used for scoring in CNS MPO and CNS PET MPO (59, 61).

Descriptor Type of

transformation

function

CNS MPO CNS PET MPO

Desirable range Undesirable range Desirable range Undesirable range

MW (g mol−1) Monotonic
decreasing

MW ≤ 360 MW > 500 MW ≤ 305.3 MW > 350.5

ClogP Monotonic
decreasing

ClogP ≤ 3 ClogP > 5 ClogP ≤ 2.8 ClogP > 4.0

ClogD7.4 Monotonic
decreasing

ClogD7.4 ≤ 2 ClogD7.4 > 4 ClogD7.4 ≤ 1.7 ClogD7.4 > 2.8

TPSA (Å2) Hump function 40 < TPSA ≤ 90 TPSA ≤ 20; TPSA > 120 44.8 44.8 < TPSA ≤ 63.3 TPSA TPSA ≤ 32.3; TPSA > 86.2

HBD Monotonic
decreasing

HBD ≤ 0.5 HBD > 3.5 HBD ≤ 1 HBD > 2

pKa Monotonic
decreasing

pKa ≤8 pKa >10 pKa ≤ 7.2 pKa > 9.5

All descriptors were equally weighed.

applied transformation functions, the desirable and undesirable
ranges, respectively, for each descriptor.

When comparing the CNS MPO score with the results from
the in vitro assays for ADME profiles, a trend was observed that
compounds with a higher score had better profiles. Around 77%
of the compounds in the CNS drug dataset with a CNS MPO
score > 5 displayed a full alignment of all ADME parameters,
i.e., high passive permeability, low P-gp liability, appropriate
metabolic stability and high cellular viability in the toxicity
assay. At the same score threshold, 54% CNS candidates showed
full alignment. In the end, the authors suggest that for high
probability of successful CNS drug, the CNS MPO score should
be> 4 (59). A drawback of this method is that the applied dataset
did not include reported unsuccessful CNS drugs (CNS–), only
CNS+ and CNS drug candidates. Since some of the candidates
had been withdrawn during the drug development process,
the authors initially anticipated that they could act as CNS–
surrogates and have another distribution in the CNS MPO
score. However, this was not the case. Another disadvantage
is that the model was not validated with an external dataset.
Moreover, there are no lower limits in the desirable space for
properties such as ClogP, ClogD7.4, MW and pKa. This means
that very small and charged compounds will be scored to be in
a desirable space as well. On a note, Gunaydin et al. published a
probabilistic MPO (pMPO) scoring function that addresses this
issue. That model was built on a larger dataset with both CNS+
and CNS– compounds (299 CNS+/366CNS–). The authors also
investigated the utility of the scoring method to predict P-gp
liabilities. A set of 500 molecules with measured efflux ratios were
screened from which it was indicated that pMPO was a fairly
good descriptor for P-gp liability as well (60).

A few years later, in 2013, a CNS MPO version for PET
tracers was reported. This model was built based on 62 PET
tracers validated in the clinic and 15 unsuccessful PET tracers
that failed during the late-stage development phase, primarily
due to high NSB. When screening the PET dataset in the CNS
MPO model, which defines a compound with a CNS MPO score

> 4 as a high probability to be successful, 85% of the successful
PET tracers were scored above 4 and 15% had a score ≤ 4. For
the unsuccessful PET tracers as high as 60% was scored > 4. In
contrast, when using the modified MPO with descriptor ranges
(Table 2) better for tracers (score for good tracer > 3) the model
scored 79% of the successful tracers with a score > 3 and 67%
of the unsuccessful tracers with a score ≤ 3. In comparison to
the CNS MPO, one additional parameter in the ADME profiling
was added, namely NSB. To sum up, increasing the probability of
aligning all ADME parameters and increasing the probability of
designing a successful PET tracer, the author suggest that the CNS
PET MPO score should be > 3 (61). A drawback with this model
is that it has not been validated with a test set. However, there is
not enough reported CNS PET tracers available, both successful
and unsuccessful, for setting up a dataset with adequate size to
cover both a training set, as well as a test set. As mentioned for the
CNS MPO version, the PET version has the same disadvantage
that there are no lower limits in the desirable property space.

In order to address some of the challenges with the reported
MPO models, Gupta et al. reported a prediction tool called the
BBB score, in which the composite score for each descriptor was
transformed via stepwise and polynomial piecewise functions.
The model comprises five different descriptors; number of
aromatic rings, number of heavy atoms, MWHBN (a descriptor
based on the MW, HBDs and HBA that can be calculated from
HBN/

√
MW, where HBN is the sum of HBDs and HBAs), TPSA

and pKa at pH 7.4. In contrast to the CNS MPO, the BBB
score was trained on a dataset containing both CNS+ (n =
270) and CNS– (n = 720) compounds. Moreover, the dataset
was curated and only passive diffusion was taken into account,
meaning compounds with reported active influx/efflux activities
were excluded. Validation with an external test set revealed that
the models had a high Se (0.8) and adequate Sp (0.72). The
authors screened the same test set in the CNS MPO model as
well and a significantly lower Sp (0.38 vs. 0.72) was observed (62).
Notably, the authors did not state if they used the same software
as used by Wager et al. to calculate the different descriptors
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applied in CNS MPO, which can have a significant impact on the
final score. This is especially true for ClogP and ClogD7.4.

To end this section, recent work reported by Jackson et al.
should be mentioned. In two conference abstracts the authors
have summarized their on-going work toward setting up an in
silicomodel built based on successful and unsuccessful CNS PET
tracers (75/65). The unsuccessful tracers were further divided
into subcategories of tracers that failed due to high NSB (n =
25), non-permeable tracers (n = 30) and other (n = 10). No
further details regarding the categorization of the dataset are
provided, i.e., if it was solely based on successful/unsuccessful
data in humans, what the thresholds for permeable and non-
permeable were or if the latter sub-category includes efflux
transporter substrates as well (63, 64). Eight different descriptors
including ClogP, ClogD7.4, MW, TPSA, pKa, HBDs (both for
neutral species and at pH 7.4) and net charge at pH 7.4 were
used to set up a MPO model, which in turn was based on similar
models described herein (59, 61, 64). The following parameters
were reported for that model’s performance; Se = 0.49, Sp =
0.97, PPV = 0.97, and NPV = 0.43 (64). Moreover, the authors
state they prefer a high Sp (63). However, a Se as low as 0.49
(0.51 in the first abstract) means that a very large fraction
of potential tracer candidates that are in fact brain permeable
will be classified as non-permeable. Most reported models with
moderate to good overall performance show a Se higher than
0.75 (see examples in Table 3), while still showing adequate Sp.
Finally, a support vector machine model was developed as well,
which reportedly showed better classification performance. This
one, including several other machine learning models (no details
are provided), are stated to be trained with 70% of the dataset and
later evaluated with the remaining 30%, but no cross-validation
was reported (64).

The abovementioned methods are simply highlighted to
provide a general overview and get an awareness of the
different methods available for in silico prediction of BBB-
permeability. Table 3 shows an overview of a few predictions,
what computational method they were based on, as well as
details regarding the applied dataset and themodel’s performance
during validation (when available).

EVALUATION AND COMPARISON OF IN

SILICO PREDICTIONS AND
CLASSIFICATION RULES USING A CNS
PET TRACER DATASET

The main reason behind the work toward the CNS PET MPO
tool was that CNS PET tracers do not necessarily cover the same
property space as CNS drugs and therefore need a dedicated in
silico prediction tool (61). As previously highlighted, we believe
this is most likely the case when ADME parameters are taken
into account due to the differences in administered dose and the
route of administration between PET tracers and drugs. On the
other hand, for passive diffusion, a non-saturable mechanism,
the property range should be the same for CNS PET tracers as
for CNS drugs (17). As such, models relying on only passive
diffusion should be able to predict BBB-permeability for CNS

PET tracers as well. A small comparison of a few available
models (both prediction of passive diffusion prediction and
models aligned with ADME parameters) and rules of thumb
using a combination of already reported CNS PET tracer datasets
supported these suggestions. The model classifications are
summarized in Figure 3. The dataset was based on the one used
by Zhang et al. in the establishment of the CNS PETMPOmodel,
but with the addition of a few more tracers (61, 67, 68). In total, it
contained 109 successful CNS PET tracers and 20 unsuccessful
ones. The latter are reported to cross the BBB, but are
unsuccessful primarily due to high NSB (61, 67). Unfortunately,
the number of unsuccessful CNS PET tracers in the dataset is
limited since these are rarely reported in literature. Additional
tracers in this category that are not crossing the BBB because
of poor physicochemical properties, as well as tracers that are
reported to have affinity for efflux transporters would have been
preferred. Especially, in the context of evaluating a model that
takes ADME parameters into account. The full CNS PET tracer
dataset, with calculated properties and scoring can be found
as Supplementary Material. The selected models for evaluation
were CNS MPO, CNS PET MPO, the BBB score, CNS access
score and logBB prediction from ACD/Percepta. In addition,
the classification with the rules of thumb reported by Lipinski,
and Norinder and Haeberlein, respectively, were reviewed. The
following software packages were used to calculate the properties:
MW (ChemDraw version 20.1.0.110, PerkinElmer Inc.); HBDs,
HBAs, TPSA, logD7.4, and most basic pKa (ACD/Percepta,
ACD/Labs release 2020.2.1, build 3,451, February 22, 2021,
Advanced Chemistry Development Inc., Toronto, Canada); logP
(Bio-Loom version 5, BioByte Corp., Covina, USA); BBB score
(built-in function in ICM-Pro version 3.9-1c, Molsoft L.L.C.,
La Jolla, USA); CNS access score and logBB prediction (built-
in function in ACD/Percepta, ACD/Labs release 2020.2.1, build
3,451, February 22, 2021, Advanced Chemistry Development
Inc., Toronto, Canada). For the prediction models ACC, Se, Sp
andMCC as a result of the screening were reported.

For Lipinski’s rules for CNS drugs, 64% of the successful CNS
PET tracers (70/109) adhered to the rules. For the unsuccessful
tracers 60% was correctly discriminated by the rules to the CNS–
category. Applying the rules by Norinder and Haeberlein on the
dataset, resulted 73% of the successful tracers adhered to N+O
≤ 5 and only 3 of the 20 unsuccessful tracers were classified as
CNS–. The Second rule, if logP-(N+O) is positive, then the logBB
of the compound is positive. A positive value of logBB means
the concentration in brain is higher than in blood. With this
perception, only 25% of the successful tracers followed the rule.
Although, 45% of the unsuccessful tracers had indeed a negative
logBB, hence classified correctly.

Next, the dataset was scored using the CNS access score in the
ACD/Percepta software. This is a composite score (Equation 8)
of predictions of the brain/plasma equilibration rate [log(PS ×
fu,brain)] and the logBB, where fu,brain is the fraction of unbound
compound in brain tissue. The prediction model is partly based
on the work reported by Lanevskij et al., in which a training set
of 125 compounds with known logPS values have been fitted into
a system of two non-linear equations. The descriptors taken into
account include ClogP, HBDs, HBAs, McGowan’s characteristic

Frontiers in Nuclear Medicine | www.frontiersin.org 8 March 2022 | Volume 2 | Article 853475

https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/nuclear-medicine#articles


Stéen et al. In silico BBB-Predictions for PET-Tracers

TABLE 3 | Overview of a number of reported in silico prediction models of BBB-permeability, including information regarding the applied dataset and the performances.

References Method Dataset Validation

Training (CNS+/CNS–) Test (CNS+/CNS–) ACC Se Sp CCR MCC

Crivori et al. (47) PLS 46/64 49/71 0.75 0.90 0.65 n.r. n.r.

Cruciani et al. (48) PLS 46/64 35 n.r. n.r. n.r. n.r. n.r.

Doniger et al. (54) SVM 154/120 25/25 0.82 0.83 0.80 n.r. n.r.

Adenot et al. (49) PLS 1,336/360 20/62 0.91 0.90 0.92 n.r. n.r.

Li et al. (55) SVM 276/139 n.v. 0.84 0.87 0.75 n.r. 0.65

Kortagere et al.
(56)

SVM 186/165 n.v. 0.82 0.84 0.79 n.r. 0.64

Wang et al. (65) kohNN 1,283/310 266/130 0.81 0.95 0.55 n.r. n.r.

Wager et al. (59) MPO 119/108a 50/50b n.r. 0.76b 0.38b n.r. 0.14b

Guerra et al. (53) NN 96/12 74/4 0.82 0.85 0.25 n.r. n.r.

Suenderhauf et al.
(51)

DTI (CHAID) 65/55c 65/55c n.r. n.r. n.r. 0.91 0.82

DTI (CART) 65/55c 65/55c n.r. n.r. n.r. 0.90 0.80

Martins et al. (27) RF 1850d 120d 0.95 0.83 0.71 n.r. 0.74

Zhang et al. (61) MPO 62/15e n.v. n.r. n.r. n.r. n.r. n.r.

Gunaydin et al.
(60)

pMPO 299/366f n.v. n.r. n.r. n.r. n.r. n.r.

Wang et al. (66) CON_ML 1,812/546 109/36 (201/36)g 0.95 (0.97)g 0.98 (0.99)g 0.83 (0.83)g n.r. n.r.

Gupta et al. (62) MPO 270/720 50/50 n.r. 0.80 0.72 n.r. 0.78

aNo CNS–, instead CNS drug candidates were used and some of these had failed at a later stage.
bModel validation with a test set was performed by Gupta et al. (62).
cA 10-fold cross-validation approach was used including random splitting of the dataset.
dThe final ratio of CNS+/CNS– after Bayesian statistics to get an unbiased dataset was not stated. The test set was randomly withdrawn from the training set.
eCNS PET tracers not CNS drugs.
fThe area under the receiver operation cure was 0.77.
gAn extra validation was performed with 92 additional CNS+ compounds added to the test set.

PLS, partial least squares regression; SVM, support vector machine; kohNN, Kohonen’s self-organizing neural network; MPO, multiparameter optimization; NN, neural networks; DTI,

decision tree induction; RF, random forests; pMPO, probabilistic MPO; CON_ML, consensus machine learning model (consensus model built based on the prediction of five single

models built on either SVM or k-nearest neighbor with different descriptors and resampling methods, see (66) for details); n.v., not validated with a test set; n.r., not reported.

volume (Vx) and ion fractions under physiological conditions
(fi). The latter were obtained from pKa values of the strongest
acidic and basic atom of the compound. The model was validated
with an external test set and showed good prediction (R2 = 0.82
and RMSE = 0.49) (69). Not much information is provided on
the prediction of the logBB parameter. However, the prediction
is stated by ACD/Percepta to be based on a model trained on
a dataset containing over 500 compounds with reported logBB
values. Main descriptor determinants for prediction are ClogP
and fraction unbound compound in plasma (fu,plasma). The CNS
access score does only take into account passive diffusion.

CNS access score = log (PS × fu,brain) + logBB (8)

The CNS access score has the following thresholds: score <

−3.50 for non-penetrant molecules, score −3.50 to −3.0 for
weak penetrant molecules and score > −3.0 for penetrant
molecules. In order to make a clear cut-off when screening the
dataset, we considered also the weak penetrant compounds as
penetrant, resulting in a threshold score > −3.50 for CNS+
compounds. The compounds classified as weak penetrants
were all successful PET tracers. The prediction classified
95% of the successful tracers as CNS+ and all of the

unsuccessful CNS PET tracers as well. This can be expected
since the model only accounts for passive diffusion and
the unsuccessful PET tracers in the dataset are so due
to high NSB, an ADME parameter. The dataset was also
screened separately in the ACD/Percepta logBB prediction
module. For this the following classification was used: logBB
> 0 for CNS+ and logBB ≤ 0 for CNS–. With these
thresholds only 61% of the successful PET tracers were classified
correctly, whereas 25% of the unsuccessful ones were classified
as CNS–.

Finally, the CNS MPO, CNS PET MPO and BBB score were
compared. The BBB score, which predicts passive diffusion,
scored 86% of the successful tracers as CNS+ and all of
the unsuccessful ones were scored as CNS+ as well. More
relevant for the applied dataset are the CNS MPO and
CNS PET MPO, which are aligned with ADME parameters
as well. Interestingly, the CNS MPO, which is based on
CNS drugs, showed both a higher Se (0.75 vs. 0.66) and
Sp (0.45 vs. 0.30) compared to the CNS PET MPO. Bear
in mind that the dataset is imbalanced, since unsuccessful
PET tracers are under-represented. On the other hand, the
dataset contains more unsuccessful compounds than the original
datasets used to build the models. Even though the dataset
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FIGURE 3 | Evaluation of a CNS PET tracer dataset using a number of selected in silico predictions and classification rules.

does have its limitations, the results from the screenings
indicate that the BBB score and the ACD/Percepta CNS
access score, work well for predicting passive diffusion of
the CNS PET tracers. The passive diffusion of several tracers
in the dataset is supported by in vitro studies, where they

showed values consistent with moderate to high passive
permeability (61). When ADME parameters were included
in the prediction, as for the two MPO models, a moderate
fraction of the unsuccessful tracers were classified correctly.
Interestingly, all of the unsuccessful CNS PET tracers were
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classified as strongly or extensively bound to plasma proteins
in ACD/Percepta (shown in the CNS PET tracer dataset
table provided as Supplementary Material). Since binding to
plasma proteins is a contributor to the total non-specific
binding, the outcome of the ACD/Percepta prediction further
supports the non-specific binding issues reported with these
unsuccessful tracers.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

One of the most demanding challenges in both CNS drug
discovery and CNS PET tracer development is to design
compounds that can cross the BBB. Tools that can guide
and facilitate this task at an early stage of the research and
development phase is of utmost importance. Several in vitro
assays have been reported for screening compounds for BBB-
permeability (70–72). For instance, PAMPA (parallel artificial
membrane permeability assay) is often used early on in the
development process as it allows for high-throughput screening
at a low cost (73). The disadvantage is that PAMPA only gives
an indication of passive diffusion. In order to assess active
influx/efflux more complex in vitro assays are needed (70–
72). These, in turn, are not applicable for screening a large
number of compounds. In silico BBB-permeability predictions
are more efficient and cost-effective at an early stage and can be
used both in screening campaigns and as a design tool during
lead optimization.

Over the years, considerable progress has beenmade in setting
up in silico BBB-permeability predictions. A number of different
computational methods have been used, ranging from simple
linear regression to more advanced machine learning methods.
Some models are only predicting passive diffusion, whereas
others take into account, e.g., efflux transporter liability. Thus
far, there is only one prediction model available that is trained
on CNS PET tracers (61). The disadvantage of this model is
that it was trained with an imbalanced dataset, containing of 62
successful tracers and 15 unsuccessful tracers, a positive/negative
ratio that does not reflect the reality. In addition, the model was
not validated with an external dataset. Finding and setting up
a good dataset is one of the main challenges in building any
prediction model. For BBB-permeability prediction, it is difficult
to find suitable CNS– compounds. Appropriate unsuccessful
CNS PET tracers have to be included in the dataset depending
on what the prediction model should actually assess. If not only
passive diffusion, but also active transport, efflux and alignment
with additional ADME parameters should be included, the
dataset has to contain representatives from all those contributors.
Furthermore, when selecting a model it is important to know
what type of dataset was used for training of the specific model,
the quality and size of this dataset and if the model was properly
validated with an additional test set, as well as the outcome of the
validation (values of statistical parameters such as ACC, Se, Sp,
andMCC).

To refer back to the key points raised in the introduction,
namely if a dedicated in silico model for CNS PET tracers is

needed or if a model built on a CNS drug dataset can be used
for predicting brain uptake of CNS PET tracers as well. In our
opinion, if only BBB-permeability by passive diffusion is to be
predicted, the favored property space for CNS drugs and CNS
PET tracer is most likely the same, since the passive diffusion of a
compound across the BBB is a non-saturable mechanism. Thus,
an already established model trained on CNS drugs can be used
and there are several well-performing models available for this
purpose. In contrast, active transport across the BBB is a saturable
mechanism, hence differences between tracers and drugs may
occur. The field is constantly progressing with better models
and larger datasets become available. Recently, a new dataset
applicable for machine learning predictions was reported by
Meng et al. This datasets contains 7,807 compounds, categorized
into 4,956 CNS+ and 2,851 CNS–, but so far it has not been
applied in training or validating any model (74). The fact that
a model trained on CNS drugs can be applied for PET tracers as
well is also what the analysis of the screening of the CNS PET
tracer dataset indicated. The CNS access score in ACD/Percepta
and the BBB score, which only predict passive diffusion classified
96 and 88%, respectively, as BBB-permeable of the entire dataset
(successful + unsuccessful CNS PET tracers). The models that
also relies on ADME parameters in the scoring, i.e., the CNS
MPO and the CNS PET MPO displayed good to moderate Se
and low Sp. On the other hand, it is difficult to draw conclusions
regarding the performances of these models as they were trained
on insufficient datasets and were not properly validated.

If other parameters, e.g., ADME parameters including active
influx/efflux across the BBB should be considered in the
prediction, an in silico model dedicated to CNS PET tracers
would be more beneficial. In this context, two parameters of
special interest are efflux transporter liability and NSB. To
address the issue related to the latter, in silico predictions
have been reported (10, 68). In the case of efflux transporters,
classification models for derisking designing structures with
efflux activities is a challenge. The most abundant efflux
transporters in the human BBB are P-gp and BCRP (14, 15).
For the former, several in silico models have been reported
for classifying if a compound is a P-gp substrate or not (75–
78). However, none of them show excellent accuracy. There
are several challenges with setting up in silico models for
this purpose. Firstly, all reported compounds are extremely
structurally diverse due to the many binding sites in the P-
gp structure (79). This makes quantitative structure-activity
relationship (QSAR) models difficult to set up. Secondly, it
has been suggested that compounds can be soaked up by P-
gp within the membrane, meaning the diffusion rate across the
membrane of a compound will have an effect as well (80). This, in
turn, may explain the reported overlapping substrate specificity
between P-gp and BCRP (81). Moreover, compounds with a
slow passive diffusion may be more easily taken up, which in
turn is something that can be considered when developing a
prediction model. In respect to structure-based models, there are
at the moment no high-resolution crystal structures available.
Significant improvements will most likely be made when such
structures will be resolved. The abovementioned reasons may
also hamper the possibility to combine the assessment of efflux
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liability in a BBB-permeability prediction. Perhaps, it is even
better two use separate predictions for a higher probability
of success.

Finally, in order to set up a proper in silico prediction model
(with consideration of ADME parameters) built for CNS PET
tracers a suitable dataset is required. Collecting such a dataset
will evidently be time-consuming and tedious, with respect to
achieving appropriate size and chemical diversity. Only models
that are built on carefully collected and adequate data can adapt
to reality. Moreover, the dataset has to be chemically diverse,
otherwise the basis of the QSAR hypothesis that chemically
similar compounds tend to have similar activities has limitations
as well (82). The structures in the dataset should also be drug-
like. In the end, it is important to always keep in mind that “all
models are wrong, but some might be useful” (George E.P. Box). A
model will never represent the exact behavior of reality, but it can
certainly be a useful tool.
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