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A multi-object deep neural network
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Prostate gland segmentation is the primary step to estimate gland volume, which aids
in the prostate disease management. In this study, we present a 2D-3D convolutional
neural network (CNN) ensemble that automatically segments the whole prostate
gland along with the peripheral zone (PZ) (PPZ-SegNet) using a T2-weighted
sequence (T2W) of Magnetic Resonance Imaging (MRI). The study used 4 different
public data sets organized as Train #1 and Test #1 (independently derived from the
same cohort), Test #2, Test #3 and Test #4. The prostate gland and the peripheral
zone (PZ) anatomy were manually delineated with consensus read by a radiologist,
except for Test #4 cohorts that had pre-marked glandular anatomy. A Bayesian
hyperparameter optimization method was applied to construct the network model
(PPZ-SegNet) with a training cohort (Train #1, n= 150) using a five-fold cross
validation. The model evaluation was performed on an independent cohort of 283
T2W MRI prostate cases (Test #1 to #4) without any additional tuning. The data
cohorts were derived from The Cancer Imaging Archives (TCIA): PROSTATEx
Challenge, Prostatectomy, Repeatability studies and PROMISE12-Challenge. The
segmentation performance was evaluated by computing the Dice similarity
coefficient and Hausdorff distance between the estimated-deep-network identified
regions and the radiologist-drawn annotations. The deep network architecture was
able to segment the prostate gland anatomy with an average Dice score of 0.86 in
Test #1 (n= 192), 0.79 in Test #2 (n= 26), 0.81 in Test #3 (n= 15), and 0.62 in Test
#4 (n= 50). We also found the Dice coefficient improved with larger prostate
volumes in 3 of the 4 test cohorts. The variation of the Dice scores from different
cohorts of test images suggests the necessity of more diverse models that are
inclusive of dependencies such as the gland sizes and others, which will enable us
to develop a universal network for prostate and PZ segmentation. Our training and
evaluation code can be accessed through the link: https://github.com/
mariabaldeon/PPZ-SegNet.git.
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Abbreviations

PPZ-SegNet, Prostate and Peripheral Zone Segmentation Deep Network; PPZ-SegNet TCIA, PPZ-SegNet trained
using some data from Tests #2 3; PPZ-SegNet_PX, PPZ-SegNet trained using some data from Train #1; PPZ-
SegNet_TCIAPX, PPZ-SegNet trained using some data from Train #1, Tests #2 and 3.
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Introduction

Prostate carcinoma is the second most frequent cancer in men,

accounting for 3.8% of male fatalities globally and a primary cause

of death in over 48 countries (1, 2). Multi-parametric magnetic

resonance imaging (mpMRI) is used to visualize and quantify the

tissue using per- fusion/permeability characteristics, non-invasively

which helps diagnose, stage, monitor and evaluate the prostate

cancers (3–5). Prostate segmentation is also frequently applied in

various routine clinical practices such as radiation therapy

planning (6, 7), MRI-ultrasound image-guided biopsy (8, 9), as

well as focal therapy (10). A manual delineation is often used in

clinical practice, which is a laborious task with poor reproducibility

and shown to have a high inter-observer variation (11), subjective

to expert training as recently reported. To improve the time-

consuming nature of manual prostate delineation, current PI-

RADS (Prostate Imaging-Reporting and Data System) guidelines

recommended using a simpler geometric shape such as an ellipsoid

for fast estimation of the prostate volume.

In the past, there were many methods proposed for automated

prostate segmentation which started with atlas-based segmentation

(12), deformable models (13), machine learning based methods on

marginal space learning (14), and c-means clustering with zonal

morphology (15). One additional successful attempt was to use

pattern recognition methods to delineate glandular architecture (16).

Currently, deep learning (DL) has shown tremendous promise in

modeling complex problems in oncology (17). It has also been

widely applied to segment various anatomical structures across

different modalities (18, 19). Particularly, deep convolutional neural

networks (CNNs) have achieved great success by automatically

learning to extract the most important features for image

characterization (18, 20). CNN architectures are usually composed of

multiple layers, in which the initial layers extract local information

and low-level features, while the deeper layers learn to recognize

more complex objects (21). These networks have shown to surpass

human performance on some tasks (22). For example, CheXNet

achieved a better performance in the detection of pneumonia from

chest x-rays than the average performance of four radiologists (23,

24). Recently, the Encoder-Decode based CNN architectures (U-Net)

have seen enormous adoption in segmentation tasks due to its

ability to adapt to every new dataset (25).

CNNs for medical image segmentation are usually divided into

2D or 3D networks based on how they handle volumetric data. 2D

networks segment the anatomical structures in a slice-wise manner

and then concatenate the results in the z-axis. These architectures

are very good at extracting intra-slice information, computationally

efficient, and capture long-range pixel relationships while keeping

the input size reasonable. However, volumetric information is not

considered during inference. By contrast, 3D networks directly

process the volumetric input, being able to consider both intra-

and inter-slice information during prediction. Nevertheless, they

are computationally expensive and 3D networks have shown to

provide worse performance than 2D networks when there is high

intra-slice resolution (26).

Most machine learning/deep network models assume the data

used for training and testing are independent and identically
Frontiers in Nuclear Medicine 02
distributed with samples from a reference probability distribution,

which can pose a certain level of limitation on the model’s

generalization. It is well noted that the performance of a model

usually degrades when tested on a distinct dataset due to the

domain shift (27, 28). Moreover, it is well recognized that medical

image datasets are most often heterogeneous due to scan,

acquisition protocol, and subject level differences. Therefore, it

becomes indispensable to develop networks which can be

transferred between datasets without a substantial performance

drop (29) or a need for additional training or tuning (30, 31).

In this work, we propose a multi-object deep CNN ensemble,

modified from our previously published model (32), which applies

Network Architecture Search (33) to segment multiple anatomical

regions in the prostate. We refer to the model as the Prostate

gland and Peripheral Zone Segmentation Network (PPZ-SegNet).

The PPZ-SegNet is composed of a two-path 2D and 3D CNN,

which are automatically constructed using a Bayesian

hyperparameter optimization method. As demonstrated in previous

work (32, 34) using an ensemble of 2D and 3D CNNs allows the

model to exploit intra-slice and inter-slice information. Moreover,

the ensemble model improves generalization that allows the

network to perform better across cohorts. PPZ-SegNet differs from

prior work from our group (32) and others (35) in terms of the

problem being addressed, segmentation task, neural network

architecture, hyperparameters optimized, and the optimization

method applied. Particularly, an adaptive ensemble was proposed

(32) for medical image segmentation that applies a multi-objective

evolutionary based algorithm to construct efficient and accurate

networks. In this work, the focus is on analyzing the effect that

distinct training and testing cohorts have in the performance of a

segmentation network. Moreover, PPZ-SegNet is trained on the

task of prostate and peripheral zone (PZ) segmentation. To achieve

the latter, the architecture is modified to include 2 decoder paths.

One decoder produces the prostate segmentation, while the other

predicts the PZ segmentation. Moreover, the hyperparameters

being optimized during construction include hyperparameters

pertinent to this new architecture and used during the ensemble

training. Finally, a Bayesian optimization method is implemented

to maximize the segmentation accuracy.

The study used 4 different public cohorts available on the Cancer

Imaging Archive (TCIA). The prostate gland and zonal anatomy on

the patient scans were contoured by our trained clinical experts,

except for one of the cohorts that came with regional annotations.

We find that our optimized PPZ-SegNet architecture shows

promising performance in our training cohort. In this paper, we

describe our PPZ-SegNet network and its hyperparameter

optimization procedure, validating the trained network in a set of

independent, diverse test cohorts to show promise in the use of

optimized deep networks in oncology.
Methods

Datasets

The dataset used in our study contains 433 MRI-T2W images

curated from 4 different open-source collections: PROSTATEx
frontiersin.org
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Challenge (Train #1, n = 150 & Test #1, n = 192), PROSTATE-MRI

Prostatectomy (Test #2, n = 26), QIN-PROSTATE-Repeatability

(Test #3, n = 15), MICCAI PROMISE12-Challenge (Test #4, n =

50). Patients image scans for the above cohorts are available on the

TCIA website (https://www.cancerimagingarchive.net/) under the

collection titled: “PROSTATEx”, “QIN-PROSTATE-Repeatability”,

and “Prostate Fused-MRI-Pathology”. The PROMISE12 challenge

data is available through the organizer’s website: https://promise12.

grand-challenge.org/. The patient scans in these cohorts were

collected using different MRI scanners that broadly fall under these

vendors, i.e., Siemens, Philips and GE Medical Systems, following

their respectively institutional imaging protocols. The image scans

were reviewed by an experienced clinical reader (radiologists with

research/clinic roles for more than 5 years of clinical mpMRI

reading experience) from the Moffitt Cancer Center (Tampa, FL,

United States). The prostate and PZ regions were manually

contoured using semi-automatic annotation tools in our research

PACS (MIM Software Inc., Cleveland, OH, United States) based on

the axial views of the MRI-T2W image. The manual reference

contours were made on all MRI-T2W images except those from

PROMISE12 dataset, which came with the annotated prostate

glandular structures (no PZ). The prostate and PZ contours as well

as the MRI-T2W anatomy images were exported from our research

PACS as DICOM/RT [radiotherapy] images.
Preprocessing of image data

The images included in the dataset exhibit variation in resolution

and size. Specifically, the in-plane resolution varies from 0.2 to

0.65 mm2, while the slice thickness (through-plane) resolution

ranges from 2 to 4.5 mm for patients across the cohorts. The

images were pre-processed by resampling them to a 0.5 × 0.5 ×

3 mm3 spatial resolution using B-spline interpolation and resizing

to a standard reference plane (256 × 256 × 23). Furthermore, the

pixel intensities are clipped within 3 standard deviations from the

mean and rescaled to an interval of [0,1] in a slice-wise manner.

The manual contours were annotated using MIM software on the

original MRI-T2W images and saved as RT structures [radiation

therapy format], which are 2D polygons slice-by-slice. The vertices

of these 2D polygons are saved in the DICOM header file under

the Contour Data tag (3006,0050). The annotation images are

transformed to the PATIENT coordinate system, which is derived

using the vector cross product based on the information in the

Image Orientation tag (0020,0037) and the Image Position tag

(0020,0032). The above procedure was implemented using our in-

house software written in MATLAB (version R2022a; MathWorks,

Natick, MA, United States). Both the image volumes and

annotations are saved in MATLAB Data format.
The CNN architecture

The PPZ-SegNet neural architecture consists of a 2D CNN and

3D CNN. Both CNNs have a similar structure, the 2D CNN

receives the pre-processed 2D slices of the prostate axial dataset

(256 × 256 pixels) as input and applies 2D convolutions, while the
Frontiers in Nuclear Medicine 03
3D CNN is trained with pre-processed 3D cropped volumes

(128 × 128 × 23 voxels) and uses 3D convolutions. The general

structure of the networks is shown in Figure 1. The networks are

composed of a down-sampling path followed by two up-sampling

paths, denoted as up-pg (for prostate gland) and up-pz (for PZ).

The down-sampling path receives as input the prostate image and

through the application of convolutional and max-pooling

operations extracts the most important image features for the

segmentation task. The up-sampling paths, by contrast, receive the

extracted features and through the application of up-sampling and

convolutional operations increase the size of the feature maps until

the segmentations of the prostate gland and PZ have been achieved

through the up-pg and up-pz paths, respectively.

The down-sampling and up-sampling paths are composed of n

residual blocks each, where the value of n is defined using the

Bayesian optimization approach. The down-sampling and up-

sampling paths are connected through a residual block in the

middle, forming a U-shape architecture. Each residual block consists

of 3 sequential convolutional blocks, in which a convolution block

has a zero-padded convolutional layer, batch normalization layer,

and an activation function layer. To prevent overfitting, a spatial

dropout layer is included before the residual blocks, with exception

of the first residual block. Furthermore, the features extracted from

the last residual block of the up-pz path are concatenated with the

features of the last residual block of the up-pg path, so that the

information extracted about the PZ segmentation can be considered

when predicting the segmentation of the prostate gland. The last

convolutional layers of the up-pg path and up-pz path have a kernel

window of size 1 and a sigmoid activation function.

Seven model hyperparameters have been left unset and will be

optimized using Bayesian hyperparameter optimization. These

hyperparameters correspond to the number of residual blocks in the

down-sampling and up-sampling paths, number of filters on each

residual block, activation function applied after the convolutional

operation, kernel size for the 3 convolutional layers inside the

residual blocks, and spatial-dropout probability. It is important to

mention that all residual blocks have the same architecture, hence by

defining the kernel size for the 3 convolutional layers, we are defining

the kernel size for all the residual blocks. Moreover, the dropout

probability is kept at the same level at the spatial dropout layers and

a similar approach was taken to maintain the function at all the

activation functional layers. During training, data augmentation is

implemented in real time to all training images in an epoch to

prevent overfitting. The magnitude of the five-data-augmentation

operations is optimized using the same optimization approach. The

five-data-augmentation operations implemented in the network

model were rotation, width shift, height shift, zoom, and horizontal flip.
Bayesian optimization approach

Selecting the optimal hyperparameter values for a neural network

architecture is a non-linear optimization problem in which the

decision variables correspond to the hyperparameters being optimized,

and the objective is to minimize the error on the validation set. Let N

denote the number of hyperparameters being optimized, and Ωj the

search space of the j-th hyperparameter. Then, the overall
frontiersin.org
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FIGURE 1

General structure of the PPZ-SegNet. (A) architecture is composed of a down-sampling path (gray residual blocks) and two up-sampling paths, denoted as
up-pz (orange residual blocks) and up-wp (blue residual blocks). The up-pz path produces the peripheral zone segmentation, while the up-wp produces the
whole prostate segmentation. (B) Three-step fitting process for the PPZ-SegNet. In step 1, the 2D CNN architecture is constructed using a Bayesian
Optimization approach. In step 2, the 3D CNN architecture is constructed in a similar way as the 2D CNN. In step 3, the 2D CNN and 3D CNN are fully
trained using a 5 fold-scheme. The final prediction is the majority voting of the five 2D-3D CNN ensembles. (continued)
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hyperparameter search space is defined as Ω =Ω1 ×Ω2 ×Ω3…ΩN. If λ

refers to a vector of hyperparameter values, the hyperparameter

optimization problem can be mathematically modeled as:

l� ¼ argminl[VL(Dtrain, Dvalid),

where L(Dtrain,Dvalid) is the loss function that measures the error of the

model with λ hyperparameter values trained on the Dtrain training set

and evaluated on the Dvalid validation set. Moreover, λ* denotes the

optimal hyperparameter values that minimize the loss function. The

training and validation set used for the Bayesian optimization in this

study are composed of 150 cases from the PROSTATEx Challenge

(referred to as Train #1).

In the present work, λ is a vector in which each component

corresponds to one of the hyperparameters. In addition, the overall

search space Ω is the cross-product of the search domains of each

hyperparameter. Finally, the loss function L(Dtrain,Dvalid)

implemented is based on the Dice similarity coefficient as shown

below and denominated as the Dice loss:

L(Dtrain, Dvalid) ¼ 1� 2
P

i byiyiP
i ŷ

2
i þ

P
i y

2
i
;

where yi refers to the ground truth value of pixel i, and byi the

predicted probability for pixel i. The Dice coefficient measures the

relative overlap between the predicted segmentation and ground

truth segmentation; therefore, it is useful when there is an

imbalance between background and foreground pixels. The Dice

coefficient ranges between 0 and 1, where 1 denotes a perfectly

predicted segmentation. Hence by minimizing “1−Dice

coefficient”, we are maximizing the segmentation accuracy.

Bayesian optimization is a sequential model-based approach

characterized by a probabilistic surrogate model f and an acquisition
Frontiers in Nuclear Medicine 04
function a. The probabilistic surrogate consists of a prior

distribution that captures the belief behavior of the loss function

L(Dtrain, Dvalid). In each iteration t, a new hyperparameter vector

lt is selected to construct a CNN and evaluated using a

validation set. This new point is used to update the prior one

into a posterior distribution. The posterior information is used by

the acquisition function to decide which hyperparameter vectors

to evaluate next. In this search, it is necessary to consider the

criteria for exploration (sampling from areas with high

uncertainty) and exploitation (sampling points with high values).

The output of the algorithm is the hyperparameter vector l� that

optimizes the loss function. The Bayesian optimization algorithm

applied to optimize the 12 hyperparameters that constructs the

2D CNN and 3D CNN is shown below (Algorithm 1).

Algorithm 1: Bayesian Optimization Algorithm.

Input:

- Number of iterations to run T
- Acquisition function a

- Probabilistic surrogate model f

Output:

- l� optimal hyperparameter vector

Start loop: t = 1, 2,…, T:

1. Find lt by optimizing the acquisition function a

lt ¼ argmin a(l , Dt)
2. Train the CNN with the lt hyperparameters and evaluate on the validation set.
Calculate the loss function value Lt(Dtrain, Dvalid).

3. Augment the data Dtþ1 ¼ {Dt , ( lt , Lt )}
4. Update the posterior distribution of the probabilistic surrogate model f with

Dtþ1

End loop
frontiersin.org
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FIGURE 1

Continued.

Baldeon-Calisto et al. 10.3389/fnume.2022.1083245
Ensemble formation

Once the architectures for the 2D CNN and 3D CNN are

optimized, we form the PPZ-SegNet ensemble solely using Train
Frontiers in Nuclear Medicine 05
#1 from the ProstateX dataset. First, Train #1 is divided into 5

folds, where 80% of the images are randomly assigned to the

training set and 20% to the validation set. Each fold is used to

fully train the 2D CNN and 3D CNN architectures. Then, the

predictions from the 2D CNN and 3D CNN are combined by
frontiersin.org
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averaging their softmax probability maps. This creates a set of 5 2D–

3D CNN ensembles that produces 5 predicted segmentations. Lastly,

the final segmentation was obtained by aggregating the predicted

segmentations using a majority voting scheme.

In the training phase, the 2D CNN was trained for 3,000

epochs, while the 3D CNN was trained for 2,000 epochs. The

weights with the smallest validation loss are used for testing.

The Adaptive Moment Estimation (ADAM) optimizer was

implemented with beta-1 set to 0.9, beta-2 set to 0.999, and an

epsilon value to 1� 10�8. The learning rate is set to 1� 10�5 on

both architectures. Data augmentation in real time is used

during training, the magnitude of the operations has been set

using the optimized values obtained with the Bayesian

optimization. The objective function optimized during training

is based on the Dice loss and considers the Dice coefficient for

the prostate gland segmentation and PZ segmentation as

displayed Equation (1).

LTrain ¼ 1� 2
P

i ŷipyipP
i ŷ

2
ip þ

P
i y

2
ip
þ a 1� 2

P
i ŷipzyipzP

i ŷ
2
ipz þ

P
i y

2
ipz

 !
(1)

where yip refers to the ground truth value of pixel i for the prostate

gland segmentation, and ŷip the predicted probability for pixel i for

the prostate gland segmentation. Similarly, yipz and ŷipz refers to

the ground truth value of pixel i and the predicted probability

for pixel i for PZ segmentation, respectively. Finally, a is a

weight parameter that was set to 0.1 after using a random search

approach that aims to maximize the whole prostate

segmentation Dice. The process to obtain a 2D-3D ensemble

PPZ-SegNet is shown in Figure 1, which is composed of 3 steps.

In steps 1 and 2, the 2D and 3D CNN were constructed using a

Bayesian optimization approach. In step 3 the ensemble is

formed by training the 2D and 3D CNN in each of the

corresponding folds.
TABLE 1 Description of the patient cohorts used for the study.

Cohort
ID

Data Source Patient
Count

Manufacturer & M

Training

1 Train#1 Prostate X (Train) 150 Siemens Skyra (n = 150)

Testing (data not part of training)

1 Test#1 Prostate X (Test) 192 Siemens:-Skyra (n = 138) -
(n = 54)

2 Test#2 TCIA
(Prostatectomy)

26 Phillips Achieva(n = 26)

3 Test#3 TCIA
(Repeatability)

15 GE Medical System:-Signa
(n = 7) -Discovery MR750w

4 Test#4 Promise 12 50 N/A

Frontiers in Nuclear Medicine 06
Experimental design & evaluation criteria

We used part of the largest sample size cohort for training

(n = 150, Train #1) and the testing data came from 4 different

cohorts (n = 283, Tests #1–4). Details on the training and testing

cohorts are shown in Table 1. Images in the test cohorts are from

ProstateX (n = 192, not part of training, Test #1), TCIA

Prostatectomy (n = 26, Test #2), TCIA Repeatability (n = 15, Test

#3), and Promise12 (n = 50, Test #4).

To understand the distributions of the datasets, we calculated

descriptive statistics on the volumes of gland and PZ for the train

and test cohorts as displayed in Tables 2, 3 (also see

Supplementary Tables S1, S2). As well, in Figure 2 the pixel

intensity distributions of the entire cohort are shown.

Moreover, to analyze the shift between the distributions, 3

discrepancy metrics were calculated among the Train #1 and the 4

testing cohorts. The metrics considered are the Kullback-Leibler

divergence, Wasserstein distance, and Jensen Shannon divergence.

The obtained values are presented in Table 4.

To validate the PPZ-SegNet architecture for automatic prostate

segmentation in MRI-T2W, 3 observers segmented the prostates

manually. The manual segmentations were done slice by slice using

MIM Software, and the contours of the prostate were defined

without any further algorithmic support. To evaluate the predicted

segmentation, we applied widely used indicators in medical

imaging for evaluating the segmentation volumes, Dice score (DS)

(36) and Hausdorff distance (HD) (37). The DS and HD for each

case was calculated using the open-source tool SimpleITK (38, 39).

The DS is defined in Equation (2):

DS ¼ 2jy1 > ŷ1j
jy1j þ jŷ1j (2)

where j�j represents the cardinality operator, y1 the ground truth

voxels from foreground, and ŷ1 the voxels predicted to be part of
Scan Parameters

odel Repetition time Echo time Field
Strength

Median: 5,805 Mean:
6047.6 Stdev: 534.6

Median:104
Mean:103.9
Stdev:0.76

3 T (n = 150)

TrioTim Median: 5,805 Mean:
6047.6 Stdev: 534.6

Median:104
Mean:103.9
Stdev:0.76

3 T (n = 192)

Median Mean:8868.7
Stdev: 0

Median/Mean: 120
Stdv:0

3 T (n = 26)

HDxt
(n = 8)

Median: 4,546
Mean:4326.2 Std: 577.7

Median: 95.1
Mean:95.97 Std: 6.07

3 T (n = 15)

N/A N/A N/A
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TABLE 2 Segmentation performance measured by dice coefficient and corresponding prostate gland volume across the cohorts.

Name
index

Gland boundary
delineation

Dice Coefficient (Mean, 95%
Confidence, Median)

Prostate Volume (cm3), (Mean,
95% Confidence, Median)

Comparison of Volumes
(with Train#1, p-value)

Train#1 Consensus Radiology
read (MCC)

n/a 60.4, [54.85,65.99], 53.6 –

Test#1 Consensus Radiology
read (MCC)

0.854, [0.843,0.868], 0.887 64.9, [60.2, 69.6], 57.5 0.22

Test#2 0.794, [0.749,0.839], 0.805 34.9, [28, 41.8], 30.7 <0.001

Test#3 0.806, [0.733,0.88], 0.842 44.2, [ 27.7,60.7], 29.2 0.0635

Test#4 Organizers Provided 0.622, [0.535,0.71], 0.737 54.7, [41.8, 67.6], 43.3 0.418

TABLE 3 Segmentation performance of peripheral zonal (PZ) measured by
dice coefficient and corresponding volume across the cohorts.

Name
index

PZ
boundary

Dice Coefficient
(Mean,95%
Confidence,
Median)

PZ Volume (cm3),
(Mean, 95%
Confidence,
Median)

Train#1 Consensus
Radiology read
(MCC)

n/a* 16.2, [15.1,17.3], 14.3

Test#1 Consensus
Radiology read
(MCC)

0.664, [0.641,0.688],
0.718

18.2, [16.7,19.6], 15.9

Test#2 0.645, [0.563,0.727],
0.686

13.9, [11.2,16.5], 13.5

Test#3 0.640, [0.457,0.717],
0.68

9.24, [ 7.3,11.1], 10.2

Test#4 n/a* n/a* n/a*

*n/a, not available. No reference PZ region was available.
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the foreground. The DS ranges between 0 and 1, where a value of 1

means the network’s prediction completely overlaps the ground

truth segmentation. Therefore, values closer to 1 mean a better
FIGURE 2

Distribution of the datasets used for model training and testing. (A) The pixel inten
prostate volume.
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predicted segmentation. Meanwhile, HD is presented in

Equation (3).

HD(y, ŷ) ¼ max(h(y, ŷ), h(ŷ, y)) (3)

where h(y, ŷ) is the directed HD between the ground truth

segmentation y and predicted segmentation ŷ as defined in

Equation (4). HD is a distance measured in mm; a smaller

distance means a better segmentation.

h(y, ŷ) ¼ max
y [ y1

min
y [ ŷ1

jjy � ŷjj (4)
Results

We used 4 distinct patient cohorts with over 433 MR scans (150

for training and 283 for testing) in this study. The patient scans were

from 3 major manufacturers (i.e., Siemens, Phillips and GE Medical

Systems) on 3 T magnet field strength with different resolutions,
sity distribution of all training and testing sets, (B) Box plots of all testing using
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TABLE 4 Discrepancy metrics between Train #1 and testing cohorts. A
higher value means a higher discrepancy between distributions.

Cohort Discrepancy metric

KL-
divergence

Wasserstein
distance

Jensen Shannon
distance

Test #1 0.002 0.001 0.022

Test #2 0.651 0.002 0.420

Test #3 0.892 0.002 0.479

Test #4 0.677 0.002 0.368
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described in Table 1. Testing was conducted among 4 different

cohorts, where no patient samples in the test cohort were part of the

training. All testing images underwent the same preprocessing

operations described in Methods section. The segmentation of gland

boundary was provided by consensus reads (Train #1, Test #1, Test

#2, and Test #3), and an independent reader (Test #4). The average

volume of prostate gland for the training cohort (Train #1) was 60.4

[54.84, 65.99] cm3 based on radiologist reference, while the testing

cohorts were: (Test #1) 64.9 [60.2, 69.6] cm3, (Test #2) 34.9 [28.0,

41.8] cm3, (Test #3) 44.2 [27.7, 60.7] cm3, (Test # 4) 54.7[41.8,

67.6] cm3, please refer to Supplementary Table S1. We found

patient glands were diverse in their sizes/volumes across the

validation cohorts; a statistical testing (t-test, unpooled) revealed an

insignificant difference between Train #1 and Test #1 (p = 0.22),

Test #4 (p = 0.418), borderline with Test #3 (p = 0.064), and

significant with Test #2 (p < 0.001), see Table 2 (and

Supplementary Table S1). The average Dice concordance coefficient

between the estimated gland volume to the radiologist drawn

references for the cohorts were: (Test #1) 0.854 [0.843, 0.868], (Test

#2) 0.794 [0.749, 0.839], (Test #3) 0.806 [0.733, 0.88], (Test #4)

0.622 [0.535, 0.71], see Table 2 (and Supplementary Table S1) for

details. Figure 2 shows the pixel intensity distribution for the

samples across the cohorts. It is evident that Train #1 and Test #1

follow similar intensity distributions, both being bimodal and having

a heavy right tail. Meanwhile, the intensity distributions of Tests #2

to #4 are unimodal and most of their density range between pixel

intensities 0 and 0.2, different from that for Test #1. Similar results

were obtained with the discrepancy metrics, where the Train #1 and

Test #1 had the most similar distribution in all metrics. By contrast,

the Train #1 and Test #3 cohorts had the greatest discrepancy.

Considering the behavior of the Dice coefficient, we can conclude

that as the distance (discrepancy) between the training set and the

testing set increases, the performance decreases. The results are

consistent with previous literature, which shows that even a small

change in the testing distribution can make a deep learning model

fail during inference (40, 41). Interestingly though, the network’s

worst performance is in the segmentation of Test #4. In Figure 2A,

pixel intensities distribution for Test #4 concentrates on the left but

with a light right tail. This means that the contrasts of the images in

Test #4 are lower compared to the images in other test cohorts,

especially the training cohort.

To further analyze the performance behavior of the network, the

cases in the test cohort were divided into 4 different quartiles based

on the patient’s gland volume as displayed in Supplementary

Figure S1. For each of these quartiles, the corresponding mean,
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median, and 95% confidence interval of the Dice coefficient were

calculated. The results are presented in Supplementary Tables S1,

S2 for the prostate gland and PZ segmentation, respectively. The

quartiles with the best score for Test #1 are Q2 with a median

Dice of 0.895 (mean 0.858) followed by Q4 with a 0.893 of median

Dice (mean 0.87). In Test #2, Q4 had the best performance with a

0.916 median Dice (mean 0.883). For Test #3, Q2 had the highest

median Dice of 0.875 (mean 0.824). Finally, in Test #4, Q4 achieved

the best median Dice of 0.85 (mean 0.77), details are shown in

Tables 2, 3 (and Supplementary Tables S1, S2) as well as Figures 3,

4. We evaluated the dependency between the Dice similarity

coefficients (between the manual and network provided boundary)

and the prostate gland volumes using regression fitted trend lines

with confidence bounds. In Supplementary Figure S3, we found that

in cohort Test #1 the Dice coefficients are spread across different

sizes of the prostate gland measured by its volume. It shows slightly

improved trends with higher deviation for larger sized glands.

Meanwhile in Tests #2, 3 and 4, there is a marked improvement in

the Dice coefficient scores as the gland volumes increase.

Moreover, to analyze the effect of prostate volume in prostate

segmentation, the calculated Dice coefficient in each testing cohort

is divided into quartiles. The results are presented in

Supplementary Figure S4. In Test #1, the boxplots of the Dice

coefficients across the quartiles seem to be evenly distributed across

the prostate gland volumes, with a small higher incidence of high

Dice coefficients in the large prostate gland sizes (volumes). This

would mean that the model is able to satisfactorily recognize the

prostate gland of prostates with the range of volumes present in

Test #1. The reason could be attributed to the similarity in the

distributions with the training cohort, and hence the model

performance fared better across the population. In Tests #2 and 4,

the higher Dice coefficients (Q4) are obtained with the highest

gland volumes. In Test #3, Dice coefficients in Q2 and Q4 are

obtained from cases with the largest gland volume. This is evident

with higher median Dice coefficients seen for the quartile groups

with larger glands in most of the test cohorts.

Additionally, we computed the HD between the estimated

boundary and the radiologist provided reference. Test #3 had the

smallest average HD of 9.47, followed by Test #1 with a mean of

11.33, Test #2 at 12.17, and Test #4 with a mean of 21.73, details

are shown in Table 7. Since Test #3 is the dataset with the smallest

prostate volumes, it is expected that a distance-based metric such

as the Hausdorff will have a lower value than datasets with bigger

segmentations. Nevertheless, the results are similar to the ones

obtained with the Dice coefficient, where the model had a good

performance in Test #1 and the worst performance in Test #4.

The examples of good and bad segmentation results of the

network are displayed in Figures 5, 6. The network correctly

delineates regular- and irregular-shaped prostates. However,

sometimes it fails to provide a continuous contour and identify the

prostate region in images with low contrast.
Dataset composition analysis

An important factor in domain adaptation is the composition of

the training dataset. Therefore, we tested how the performance of the
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FIGURE 3

Performance of PPZ-Net for prostate gland segmentation evaluated using dice coefficient across different test cohorts.

FIGURE 4

Performance of PPZ-Net for peripheral gland (PZ) segmentation evaluated using dice coefficient across different test cohorts.
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PPZ-SegNet changed when we modified the training set. First, the

PPZ-SegNet was trained on 30 cases (Test #2: n = 20; Test #3: n =

10) and tested in 253 cases (Test #1: n = 192; Test #2: n = 6; Test

#3: n = 5; Test #4: n = 50). None of the testing cases were used for

training. We denote this model as PPZ-SegNet_TCIA. The

evaluation metrics are presented in Table 5A. In comparison to
Frontiers in Nuclear Medicine 09
the results obtained with the PPZ-SegNet trained only with Train

#1, which we call PPZ-SegNet_PX, the Dice coefficients reduced for

all testing datasets with exception of Test #3. Since Train #1 has a

larger number of images and a more varied size of prostate glands,

it provides the network with more information to generalize better

to the other testing datasets. An interesting finding is that the PPZ-
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FIGURE 5

Segmented prostate gland regions with high concordance using PPZ-SegNet (yellow outlines) compared to manual delineation (green) illustrated for selected
patient cases with representative axial slices (three consecutive sections).

FIGURE 6

Segmented prostate gland regions with low concordance using PPZ-SegNet (yellow outlines) compared to manual delineation (green) illustrated for selected
patient cases with representative axial slices (three consecutive sections).
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SegNet_PX performs better than PPZ-SegNet_TCIA in Test #2, even

though the latter model is trained using images from Test #2. This

might be caused by the reduced number of cases in Test #2 that
Frontiers in Nuclear Medicine 10
might not completely characterizes the distribution of prostates

present in that dataset. Moreover, it shows that for Test#2 the PPZ-

SegNet_PX achieved domain adaptation.
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TABLE 5 Segmentation performance of PPZ-SegNet model measured by
Dice coefficients in the following scenario. (A) Smaller cohort training (n =
30 cases, using part of Test#2, n = 20 and Test#3, n = 10), tested on
remaining 253 cases. (B) Larger cohort training (n = 91, using all of
Train#1, Test#2, and Test#3), tested on remaining 242 cases (Test #1 &
Test #4).

Cohort Prostate gland segmentation PZ segmentation

(A) Smaller cohort training (n = 30 cases)

Test #1 0.699 0.409

Test #2 0.758 0.608

Test #3 0.876 0.655

Test #4 0.567 n/a

(B) Larger cohort training (n = 91 cases)

Test #1 0.845 0.647

Test #4 0.695 n/a
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For the second experiment we performed, the PPZ-SegNet was

trained on 91 cases (Train #1: subsampled n = 50; Test #2: n = 26;

Test #3: n = 15) and evaluated on 242 testing cases (Test #1: n = 192;

Test #4: n = 50). We denote this model as PPZ-SegNet_TCIAPX.

The evaluation metrics for PPZ-SegNet_TCIAPX are presented in

Table 5B. PPZ-SegNet_TCIAPX has the leading performance in

Test #4, increasing 7.3% in the Dice coefficient from PPZ-

SegNet_PX. Since Test #4 has a high number of cases with small

volume sizes, enriching Train #1 with datasets that share the same

characteristic (such as Tests #2 and 3) improves the segmentation

accuracy. Nevertheless, the Dice coefficient in Test #4 is still low

(average 0.695), which shows that there are other imaging

characteristics in that specific dataset that affect the performance of

network. Moreover, it also demonstrates that domain shift is a

difficult problem to solve. In Test #1, PPZ_SegNet_TCIAPX had a

slightly lower Dice coefficient than PPZ_SegNet_PX. The reduction
TABLE 6 Evaluation metrics for the predicted prostate gland and PZ segmentatio
Best performing model selected using a one-tailed pair-t test [see prior publica
bold.

Cohort D

Prostate gland segmentation

2D Ensemble 3D Ensemble PPZ-SegN

Test #1 0.850 0.851 0.855

Test #2 0.795 0.783 0.794

Test #3 0.793 0.769 0.806

Test #4 0.668 0.351 0.621

Cohort Hau

Prostate gland segmentation

2D Ensemble 3D Ensemble PPZ-SegNe

Test #1 11.392 11.583 11.325

Test #2 12.003 13.613 12.167

Test #3 10.060 16.230 9.468

Test #4 20.771 40.569 21.729

Frontiers in Nuclear Medicine 11
is of 1% and 0.7% on the segmentation of prostate gland and PZ

area, respectively. This is an expected outcome given that we

reduced the number of training cases from Train #1.
Ensemble analysis

Previous work has shown that ensemble networks obtain better

generalization performance than individual networks (42, 43) and

other generalization techniques (44). In this section, we analyze the

effect ensemble learning has over domain shift. First, we evaluate the

effect of having a 2D-3D ensemble (PPZ-SegNet) over a unique 2D

ensemble or 3D ensemble. For this objective, we produce the

segmentations with the 2D ensemble and 3D ensemble and compare

them against the reference segmentations. The evaluation metrics are

presented in Table 6. Furthermore, a one-tailed paired t-test with a

95% confidence level is applied to compare the mean performance,

the approach has been previously presented (32). The model with

the best performance is shown in boldface. The experimental results

show that the 2D ensemble performs better than the 3D ensemble

in most testing datasets when considering the Dice coefficient. Only

in the segmentation of the PZ structure from Test #2, the 3D

ensemble has a statistically higher DS. PPZ-SegNet, by contrast, has

an equal or better performance than the 2D ensemble, with

exception of the prostate gland segmentation in Test #4.

Considering the HD, we found the 2D ensemble better than the 3D

ensemble in the segmentation of the prostate gland. Meanwhile, the 3D

ensemble performs better than the 2D ensemble in the segmentation of

the PZ. PPZ-SegNet takes advantage of the 2D and 3D information and

is always equal to the best performing ensemble. These results

demonstrate that forming a 2D-3D ensemble does slightly improve the

generalization capability of a network to different testing cohorts.

We also analyzed how the number of networks in the ensemble

affect domain adaptation. The results are presented in Table 7, where
n using the 2D ensemble, 3D ensemble, and 2D–3D ensemble (PPZ-SegNet).
tion, Balderon (32)], selected models Dice performance index highlighted in

ice Coefficient

PZ segmentation

et 2D Ensemble 3D Ensemble PPZ-SegNet

0.654 0.655 0.664

0.624 0.638 0.645

0.611 0.554 0.640

n/a n/a n/a

sdorff Distance

PZ segmentation

t 2D Ensemble 3D Ensemble PPZ-SegNet

16.791 16.335 16.314

14.437 14.220 13.458

12.352 17.868 11.683

n/a n/a n/a

frontiersin.org

https://doi.org/10.3389/fnume.2022.1083245
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


TABLE 7 Evaluation metrics for the predicted prostate gland and PZ segmentation using one to five 2D–3D ensembles (denoted as En.). Best performing
model selected using a one-tailed pair-t test [see prior publication, Balderon (32)], selected models Dice performance index highlighted in bold.

Cohort Dice Coefficient

Prostate gland segmentation PZ segmentation

1 En. 2 En. 3 En. 4 En. PPZ-SegNet 1 En. 2 En. 3 En. 4 En. PPZ-SegNet

Test #1 0.854 0.855 0.858 0.859 0.855 0.662 0.657 0.667 0.667 0.664

Test #2 0.778 0.777 0.786 0.783 0.794 0.640 0.633 0.645 0.644 0.645

Test #3 0.788 0.784 0.778 0.780 0.806 0.625 0.560 0.638 0.638 0.640

Test #4 0.625 0.588 0.643 0.643 0.621 n/a n/a n/a n/a n/a

Cohort Hausdorff Distance [mm]

Prostate gland segmentation PZ segmentation

1 En. 2 En. 3 En. 4 En. PPZ-SegNet 1 En. 2 En. 3 En. 4 En. PPZ-SegNet

Test #1 11.638 11.735 11.443 11.536 11.325 16.673 16.730 16.272 16.206 16.314

Test #2 14.997 15.045 13.964 14.112 12.167 14.586 14.518 14.152 14.471 13.458

Test #3 19.441 19.289 16.790 17.242 9.468 14.945 19.959 11.474 12.338 11.683

Test #4 34.350 36.798 28.669 30.379 21.729 n/a n/a n/a n/a n/a

Baldeon-Calisto et al. 10.3389/fnume.2022.1083245
we vary the number of 2D–3D ensembles from 1 to 5 and compare

the resulting segmentations to the reference segmentation. A one-

tailed paired t-test with a 95% confidence is also applied to

statistically compare the results. In terms of the Dice coefficient, the

number of ensemble networks does not seem to affect the network’s

performance as in most testing datasets their performance is

statistically the same. Bearing in mind the HD, the PPZ-SegNet has

a statistically smaller HD in the segmentation of the prostate gland

than ensembles with a lower number of networks. Therefore, we

conclude that increasing the number of networks in the ensemble

only improves the generalization capability when segmenting the

prostate gland and using the HD as an evaluation metric.
Discussion

The present study implements a modified deep neural network

architecture, based on the architecture previously published (32),

refer to as the PPZ-SegNet. This network was optimized and

trained using a cohort of 150 patients (Train #1) with T2W-MR 3D

imaging data and tested in 4 different cohorts with diverse gland

sizes, distributed across the cohorts: Test #1 (n = 192), Test #2 (n =

26), Test #3 (n = 15), Test #4 (n = 50). This study uniquely evaluates

the performance of a deep network on a large independent cohort

that was not part of training. The proposed method provides both

the gland-segmentation region and the PZ. It is well documented

that most tumors located in the prostate appear in the PZ region of

the glands, estimated to be over 70% (45), hence the assessment of

the zonal boundary determination makes it necessary.

Our study uses T2W MR images to segment the regions in 3D

volumes, the native resolution is mapped to a uniform resolution

before being used as an input to the network. In the preprocessing

step, input images are standardized to a fixed resolution of 0.5 ×

0.5 × 3 mm, which is a necessary step followed in most network

architectures to reduce detection biases. In our study, we use a
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dual network architecture that uses both the 2D and 3D volumes

of the MR T2W images to generate an independent assessment

and obtain a consensus to converge on a boundary that captures

the glandular structure (see Figure 1). Prior studies show better

segmentation performance by using a combined architecture than

training with a single data stream (32, 46), results that have been

confirmed in our experiments. Our study network provides a best

average Dice coefficient of 0.855 [0.843, 0.868] for Test #1

(ProstateX). The reproducible results across 4 diverse cohorts, are

with average Dice of 0.794 [0.749, 0.839] in Test #2, 0.806 [0.733,

0.88] in Test #3 and 0.622 [0.55, 0.71] in Test #4, respectively.

A recent published deep model (47) (ProGNet) reports optimistic

results with a claim that the model is reproducible in an independent

cohort. The model was trained on 805 prostate mpMR-T2W images

and reported a Dice coefficient in the range of 0.92 (n = 100, internal

cohort), 0.87 (n = 26, external cohort), 0.89 (n = 30, external Promise

12 cohort) to 0.93 (n = 11, cohort). The model used a 2.5D network

architecture with representative slices (3 slices in a patient) for model

training/testing. It becomes challenging to assess the model

performance in a very small test-cohort (test cohort size in the

range of 12.4% to 1.3% of training size).

In our analysis we show that as the prostate gland volume

increases the network seems to perform a better delineation, with a

Dice coefficient improving in value. It can be attributed to these

factors. First, the training data had patients with larger glandular

volumes making the network perform better at a larger size; and

second, the test cohort patients’ glandular volumes span smaller

size ranges that the network has not seen during the training

phase. The figures and the tables show the relationship of the

network models between the glandular volume and its delineation

performance metrics (see Supplementary Figures S1, S2;

Supplementary Tables S1, S2). Differently from other works, we

show the performance of our network in other testing cohorts.

This should be a common practice as it demonstrates the

robustness and limitations of the proposed networks.
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An important analysis performed in this work is the effect that

the composition of the training set has in domain adaptation. The

PPZ-SegNet model trained with 150 cases from Train #1 had a

better generalization capability than the PPZ-SegNet model trained

with 30 cases from Test #2 and Test #3 (refer to Table 5A). This

demonstrates that having a larger and more diverse dataset

improves the performance on new cohorts. Furthermore, enriching

Test #2 and Test #3 with 50 cases from Train #1 produced the best

DS in Test #4 as shown in Table 5B. This can be attributed to the

wider range of prostate volumes considered during training.

In this work we also demonstrate that ensemble of 2D and 3D

network can be a helpful technique to improve the generalization to

new cohorts. Our experiments displayed in Table 6, show that using

a 2D-3D ensemble provides a slight better segmentation

performance than a unique 2D or 3D ensemble on all testing

cohorts. 2D and 3D networks extract distinct levels of information,

and each one will have a better performance on certain types of

datasets and segmentation tasks. In our experiments, the 2D

ensemble leads in the segmentation of the prostate gland in terms of

the Dice coefficient and HD. Similar results have already been

obtained in other works (26), where 3D networks have a lower

performance than 2D networks on datasets with a high inter-slice

resolution as the distance makes the information of nearby slices less

relevant to predict the current segmentation. Meanwhile, the 3D

network performs better in the segmentation of the PZ when

considering the Haussdorff evaluation metric. The PPZ-SegNet takes

advantage of both types of architectures and obtains the same results

as the best performing network in all testing sets and evaluation

metrics. As it is unknown what will be the characteristics of future

testing cohorts, it is a good tactic to use a 2D–3D ensemble that will

be able to exploit different types of feature relationships.

Another result from our experiments is that increasing the number

of 2D–3D ensembles from 1 to 5 improves generalization when

segmenting the prostate gland and using the HD as evaluation

metric. Given that training five 2D–3D ensembles over one is

computationally costly, it is necessary to analyze if the improvement

justifies the additional cost. In our experiments, using the PPZ-

SegNet over the one 2D–3D ensemble reduced the Haussdorff

distance from 19.44 mm to 9.46 mm in Test #3 and from 34.35 mm

to 21.73 mm in Test #4, which is a significant improvement. Hence

for these cohorts using the PPZ-SegNet is justified.

Variability among expert readers in manual annotation of the

prostate/zonal anatomy and poor image quality are possible

factors for poor performance of deep neural networks, which

could cause domain shift, a common problem in machine

learning, resulting in inappropriate models across cohorts (27,

41, 48). This could impact segmentation performance, possible

reasons for lower Dice score in some of the test cohorts (Test

#4). On the other hand, we also noticed that Test #1 achieved

the highest average Dice score among all test cohorts, and this

cohort follows a similar intensity distribution to Train #1. This

implies that the “standardization” of the training and testing

cohorts could lead to more consistent automated segmentations

results, suggesting that the MRI-T2W of prostate should follow

the PI-RADS guideline. In addition, some image pre-processing

procedures, such as histogram matching, may also help. We will

investigate this further.
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A limitation in our study is that we compared the PPZ-SegNet

segmentation results with the manual annotation by our research

radiologists using metrics like the DS. Although we tried to

minimize the manual contouring variabilities through the

consensus reading between the research and clinical radiologists,

the intra- and inter-operator variabilities in manual annotations

do exist (49) and would require further evaluation to assess its

influence between readers, across institutions. Another limitation

when constructing the PPZ-SegNet is the need to apply partial

training when implementing the Bayesian Optimization. Although

we tested the number of training epochs that provided a good

approximation of the final performance, this strategy might bias

the selection of fast learning architectures instead of best

performing networks.
Conclusion

We proposed an automatic DL method (PPZ-SegNet) for

segmentation of the prostate and its PZ on MRI-T2W. The

proposed models use the Bayesian Optimization approach to

minimize the segmentation errors and less trainable parameters

compared to conventional U-net architecture. Our study finds

performance of the neural networks trained under limited

training data could degrade when they are applied on the images

that are different from the training data, we show there is a

dependency with respect to prostate gland sizes. It is possible

there are other parameters that our study does not have the

statistical power to evaluate. Furthermore, we found that using a

2D-3D ensemble slightly improves the generalization capability

of a network. Future work is needed to investigate the

capabilities of such networks on datasets with different types of

variations and explore other networks which is more invariant

to differences in the input data.
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