AUTHOR=Hansen Thomas Mejer , Mosegaard Klaus , Holm Søren , Andersen Flemming Littrup , Fischer Barbara Malene , Hansen Adam Espe TITLE=Probabilistic deconvolution of PET images using informed priors JOURNAL=Frontiers in Nuclear Medicine VOLUME=2 YEAR=2023 URL=https://www.frontiersin.org/journals/nuclear-medicine/articles/10.3389/fnume.2022.1028928 DOI=10.3389/fnume.2022.1028928 ISSN=2673-8880 ABSTRACT=Purpose

We present a probabilistic approach to medical image analysis that requires, and makes use of, explicit prior information provided by a medical expert. Depending on the choice of prior model the method can be used for image enhancement, analysis, and segmentation.

Methods

The methodology is based on a probabilistic approach to medical image analysis, that allows integration of 1) arbitrarily complex prior information (for which realizations can be generated), 2) information about a convolution operator of the imaging system, and 3) information about the noise in the reconstructed image into a posterior probability density. The method was demonstrated on positron emission tomography (PET) images obtained from a phantom and a patient with lung cancer. The likelihood model (multivariate log-normal) and the convolution operator were derived from phantom data. Two examples of prior information were used to show the potential of the method. The extended Metropolis-Hastings algorithm, a Markov chain Monte Carlo method, was used to generate realizations of the posterior distribution of the tracer activity concentration.

Results

A set of realizations from the posterior was used as the base of a quantitative PET image analysis. The mean and variance of activity concentrations were computed, as well as the probability of high tracer uptake and statistics on the size and activity concentration of high uptake regions. For both phantom and in vivo images, the estimated images of mean activity concentrations appeared to have reduced noise levels, and a sharper outline of high activity regions, as compared to the original PET. The estimated variance of activity concentrations was high at the edges of high activity regions.

Conclusions

The methodology provides a probabilistic approach for medical image analysis that explicitly takes into account medical expert knowledge as prior information. The presented first results indicate the potential of the method to improve the detection of small lesions. The methodology allows for a probabilistic measure of the size and activity level of high uptake regions, with possible long-term perspectives for early detection of cancer, as well as treatment, planning, and follow-up.