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Mixed oxides of uranium and plutonium (MOX) are currently considered
reference fuels for the new generation of fast breeder reactors such as
ASTRID. The key factor determining the performance and safety of fuel such
as MOX is its operational limits in applied practice, which are closely related to the
material’s structure and thermodynamic stability. They are, in turn, closely related
to the ambient (zero pressure) melting point (Tm); thus, Tm is an important
engineering parameter. However, the current knowledge of Tm of MOX is limited
and controversial, as several reported studies do not converge on the unique
behavior of Tm as a function of x. In this study, we present a theoretical model for
themelting curve (liquidus) of amixture and apply it to MOX considered amixture
of pure UO2 and PuO2. The model uses the known melting curves of pure
constituents as an input and predicts themelting curve of their mixture. It has only
one free parameter, which must be determined independently. In the case of
MOX, Tm of MOX as a function of x as given by the model has a local minimum at
x ≈ 0.64, which disagrees slightly with our previous ab initio molecular dynamics
studies that place this minimum at x � 0.7.
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1 Introduction

Nuclear power seems to be one of the most reliable energy sources for achieving the goal
of a world free of man-made CO2 emissions (Shellenberger, 2018). However, nuclear power
has always been scrutinized for its potential impact on the environment and the safety issues
related to its use (arising from accidents such as Chernobyl or Fukushima). The choice
between the two possible nuclear fuels, uranium and mixed oxide (MOX), to determine the
most adequate nuclear fuel cycle for the world’s future power needs has been debated. MOX
has the advantage of producing less intermediate- and high-level waste. In addition, MOX is
planned to be the fuel for the new generation of fast breeder reactors such as ASTRID
(Advanced Sodium Technological Reactor for Industrial Demonstration).

Uranium–plutonium MOX is the system U1−x Pux O2±y, where x is the plutonium
fraction; since the values of the atomic masses of U and Pu are very close (238 vs. 244),
atomic and mass fractions virtually coincide, thus x can be considered to be either of the
two. Thus, y � 0, y> 0, and y< 0 correspond to stoichiometric, hyperstoichiometric, and
hypostoichiometric MOX, respectively. Both UO2 and PuO2 maintain their ambient cubic
fluorite structure (Fm3m) in the entire range of temperature T up to the corresponding
melting points. Specifically for UO2, it is (ρ is density, and a, b and c are unit cell
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dimensions) ρ � 10.97 g/cm3, a � b � c � 5.47 Å (Allen and
Holmes, 1995), while for PuO2 ρ � 11.7 g/cm3, a � b � c � 5.39
Å (Wan et al., 2012). It is described in terms of a 12-atom unit cell
containing four U (or Pu) atoms in face-centered cubic positions
and eight O atoms filling the tetrahedral sites (Figure 1). Being a
mixture of UO2 and PuO2, MOX is also assumed to be of cubic
fluorite structure at any x. With low Pu content (x< 0.1), it is used
as nuclear fuel in several thermal neutron reactors around the world.
With its higher Pu content, MOX is expected to be a favorable fuel
for fast neutron reactors (FNRs). The constraint of the oxygen-to-
metal (O/M, M = U + Pu) ratio less or equal to 2 is chosen as a
safety precaution to protect the steel cladding from corrosion
during irradiation in FNRs, even though this hypostoichiometry
also has negative consequences such as inhomogeneity of Pu
content, which may result in a reduced thermal conductivity of
the MOX fuel.

1.1 Ambient melting behavior

Of all the physical properties of a material, melting behavior is a
fundamental property closely related to its structure and
thermodynamic stability; it has thus always been a crucial subject
of research. The ambient (zero pressure) melting point (Tm) is also
an important engineering parameter as it defines the operational
limits of a material in its application environment. It becomes
critical in nuclear engineering where the thermo-mechanical
stability of a nuclear fuel element is a key factor in determining
fuel performance and safety. Moreover, PuO2 and UO2 are two
endpoints of the phase diagram of MOX, so their ambient Tms are
fundamental reference points.

The current knowledge of the Tm of MOX is limited, and the
literature does not converge on the unique behavior of Tm as a
function of x. Carbajo et al. (2001) and Guéneau et al. (2008)
produced Tm as a monotonically decreasing function of x such that,
with Tm of UO2 (x � 0) of 3150 K, Tm of PuO2 (x � 1) is ~2650 −
2700 K. However, the studies of Kato et al. (2008a), Kato et al.
(2008b), De Bruyckner et al. (2010), and Böhler et al. (2014) resulted
in Tm having a local minimum at 0.5<x< 1 such that Tm of PuO2 is
~3000 − 3050 K so that the difference between the two values of Tm

is as high as 350 K. Although the melting behavior of
uranium–plutonium MOX has been experimentally addressed in
many recent studies, it still lacks a sound theoretical foundation. In
particular, the melting behavior of MOX has not yet been adequately
modeled based on general thermodynamics principles or using an
equation of state (EOS) approach.

This uncertainty in the melting behavior of MOX is directly
related to the ambiguity in the value of the ambient melting point of
PuO2 as well as the melting behavior of MOX with high Pu content.
Since the 1960s, several research groups have reported
measurements of Tm of PuO2 using various experimental
techniques. Most are summarized in a review by Carbajo et al.
(2001), who recommended a value of 2701 ± 35 K based on
measurements circa 1960s using the thermal arrest technique on
tungsten-encapsulated samples. More recently, Guéneau et al.
(2008) recommended a value of 2,660 K based on published data
and the thermodynamic modeling of the Pu–O system. However, in
the same year Kato and colleagues presented their experimental
findings (Kato et al., 2008a; Kato et al., 2008b) which called into
question the then commonly-accepted value of Tm for PuO2 and
proposed a considerably higher value of ~3000 K. While using
essentially the same thermal arrest technique as in the 1960s,
Kato and colleagues paid particular attention to not only
maintaining the exact O/M ratio as previous research had done
but also to the effect of sample–crucible interactions. This way, they
could attribute lower values of Tm in previous studies to extensive
interactions between PuO2 samples and tungsten—typical crucible
material in this range of T. The shortcomings thus indicated have
been properly taken into account in the most recent experimental
studies on the melting of PuO2. These studies were carried out using
a containerless laser-heating technique to produce values of Tm for
PuO2: 3017 ± 28 K (De Bruyckner et al., 2010) and 3050 ± 59 K
(Böhler et al., 2014). The most recent theoretical value of Tm for
PuO2 is 3046 ± 135 K (Burakovsky et al., 2023).

The difficulties with the experimental determinations of the
melting behavior of the stoichiometric MOX as well as the
shortcomings of the experimental techniques used for these
determinations are summarized by Fouquet-Métivier et al. (2023)
as follows. (i) The interaction of the U1−xPuxO2 samples of high Pu
content with tungsten crucibles, and in some x> 0.5 cases with
rhenium crucibles, drives the corresponding Tm systematically
lower. (ii) Pu content affects the Tm measurements such that
laser heating, which is currently the most widely used technique,
causes non-ideal behavior of the UO2 and PuO2 partitions of MOX,
resulting in a distinct minimum of Tm as a function of x at
0.4<x< 0.8. (iii) The measured values of Tm are affected by the
O/M ratio, which varies in the atmosphere during the experiments
so that it is not clear whether the measured Tm corresponds to O/M
close to 2 of the stoichiometric case or if it is much less than 2.

FIGURE 1
Ambient fluorite structure of both UO2 and PuO2; uranium/
plutonium atoms are shown in green and oxygen atoms in orange.
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Hence, the clarification of the behavior of Tm as a function of x
requires further study. Here, we present a theoretical model for the
melting curve (liquidus) of a mixture and apply it to MOX which is
considered a mixture of pure UO2 and PuO2.

2 Theoretical model for melting curve
(liquidus) of a mixture

Here, we present a theoretical model for the melting curve of a
mixture of two constituents. Such a mixture can be a compound or
an alloy; even a porous material can be considered a mixture of a
regular substance with air. Our approach can be easily generalized
for a mixture of any number of constituents.

2.1 Preliminary considerations

We consider the case of ideal mixing, where the constituents of
the mixture do not effectively interact with each other, which
would otherwise result in the volume of the mixture being different
from the sum of the volumes of its constituents. We assume that
the mixture is of the form A1−xBx and 0≤ x≤ 1 and that no
stoichiometric AnBm (both m and n are integers ≥1) compound
exists; otherwise, additional arguments should be invoked
regarding the enthalpy of formation of such a compound,
which will result in a modification of the analytic form of the
melting curve which we now derive. Thus, any eutectic is
neglected. Our derivation is based on the assumption that both
of the melting curves of pure constituents are known in the analytic
form of the pressure (P) dependence of the melting point:
Tm � Tm(P). This form can be either a simple polynomial fit,
such as a quadratic or cubic, or a more sophisticated
Simon–Glatzel form Tm(P) � Tm(0)(1 + P/a)b, where Tm(0) is
the ambient Tm and a, b � const, etc. However, nothing else is
known about the mixture, except the two melting curves; for
example, their EOSs are not available. Thus, the model will
predict the melting curve of a mixture based on the melting
curves of its components only. Finally, we assume that both
constituents of the mixture are molten and are in a state of
thermal equilibrium with each other at a common temperature
Tm so that the two partial pressures are such that

T1
m P1( ) � T2

m P2( ) � Tm. (1)
In Equation 1 T1

m(P) and T2
m(P) are the melting curves of

constituents 1 and 2, respectively, and P1 and P2 are the
corresponding partial pressures at T � Tm. We thus model the
system’s liquidus, which is the true melting line along which all
the constituents are molten; our approach generally applies to
systems, the constituents of which are not completely miscible so
that the system’s phase diagram may have a miscibility gap. Thus, in
what follows, we use the subscript ℓ instead ofm in order to associate
the melting point with liquidus and not confuse it with solidus.

First, we develop the appropriate mixing rules. We begin with
the EOS. If the cold (T � 0) EOSs of constituents 1 and 2 are,
respectively, P1(ρ) and P2(ρ), their finite-T counterparts can be
written as

P1 ρ, T( ) � P1 ρ, 0( ) + α1BT,1T, P2 ρ, T( ) � P2 ρ, 0( ) + α2BT,2T,

(2)
where α and BT are, respectively, the thermal expansion coefficient
and isothermal bulk modulus at temperature T. This form of the
thermal EOS does not explicitly take into account the T-dependence
of the bulk modulus, and/or the P- (or T-) dependence of the
thermal expansivity, and is therefore approximate. Indeed, since

P T,V( ) � P T0, V( ) + ∫T

T0

αBTdT,

Equation 2 results from the above relation (with T0 � 0)
provided that α · BT ≈ const—a potential weak T-dependence of
B—is complemented by a similar weak dependence of α to keep their
product (roughly) T-independent. As our previous theoretical
studies reveal, thermal EOS of the form of Equation 2 holds for
many substances, such as copper (Baty et al., 2021a), silver (Baty
et al., 2021b), palladium (Baty et al., 2024), and body-centered cubic
bismuth (Burakovsky et al., 2024a), among others. In fact, along the
corresponding melting curves, thermal EOS of the form Equation 2
is virtually exact.

We use the pressure mixing rule (law of additive volumes, or the
Amagat–Leduc model) which requires that the pressures of the
components be equal at a chosen mixture composition, total
volume, and temperature. This pressure mixing rule thus
describes the pressure equilibrium of the mixture. The set of the
equations that describe the mixture at pressure equilibrium are

P1 ρ1, T( ) � P2 ρ2, T( ) (3)
and

1 − x

ρ1
+ x

ρ2
� 1
ρ
. (4)

where ρ1 and ρ2 are, respectively, the densities of constituents 1 and
2, ρ is the density of the mixture, and x is the (fractional) mass
percentage of constituent 2 (without any loss of generality we
consider constituent 1 as a host and constituent 2 as a dopant):
x � M2/(M1 +M2), 1 − x � M1/(M1 +M2). Equation 4 is
equivalent to M1/ρ1 +M2/ρ2 � (M1 +M2)/ρ, which is the total
volume of the mixture being the sum of the volumes of its
constituents. It follows from the above relation that

ρ � ρ1ρ2
xρ1 + 1 − x( )ρ2

� 1 − x( )ρ1 + xρ2

1 + 1 − x( )x ρ1 − ρ2( )2
ρ1ρ2

.

Hence, provided that |ρ1 − ρ2|≪ ρ1, ρ2, the density of the mixture is
quasi-additive: ρ ≈ (1 − x)ρ1 + xρ2. This is the case for MOX since
the values of the densities of pure UO2 and PuO2, ≈ 10.97 and
11.46 g/cm3, respectively (Carbajo et al., 2001), are indeed very close,
and the density of U1−xPuxO2±y is described by ρ(x, y) �
(10.97 + 0.49x)(1 + 0.0039y) (Carbajo et al., 2001). Here x can
be either mass or atomic (or volume) percentage discussed below
because, for MOX, the two are essentially identical.

Note that in Equation 3 the value of T cannot be arbitrarily
high—that is, the range of T for the applicability of the pressure
mixing rule is limited. Indeed, at the liquidus temperature Tell all the
constituents of the mixture are molten; hence, each individual P is
determined by the corresponding melting curve Tm � Tm(P) such
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that, for constituent i, Tell � Ti
m(Pi(Tell)). Since different

constituents have different melting curves Ti
m � Ti

m(P), the
corresponding values of Pi(Tell) are different as well. Then, at T �
Tell the value of P of the mixture is generally not equal to any of the
Pi(Tell)s and is given by a mixing rule different from Equations 3
and 4. This new mixing rule is discussed in more detail in the next
section, taking into account that at the liquidus point, the mixture is
at temperature rather than pressure equilibrium.

By switching from mass percentage x to (atomic) volume
percentage X, via

X � x

x + 1 − x( ) m2
m1

, 1 −X � 1 − x

1 − x + x m1
m2

. (5)

In Equation 5m1 andm2 are the atomic masses, respectively (hence
x � X

X+(1−X)m1
m2

and 1 − x � 1−X
1−X+Xm2

m1

), Equation 4 converts to

v � 1 −X( )v1 +Xv2, (6)
where v, v1, and v2 are the atomic volumes of the mixture and its
constituent. Here, we define the atomic mass of the mixture as
m � (1 −X)m1 +Xm2. Equation 6 represents Zen’s law of the
additivity of the atomic volume of a mixture (Zen, 1956)
(analogous to the quasi-additivity of the density of the mixture
discussed above). We note that in the case of real mixing, formulas
for the total volume V � V1 + V2 (resulting from Equation 4), or its
atomic-volume analog Equation 6 must be replaced with,
respectively, V � ~V1 + ~V2 and v � (1 −X)~v1 +X~v2. Here, “~”
indicates the partial (effective) volume in the mixture, which may
be larger or smaller than that in the ideal (non-interactive) case
depending on whether the mixture constituents effectively attract or
repel each other. It can be shown that in this case
v � (1 −X)v1 +Xv2 + (1 −X)Xvdef , where vdef is the defect of
the volume additivity of the ideal-mixing case; here vdef itself
may be a function of X. Our model can in principle be
formulated in the case of non-ideal mixing, but such a
formulation would go well beyond the scope of our present work.

Since at fixed T, P � −dE/dV, the analog of the pressure mixing
rule Equations 3, 4 for energy is

E ρ, T( ) � 1 −X( )E1 ρ1, T( ) +XE2 ρ2, T( ). (7)
In Equation 7 E, E1, and E2 are the energies of the mixture and its
constituents. Here, E1(ρ, T) and E2(ρ, T) are directly related to,
respectively, P1(ρ, T) and P2(ρ, T).

The “specific” Gibbs function—that is, the Gibbs function per
unit mass which is consistent with the pressure mixing rule—is

G � 1 − x( )G1 + xG2. (8)

Indeed, the specific volume of the mixture (~1/ρ) is
V � (∂G/∂P)T ≡ GP � (1 − x)V1 + xV2, which is equivalent to
Equation 4. We note that, although this formulation is not
conventional, it can be found in the literature, such as in Duvall
and Taylor (1971), where it was used for the description of the shock
compression of a two-component mixture. It then follows from
Equation 8 that the specific entropy of the mixture is
S � −(∂G/∂T)P ≡ − GT � (1 − x)S1 + xS2. The isothermal
compressibility (1/BT) is β � −(1/V)(∂V/∂P)T ≡ − GPP/V; hence,
βV � (1 − x)β1V1 + xβ2V2. That is,

1
ρBT

� 1 − x

ρ1BT,1
+ x

ρ2BT,2
. (9)

Note that Equation 9 follows directly from Equation 4 written as
the total volume of the system being the sum of the volumes of its
constituents: V � V1 + V2. Then, under a small pressure change of
ΔP, the total volume change is ΔV � ΔV1 + ΔV2; therefore, since
BT ≡ − V(∂P/∂V)T, BT,1 ≡ − V1(∂P/∂V1)T
and BT,2 ≡ − V2(∂P/∂V2)T,

V
BT

� −ΔVΔP � − ΔV1

ΔP + ΔV2

ΔP( ) � V1

BT,1
+ V2

BT,2
. (10)

Equation 10 is equivalent to Equation 9 in view of Equation 4. We
will also need the thermal expansion coefficient, α �
(1/V)(∂V/∂T)P ≡ GPT/V or αV � (1 − x)α1V1 + xα2V2, which is
equivalent to

α

ρ
� 1 − x( )α1

ρ1
+ xα2

ρ2
. (11)

Now, dividing Equation 11 by Equation 9, upon some algebra,
we arrive at

αBT � 1 − x( )α1BT,1 + xα2BT,2 + 1 − x( )x α1BT,1 − α2BT,2( )
× ρBT

ρ1BT,1
− ρBT

ρ2BT,2
( ).

Note that Equation 9 allows the following parametrization:

ρ1BT,1 � ρBT

1 ± Cx
, ρ2BT,2 � ρBT

1 ∓ C 1 − x( ), (12)

where C is assumed to be a constant such that, regardless of the
value of C, Equation 9 holds true because of the identity
(1 − x)(1 ± Cx) + x(1 ∓ C(1 − x)) � 1. In the following, we
keep the upper sign in front of C in the two denominators of
Equation 12 so that C itself can be of either sign (or zero). We
consider C as the only free parameter of this formulation, the
value of which must be determined independently—based on the
available experimental information on the liquidus of the system.
We assume that no other experimental information is available;
in particular, on the values of ρBT, which would have
otherwise allowed the calculation of the value of C
directly from Equation 12. Then, via Equation 12,
ρBT/(ρ1BT,1) − ρBT/(ρ2BT,2) � C, which we use in the above
relation for αBT to finally obtain

αBT � 1 − x( )α1BT,1 + xα2BT,2 + 1 − x( )xC α1BT,1 − α2BT,2( ). (13)

2.2 The formula for the liquidus of a mixture

We now consider a two-component mixture at temperature
equilibrium at the liquidus point (P, Tℓ) and assume that each of the
components is described by thermal EOS of the form Equation 2.
Then, for the pressures of the mixture and its components at T � Tℓ ,

P ρ, Tℓ( ) � P ρ, 0( ) + αBTTℓ , P1 ρ1, Tℓ( )
� P1 ρ1, 0( ) + α1BT,1Tℓ , P2 ρ2, Tℓ( ) � P2 ρ2, 0( ) + α2BT,2Tℓ .
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Since P1(ρ1, 0) � P2(ρ2, 0) � P(ρ, 0) ≡ P (the pressure mixing
rule), it then follows that (Pℓ,1 ≡ P1(ρ1, Tℓ), Pℓ,2 ≡ P2(ρ2, Tℓ),
and Pℓ ≡ P(ρ, Tℓ))

αBTTℓ � Pℓ − P, α1BT,1Tℓ � Pℓ,1 − P, α2BT,2Tℓ � Pℓ,2 − P,

the use of which in Equation 13 multiplied by Tℓ , leading to

Pℓ � 1 − x( )Pℓ,1 + xPℓ,2 + 1 − x( )xC Pℓ,1 − Pℓ,2( ). (14)

Equation 14 is our formula for the liquidus of a two-component
mixture. It is in fact the new mixing rule mentioned above. Since
both Pℓ,1 � Pℓ,1(T) and Pℓ,2 � Pℓ,2(T) are assumed to be available,
provided that the value of C is known, this formula gives the value of
the melting P of a mixture at any given melting temperature Tℓ* via
Pℓ,1* � Pℓ,1(Tℓ*) and Pℓ,2* � Pℓ,2(Tℓ*).

2.3 General features of Eqs. (13) and (14)

It is important to note the general features of the above formulas
for the product of αBT and the liquidus of a mixture. Considering
Equation 14 as a representative example, its general features are that
it (i) is symmetrical under the simultaneous permutations 1 ↔ 2,
x ↔ (1 − x), C ↔ − C, (ii) satisfies the boundary conditions
Pℓ(x � 0) � Pℓ,1 and Pℓ(x � 1) � Pℓ,2, and (iii) satisfies the self-
mixture condition where any pure substance can be considered a
mixture with itself; hence, the choice of Pℓ,1 � Pℓ,2 � P should lead
to Pℓ � P at any x. As clearly seen, this is achieved by the presence of
(Pℓ,1 − Pℓ,2) on the right-hand side of Equation 14.

3 Liquidus of a mixture at P � 0 and
small P

We note the above Formula 14 at P � 0 and small P. In this case,
both Tℓ,1(P) and Tℓ,2(P) can be approximated by simple
linear forms:

Tℓ,1 P( ) � Tℓ,1 0( ) + Tℓ,1′ · P, Tℓ,2 P( ) � Tℓ,2 0( ) + Tℓ,2′ · P,
or Pℓ,1(T) � (T − Tℓ,1(0))/Tℓ,1′ (0), Pℓ,2(T) � (T − Tℓ,2(0))/Tℓ,2′ (0),
where Tℓ,1(0), Tℓ,2(0), Tℓ,1′ (0), and Tℓ,2′ (0) are the corresponding
ambient melting points and the initial slopes of the melting curves.
Using these expressions in Equation 14 gives
Tℓ(P) � Tℓ(0) + Tℓ′(0) · P, where

Tℓ 0( ) �
1−x( )Tℓ,1 0( )
Tℓ,1′ 0( ) + xTℓ,2 0( )

Tℓ,2′ 0( ) + 1 − x( )xC Tℓ,1 0( )
Tℓ,1′ 0( ) − Tℓ,2 0( )

Tℓ,2′ 0( )( )
1−x

Tℓ,1′ 0( ) + x
Tℓ,2′ 0( ) + 1 − x( )xC 1

Tℓ,1′ 0( ) − 1
Tℓ,2′ 0( )( ) (15)

and

1
Tℓ′ 0( ) �

1 − x

Tℓ,1′ 0( ) +
x

Tℓ,2′ 0( ) + 1 − x( )xC 1
Tℓ,1′ 0( ) −

1
Tℓ,2′ 0( )( ). (16)

These are expressions for the ambient melting point and initial
slope of the melting curve of a mixture, respectively. Note that they
both satisfy the self-mixture condition, again because of the presence
of terms (Tℓ,1(0)/Tℓ,1′ (0) − Tℓ,2(0)/Tℓ,2′ (0)) and (1/Tℓ,1′ (0) −
1/Tℓ,2′ (0)).

Thus, the analytical form of the liquidus of a mixture at small
P is

Tℓ P( ) � Tℓ 0( ) + Tℓ′ 0( ) · P,
where Tℓ(0) and Tℓ′(0) are determined, respectively, by Equations
15 and 16.

3.1 General features of Eqs. (15) and (16)

Both Tℓ(0) in Equation 15 and Tℓ′(0) in Equation 16 as
functions of x have a local extremum (either minimum or
maximum) at

X � C − 1
2C

. (17)

If this extremum does occur for the mixture, then 0<X < 1,
which puts a constraint on C: |C|> 1, such that

C> 15 0<X < 0.5, C< − 15 0.5<X < 1. (18)
Equation 18 is consistent with the invariance under the
simultaneous permutations x ↔ (1 − x) and C ↔ − C. In this
case, the values of Tm(0) and Tm′ (0) at x � X are

TX
ℓ

0( ) � C − 1( )2Tℓ,1′ 0( )Tℓ,2 0( ) − C + 1( )2Tℓ,2′ 0( )Tℓ,1 0( )
C − 1( )2Tℓ,1′ 0( ) − C + 1( )2Tℓ,2′ 0( ) (19)

and

T′X
ℓ

0( ) � 4CTℓ,1′ 0( )Tℓ,2′ 0( )
C − 1( )2Tℓ,1′ 0( ) − C + 1( )2Tℓ,2′ 0( ). (20)

If, however, |C|≤ 1, the extremum occurs either outside the
physical region 0≤ x≤ 1 of the mixture or at one of its endpoints (if
|C| � 1), both the local maximum and minimum are at the two
endpoints, and Tℓ(0) is a monotonically decreasing or increasing
function of x. In this case, Equations 19, 20 do not apply.

3.2 Example: Si–Ge system

Based on general considerations, it is expected thatC � O(1). In
the following example of the application of our model to a real
system, C is identically 1. The system that we are considering here is
a mixture of silicon and germanium which, according to Olesinski
and Abbaschian (1984), form a continuous solid solution without
any eutectics. According to the literature (Jayaraman et al., 1963;
Deb et al., 2001; Yang et al., 2004; Yang and Jiang, 2004; Kubo et al.,
2008; Pasternak et al., 2008), the low-P melting curves of Si and Ge
are, respectively, TSi

m(P) � 1690 − 63P and TGe
m (P) � 1210 − 50P.

Hence, this is an example of a mixture of “anomalous” melters,
which both exhibit Tm decreasing with P (for the vast majority of
substances,Tm increases withP, which is the normal case). Hence, in
Equation 15 Tℓ,1(0) � 1690, Tℓ,1′ (0) � −63, Tℓ,2(0) � 1210, and
Tℓ,2′ (0) � −50. Then, the best fit of the form Equation 15 with
the above parameters to the experimental data of Olesinski and
Abbaschian (1984) brings up C � 1. In Figure 2, the resulting Tℓ(x)
is compared to the liquidus of Si1−xGex from the experiment.
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4 Application to the
uranium–plutonium mixed oxide
(MOX) system

We now apply Formula 15 to the uranium–plutonium mixed
oxide (MOX) system. Note that generally the value of C can be
determined from fitting Tm(0) of the functional form Equation 15 to
the experimental and/or theoretical data on the liquidus of a
mixture. In the case of MOX, we determine the value of C from
fitting to the most recent and reliable experimental data (Böhler
et al., 2014). We consider UO2 as a host and PuO2 as a dopant. The
other parameter values required for the application of Equation 15
to MOX which we use for the determination of the values of C are
Tℓ,1(0) � 3147 K, Tℓ,1′ (0) � 92.9 K/GPa (Manara et al., 2010) and
Tℓ,2(0) � 3046 K, Tℓ,2′ (0) � 92.5 K/GPa (Burakovsky et al., 2023).
Taking into account the error bars of the experimental values of Tℓ ,
the fitting brings up the value of C � −3.5 ± 2.0, which we use in
Equation 15. Then, in view of Equation 17 X ≈ 0.64, the local
extremum (in our case, minimum) of the liquidus of MOX occurs at
x ≈ 0.64. This contrasts with our previous QMD studies which
placed this minimum at x � 0.7, although the difference is
less than 10%.

Comparison of the liquidus of MOX in the form Equation 15 to
both the experimental data of Böhler et al. (2014) and the results of
our own ab initio quantummolecular dynamics (QMD) simulations
is shown in Figure 3. The solid blue line corresponds to the model
liquidus with C � −3.5, and the upper and lower dashed blue lines
to, respectively, C � −1.5 and C � −5.5 which are the upper and
lower limits of C. As Figure 3 clearly demonstrates, our model is in
excellent agreement with the experiment, but there is some
disagreement with the QMD data points for both x � 0.7 and
0.9. We assume that the lower values of the two Tms may be
related to size effects in our QMD simulations. An example is
the case of pure UO2 (Burakovsky et al., 2024b), although the

Tm values for both smaller and larger systems are consistent
within error bars. To test this assumption, we carried out QMD
simulations to obtain another data point at x � 0.75, this time using
a 768-atom (4 × 4 × 4) supercell, which is much larger than the 324-
atom (3 × 3 × 3) supercells used in our previous study.

4.1 QMD simulations of the ambient Tm
of U0.25Pu0.75O2

The computational details of our QMD simulations can be
found in our previous work on this subject (Burakovsky et al.,

FIGURE 2
Ambient phase diagram of the Si–Ge system: comparison of the liquidus curve produced by the theoretical model presented in this work to the
experimental data points of Olesinski and Abbaschian (1984).

FIGURE 3
Ambient phase diagram of stoichiometric MOX: comparison of
the liquidus curve (blue lines) produced by the theoretical model
presented in this work to both the experimental data points of Böhler
et al. (2014) and the theoretical melting points from QMD
simulations of our previous (2023) and current studies.
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2023; Burakovsky et al., 2024b). The mixed UO2-PuO2 system is
modeled as a substitution alloy in which some U atoms (at randomly
chosen lattice sites) are replaced by Pu atoms according to the
corresponding PuO2 content. Specifically, for our simulations of a
768-atom U0.25Pu0.75O2 system, 576 U atoms chosen at random are
replaced with 576 Pu atoms (alternatively, 192 Pu atoms of pure 768-
atom PuO2 systems are replaced with 192 U atoms chosen
at random).

Our melting simulations are carried out using the so-called Z
method (Burakovsky et al., 2015). In these simulations, the

U0.25Pu0.75O2 supercell is subject to a set of initial temperatures
(T0) separated by an increment of 250 K and run with QMD in the
NVE ensemble, for a total of 5,000–6,000 time steps of 2.5 fs
each—up to a total of 15 ps of running time—to determine Tm

at the corresponding melting pressure (Pm). As the system
equilibrates upon the completion of the melting process, the
values of Tm and Pm are determined from the corresponding
running averages (shown as solid lines in Figures 4 and 5). In
this case, Pm � 0 corresponds to the unit cell of a � b � c � 5.58 Å
or ρ � 10.50 g/cm3.

FIGURE 4
Time evolution of temperature in the Fm3m-UO2 melting run at ρ � 10.5 g/cm3; initial temperature is 8500 K.

FIGURE 5
Same as in Figure 4 for the time evolution of pressure (in kbar; 10 kbar = 1 GPa).
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As seen in Figures 4 and 5, since the beginning of the run, after
~600 time steps (1.5 ps), T decreases and P increases (since in the
NVE ensemble the total energy E ~ kBT + PV is conserved). This is
a signature of a superionic transition. Due to a 15-fold difference in
the atomic masses of U/Pu and O, the O sublattice becomes less
stable than for U/Pu, and when sufficiently high T it disorders first,
such that the anions (O−) start flowing through the ordered
structure of the cations (U+/Pu+). Such a (superionic) phase
transition accompanied by a rapid increase in ionic conductivity
has been observed in many diatomic systems. It was observed in
both pure UO2 (Dworkin and Bredig, 1968) and PuO2 (Chroneos
et al., 2015; Günay et al., 2016). Figures 4 and 5 demonstrate its
occurrence in U0.25Pu0.75O2.

Thus, the first drop in T (increase in P) corresponds to the
activation of the O flow. This process takes ~1000 time steps (~2.5
ps). The system of quasi-static cations and mobile anions then
equilibrates, and the second drop in T (increase in P) occurs after a
total of ~1400 time steps (~3.5 ps). This second drop in T is
associated with the disordering of the U/Pu sublattice—a true
melting transition—and the corresponding (P, T) point lies on
the system’s liquidus. The melting process takes ~600 time steps
(1.5 ps). The emerging liquid equilibrates at (P, T) ≈ (0, 2900 K),
which is the liquidus point of U0.25Pu0.75O2.

Hence, our ab initio ambient melting point of U0.25Pu0.75O2

appears to be 2900 ± 135 K. Uncertainty of the value of Tm intrinsic
to the Z method is 125 K, half of the increment of T0 (Burakovsky
et al., 2015), which turns out to constitute ~4% ofTm. Uncertainty of
the value of Pm in our simulations is ~0.5 GPa. Assuming that the
initial slope of the melting curve (dTm/dP at P = 0) is ~90 K/GPa, as
predicted by the model (Equation 16), a Pm uncertainty of 0.5 GPa
translates into a Tm uncertainty of δTm ~ dTm

dP δP~<45 K. Therefore,
the combined uncertainty ofTm in our QMD simulations is ≈ 135 K,
which is within 5% of Tm. Thus, our results on the ambient Tm of
U0.25Pu0.75O2 are expected to be quite accurate overall.

Our value of Tm(0) � 2900 K for U0.25Pu0.75O2 is ~200 K
above the value of ~2700 K suggested by our previous QMD
simulations of smaller systems (Burakovsky et al., 2023). Hence
in our simulations, some size effects are indeed present and
should therefore be taken into account. Assuming that the
results on smaller supercells at x � 0.7 and 0.9 should be
corrected by adding ~200 K to the corresponding values of
Tms, the two corrected values would be fully consistent with
the theoretical liquidus curve.

5 Discussion of the results

As Figure 3 clearly shows, the distinct minimum of Tℓ �
Tℓ(x) is at x ≈ 0.64, as predicted by the model. We note that a
very recent study of the MOX phase diagram using the Calphad
methodology (Fouquet-Métivier et al., 2023) suggests the phase
diagram of MOX (Figure 5 of Fouquet-Métivier et al., 2023) is
very similar to our Figure 3, for which the liquidus line Tℓ �
Tℓ(x) has a distinct minimum at x ≈ 0.64 and which is in good
agreement with the experimental results by Böhler et al. (2014)
rather than those of Kato et al. (2008a) and Lyon and Baily (1967)
—just as the model liquidus curve on our MOX phase diagram is.
Their value of Tℓ ≈ 2975 K at x � 0.7 is consistent with our value

of Tℓ � 2993 ± 49 at x � 0.64 (as predicted by Equations 15 or 19
with C � −3.5 ± 2.0). One additional source of uncertainty of
experimental measurements may be the variation of the O/M
ratio during the melting of MOX in the atmosphere, which may
contribute as much as ~100 K to the error in the experimental Tℓ

(Strach et al., 2016). Below, we discuss this point in more detail.
Hence, the point we made previously (Burakovsky et al., 2023)
that the two values of Tℓ for MOX at x � 0.7—that of Fouquet-
Métivier et al. (2023) and Tℓ � 2670 ± 135 K from our previous
QMD studies which is ~300 K below—cannot be reconciled
within the uncertainties of our method itself, is now resolved;
the reason for this disagreement being size effects in our QMD
simulations is clarified in our present study.

In Böhler et al. (2014), which was chosen for the construction
of our theoretical model, the analysis of the experimental data on
the melting of MOX revealed first that the congruent melting for
the mixed oxides is shifted toward low O/M ratios compared to
the end-members (UO1.97 and PuO1.95). Second, the samples are
highly oxidized in air whereas they are close to stoichiometry (O/
M = 2.00) in the inert atmosphere of argon. This high oxidation
results in hyperstoichiometry and may in principle lead to the
formation of higher oxides such as M3O8 and/or MO3. Both
higher and lower O/M ratios may influence the values of Tm

which are used for both the determination of the value of C and
comparison to our theoretical results. While the literature
generally agrees on the increase of Tm for hyperstoichiometric
MOX (e.g. Strach et al., 2016), some ambiguity persists regarding
hypostoichiometric MOX. According to most studies, Tm should
decrease with decreasing O/M (e.g. Kato et al., 2008a; Kato et al.,
2008b), just as it does with increasing O/M. However, several
recent studies, both experimental (Morimoto et al., 2005; Kato
et al., 2011) and theoretical using Calphad calculations (Guéneau
et al., 2019; Fouquet-Métivier et al., 2020), have shown exactly
the opposite. For example, Morimoto et al. (2005) focused on the
dependence of Tm of MOX with 30% Pu, 2% Am, and 2% Np on
the deviation from stoichiometry, which indicates an unexpected
decrease of Tm toward O/M = 2. They concluded that the melting
points of the pellets with O/M = 1.95 is higher than those with
O/M = 1.98. Additionally, Calphad calculations reported in
Guéneau et al. (2019) and Fouquet-Métivier et al. (2020)
show a maximum Tm around O/M = 1.98 rather than 2.00.
These considerations must, however, consider the uncertainty on
the fuel O/M ratio upon measurement due to the oxidation of the
samples during the successive laser shots of the experimental
procedure described in Fouquet-Métivier et al. (2020), which is
around 2%, or 60 K, comparable to the 2σ uncertainty band of the
experimental Tm of Böhler et al. (2014). Because, as mentioned
above, the uncertainty of Tm associated with the combined effect
of (i) deviation from stoichiometry, (ii) oxidation in air, and (iii)
sample–crucible cross-contamination should be expected to be
within ~100 K, the overall uncertainty of the most recent and
accurate experiments on the melting of MOX is likely within
~150 K, which is essentially of the same magnitude as that of the
Z method itself used for the QMD simulations of Tm. To
summarize, the experimental data of Böhler et al. (2014) used
to construct our theoretical model seem quite accurate overall;
therefore, the model parameters, C in particular, are
reliable as well.
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6 Concluding remarks

Our study presented a theoretical model for the melting curve
(liquidus) of a mixture and applied it to the uranium–plutonium
mixed oxide (MOX) system being considered a mixture of pure UO2

and PuO2.
The model is based on the two assumptions that (i) the mixture is

ideal—that is, the additivity of the volumes of the constituents
Equations 4 and 6 is realized—and (ii) the thermal EOS of each of
the constituents as well as that of the mixture is given by Equation 2 in
which (α1BT,1), (α2BT,2) and (αBT) are all assumed to be constant.
Their values are related by Equation 13 in which C is the only free
parameter that must be determined independently. We here discussed
the way this is determined in practice. In addition to the melting curves
of pure constituents (which are assumed to be available), no other
experimental information is required as the model’s input. As regards
the value of C, the example of MOX considered in our work clearly
demonstrates that the variation of C by as much as ~60% causes a shift
of the model liquidus within ~100 K, or ~3%. In the case of Si1−xGex, a
variation of C of 60% would cause a shift of the model liquidus within
~150 K, or ~10%. Thus, the exact knowledge of the value ofCmay not
really be necessary for the model to produce the liquidus of a mixture in
good agreement with the experiment.

The examples of the application of themodel to real mixtures, Si–Ge
andMOX, considered in ourwork clearly demonstrate that, although the
model is not based on rigorous thermodynamic arguments, it is reliable
and relatively easy to apply in practice, in contrast to more complicated
and more time-consuming Calphad calculations.

Comparison of the MOX liquidus given by this model to
experimental and QMD results is shown in Figure 3, which
demonstrates very good agreement between the model and both
experiment and theory. Figure 3 represents the current knowledge of
the ambient phase diagram of stoichiometric MOX; this knowledge
may be advanced further in subsequent studies on the subject.

Finally, we note that the present model can be further improved by
taking into account the realistic scenario of the presence of a defect of
the volume additivity, vdef because of effective interactions between the
constituents (Section 2.1) as well as a possible dependence ofC on x. As
we have seen, taking C in Equation 15 to be a constant results in a
liquidus of amixture in good (or even excellent, in the case of Si1−xGex)
agreement with experiments; thus, the present model should be
expected to predict reliable liquidi of different two-component
mixtures. However, introducing a x-dependence of C may help in
addressing more exotic mixing cases, such as those in which eutectics
are present. Of course, the generalization of the present model to
mixtures of larger number of constituents (perhaps even an arbitrary
number of them) will be undertaken in our subsequent research.
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