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Editorial on the Research Topic
Plutonium legacy storage and degradation

The safe and secure management of special nuclear materials (SNM) is a matter of
international importance. Of these SNMmaterials, plutonium is of special importance given
its radiotoxicity and use in nuclear weapons. However, plutonium also can be used as a
nuclear fuel for power generation in both current generation (thermal) and future
generation (fast) reactors to generate large amounts of low carbon energy. It is
produced in significant quantities during the irradiation of uranium fuels in thermal
reactors and can be recovered for recycling into new fuels by nuclear fuel reprocessing
technologies such as the PUREX process. Reprocessing and recycling plutonium in this
“closed” fuel cycle can substantially enhance the sustainability of nuclear power. However,
from historic civilian and defense programs substantial quantities of separated plutonium
exist across the world. The largest stockpile (estimated at over 140 tonnes) (Nuclear
Decommissioning Authority, 2022) is in the United Kingdom but the United States, France,
Japan and other countries also have significant quantities of plutonium in interim storage or
contained within wastes, weapons or new fuels. These separated, unirradiated, plutonium
materials pose specific challenges related to their radiological hazards, proliferation risks
and physical security as well as the logistics and economics of ensuring their safe and secure
storage. Furthermore, depending on their form, these materials may present chemical
hazards resulting from chemical and physical processes such as radiolysis and radioactive
decay, radiogenic heating, corrosion, etc. This can lead to changes in the plutonium
materials, evolution of gases (which may be flammable such as hydrogen or like helium
from alpha decay cause pressurization of containers), degradation of packaging materials or
other deleterious effects. Due to the challenges of working with plutonium, many of these
processes remain poorly understood at the fundamental level such that safe storage is
commonly ensured by application of sound engineering principles, careful monitoring, and
the accumulation of operational experience. To address these issues and share knowledge
and experience in the management of plutonium this Research Topic was initiated.

The first three papers in this Research Topic address the issues of radiolysis and long-
term storage. Plutonium materials are typically stored as oxides, either in a pure form or as
mixed U-Pu oxides. Radiolysis can lead to the degradation of the oxide material and to
pressurization through the formation of radiolytic gases. Sims and Orr provide a primer on
radiolysis and describe why accurate models are needed that can assess the H2 generation
rate from a radioactive material exposed to water or water vapor. This requires an
understanding of the phenomena-controlling H2 creation and destruction, and
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interactions at solid-water interfaces. The simplest models have used
conservative estimates for G-H2 and generally ignore chemical
kinetics and recombination reactions. Such models are based
primarily on the energy deposition into the solution. For
instance, the Three-Mile Island (TMI) model is based on energy
deposition (Henrie and Fischer, 1987; Vinson et al., 2002). These
conservative approaches have been used during SNM storage and
transportation as they are straightforward, and the chemistry of the
system can be ignored. The argument that these models are
conservative is based on the assessment that G-H2 tends to drop
rapidly in most experiments from 0.45 molecules/100 eV for gamma
and 1.3 molecules/100 eV for alpha-radiation within a short period.
However, it is possible that these models could become non-
conservative, particularly if •OH scavenging agents are present,
such as halides, or if air is in the package, enabling the buildup of
HNO3 or HCl, and leading to corrosion of packages. Hirooka et al.
describe the effect Cl radiolytic species, derived from polyvinyl
chloride (PVC) bags commonly used to contain radioactive
materials, have on the degradation of mixed U-Pu oxides. They
point out that not only is the interfacial alpha-radiolysis important
but also the surrounding materials that can increase the local gamma
dose and accelerate degradation. It has long been known that
anomalous H2 production during irradiation is enhanced at
metal oxide interfaces (Petrik et al., 2001). Webb et al. delved
into the factors that impact H2 generation from water radiolysis
with PuO2, a question that remains unclear. Their experiments on a
wide range of PuO2 materials, produced from the oxalate under
different process conditions, provide a comprehensive data set
covering ranges of surface area, relative humidity and overlying
atmosphere. The connection between oxalate and oxide, and the
original processing conditions, is linked to the preservation of the
overall morphology of the Pu solid during calcination.

The last two papers in the Research Topic by Buck et al. and
Ausdemore et al. address the conversion of Pu oxalate to oxide.
Questions remain regarding the exact nature of the process (Orr
et al., 2015). Buck et al. endeavor to improve understanding by using
advanced electron microscopy to study the structural and
compositional changes in calcined Pu oxalate. Precipitation of
plutonium from an acid solution most often involved reaction
with oxalic acid in a continuous precipitator to obtain Pu-oxalate
(Facer and Harmon, 1954; Nash, 2015). Operators established the
chemical conditions under which plutonium nitrate and oxalic acid
needed to be reacted to control the quantity and particle size of the
resulting plutonium oxalate. The key parameters were the acidity,
oxalic acid concentration, rate of agitation, residence time, and
temperature that impacted the Pu oxalate morphology which, in
turn, impacted the filterability of this solid. When the acid
concentration was below 1.5 M, the precipitate was too fine and
did not settle and if the acid concentration was above 4.5 M, the
Pu(IV) oxalate was high and the precipitate became thixotropic
(Facer and Harmon, 1954; Miller et al., 1977). This product was then
calcined to the oxide that altered the surface area both internal and

external. Linking processing conditions to Pu oxide morphology
could provide additional methods for nuclear forensics.
Ausdemore et al., have developed a Bayesian Adaptive
Spline Surface model to address this inverse problem.
This method does not require any physical or chemical
understanding of the system but can, nevertheless,
accurately predict the starting conditions from the fully
calcined product.

The subject of nuclear forensics is becoming increasingly
important to ensure control of SNM. However, it still relies
heavily on radio-analytical and mass spectroscopy data.
Morphological analysis provides another approach. The objective
of this evolving approach, exemplified by papers in this Research
Topic, is to provide the forensic scientist with yet another signature
that help identify SNM that are out of regulatory control.
Morphology also controls the surface area of these nuclear
materials and is an important parameter in models that are being
used to predict radiolytic H2 production associated with the long-
term storage of SNM.
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