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A novel deep learning model zLSTM, which evolves from Long-Short Term
Memory (LSTM) with enhanced long-term processing capability, is applied to
the prediction of Loss of Coolant Accident (LOCA). During the prediction process,
six-dimensional multivariate coupling is established among six major system
parameters after connecting each timestep with the time dimension. The
demonstration experiments show that the proposed method can increase the
prediction accuracy by 35.84% comparing to the traditional LSTM baseline.
Furthermore, zLSTM model follows the parameter progress well at the starting
stage of LOCA, which reduces the prediction error at both the beginning and
the far end.
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1 Introduction

LOCA is a severe accident that causes critical threat to the Nuclear Power Plants
(NPPs), which makes timely and accurate prediction meaningful to the NPP safety (Saxena
et al., 2010). However, the nonlinearity and system complexity of LOCA increase the
prediction difficulty. The LOCAmodeling process becomes even more complicated when a
multivariate coupling structure is needed to present comprehensive illustration of the entire
LOCA process.

During the past decades, a lot of multivariate prediction attempts were conducted, which
can be divided into three categories. The first class is based on statistical methods, such as 1)
LOCA calculation using an input card with modified reactor core section (Li et al., 2019), and
2) coolant injection model from FLUENT software (Bingzheng et al., 2020). Methods of this
class assume linear dependences among all the system parameters, leading to quadratic
increase of the model complexity and over-fitting problem. The second class uses traditional
machine learning methods, such as Support Vector Machine (SVM) for break size estimation
(Yu et al., 2022; Liu et al., 2021) and Group Method of Data Handling (GMDH) for the break
location and break size estimation (Radaideh and Kozlowski, 2020). Artificial Intelligence (AI)
methods groups the third class, in which Deep Neural Network (DNN) is deployed to predict
the reactor core water level (Koo et al., 2018) and Convolutional Neural Networks (CNN) is
widely used formultivariate time series prediction (Kollias and Zafeiriou, 2020) and operation
parameter prediction of LOCA (Fukun et al., 2022). AI class methods have been proved to be
effective for nonlinear challenges. For example, a combination of Autoregressive Integrated
Moving Average (ARIMA) and LSTM were proposed as a solution for fault diagnosis and
prediction of NPP’s accidents (Zhu et al., 2022); She, et al. combined both CNN and LSTM to
analyze the coolant variation during a LOCA (She et al., 2021). LSTM was also used in (She
et al., 2020) for the key parameter prediction of steam generators.

OPEN ACCESS

EDITED BY

Jian Deng,
Nuclear Power Institute of China (NPIC), China

REVIEWED BY

Yandong Hou,
Northeast Electric Power University, China
Luteng Zhang,
Chongqing University, China

*CORRESPONDENCE

Jingke She,
shejingke@hnu.edu.cn

RECEIVED 15 February 2024
ACCEPTED 01 May 2024
PUBLISHED 30 May 2024

CITATION

Li X, Chen X, She J, Zhang Y and Wang T (2024),
Multivariate-coupling LOCA prediction
using zLSTM.
Front. Nucl. Eng. 3:1386540.
doi: 10.3389/fnuen.2024.1386540

COPYRIGHT

© 2024 Li, Chen, She, Zhang and Wang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Nuclear Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 30 May 2024
DOI 10.3389/fnuen.2024.1386540

https://www.frontiersin.org/articles/10.3389/fnuen.2024.1386540/full
https://www.frontiersin.org/articles/10.3389/fnuen.2024.1386540/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnuen.2024.1386540&domain=pdf&date_stamp=2024-05-30
mailto:shejingke@hnu.edu.cn
mailto:shejingke@hnu.edu.cn
https://doi.org/10.3389/fnuen.2024.1386540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org/journals/nuclear-engineering#editorial-board
https://www.frontiersin.org/journals/nuclear-engineering#editorial-board
https://doi.org/10.3389/fnuen.2024.1386540


As indicated above, nonlinearity, multivariate processing, and long-
term memory must be considered for a precise LOCA prediction. The
previous works in the LOCA field only realized multivariate prediction
of a single variable within a relative short period, leaving a challenge for
multivariate and long-term processing. This work thus proposes to
solve such challenge with zLSTM-based prediction model (Gong et al.,
2022), in which its enhanced long-term memory is utilized together
with multivariate coupling to generate more accurate and reliable
LOCA prediction results.

This paper consists of four sections. Besides the introduction
part, Section 2 provides details of the zigmoid function and the
prediction model using zLSTM; Section 3 presents the design of the
verification experiments and the results, as well as the analysis. The
paper is then concluded in Section 4.

2 The prediction model based on
multivariate coupling

Themultivariate coupling of several critical system parameters is
realized using the above mentioned zLSTM model, where the
zLSTM model, the dense block, and the output prediction
sequence are combined to establish the entire model structure.

2.1 Model structure

LSTM networks still have long-range dependence problems due
to functions inherited from RNN. Those states with long timesteps
are far away from the current calculation point, leading to difficult
updates of parameters at the current time. With a consideration of
improving the prediction accuracy in long-term sequence
prediction, it is necessary to alleviate the gradient vanishing
problem that occurs as the time series range becomes longer.
This paper uses an improved zLSTM model for long-term
sequence parameter prediction in a multivariate environment. As
(Gong et al., 2022) indicates, the formulas for forget gate f t , output
gate ot, candidate state ĉt, cell state ct and hidden state ht within
zLSTM are listed in Eqs 1–5 as follows:

f t � zigmoid Wfxxt +Wfhht−1 + bf( ) (1)
ot � sigmoid Woxxt +Wohht−1 + bo( ) (2)
ĉt � tanh Wcxxt +Wchht−1 + bc( ) (3)
ct � ft ⊙ ct−1 + 1 − ft( ) ⊙ĉt (4)

ht � ot ⊙ tanh ct( ) (5)

Due to the issue that the gradient of the sigmoid in the LSTM forget
gate diminishes significantly over distant time steps, which may hinder
effective learning of states over longer time durations, the zLSTM
improves upon this by replacing the sigmoid activation function
originally used in the forget gate f t , with the zigmoid function. The
zigmoid function is described in Eqs 6, 7.

zigmoid � sigmoid trans x( )( ) (6)

trans x( ) � eβx x≥ 0
1 − e−βx x< 0

{ 1≤ β≤ 2.5402( ) (7)

The exponential function in trans(x) enhances the gradient at
far end of the time series and provides stronger informationmemory

capability. The coupled multivariate vector, which contains more
complex system information than a single-variable input, can then
be fed into the model to generate a more precise prediction of the
system behaviour.

The overall structure of the model used is presented in
Figure 1 below.

During the multivariate prediction calculation process, the input
data is a multi-variable sequence containing multiple timesteps.
Each timestep contains multiple multidimensional features of
important LOCA process parameters, with a feature dimension
of seven. Among the seven dimensions, the first dimension is
time, and each remaining dimension represents a system variable
that affects the LOCA condition, namely,: pressurizer water level,
average coolant temperature, No. 1 steam generator water level, No.
2 steam generator water level, loop 1 coolant flowrate, and loop
2 coolant flowrate. To reduce the time complexity, the input
sequence needs to be normalized by minimum and maximum
values on the feature dimension except for time features, with
the feature value range being [0, 1].

The input window width of each sample sequence is set to 5. The
input time series first passes through a unidirectional LSTM
network, which simultaneously sends multiple variables at each
timestep into the zLSTM, allowing it to establish causal
dependencies between timesteps in the time dimension and
simultaneously establish dependencies between multiple variables.
This enables the output of the zLSTM to contain dependencies
between multiple variables and time dependencies with past
timesteps at each timestep, ensuring that the condition prediction
of LOCA is a coupled calculation result of relevant important system
parameters. By this means, the coupling between critical system
parameters is founded and the LOCA prediction will be conducted
based on such coupled multi-parameter vector.

The modeling of the input time series is completed using a dense
block, which further strengthens the coupling calculation between
multiple system variables. The fully connected layer in the dense
block can establish the dependence relationship between each
variable in the current timestep and other variables, as well as all
variables in other timesteps. After the output of the zLSTM and the
input time series pass through the fully connected module, they are
spliced in feature dimension, so that the obtained spliced features
contain abundant inter-variable dependence relationships and
timestep dependence relationships in each timestep. The spliced
features are then operated by this fully connected layer, allowing the
feature dimension of each timestep to reduce while coupling the
above-mentioned dependence relationships, facilitating the
implementation of simultaneous multi-variable prediction. This
method predicts the future for three timesteps at each timepoint,
with six feature dimensions in each timestep, including other
variables except for the time dimension in the input multivariable.

2.2 The dense block

As shown in Figure 2, the input time series is modeled using a
dense block, which employs a fully connected layer inside. This layer
can establish the dependencies between each variable in the current
timestep and other variables in the current timestep, as well as all
variables in other timesteps. In the experiment, the model predicts
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the future three timesteps using feedforward prediction, with a
feature dimension of six per timestep. The physical meaning is
that the input variables include all variables except time.

The introduction of the zLSTM is particularly critical for
capturing long-term dependencies in the temporal dimension.
This is of importance when dealing with tasks such as natural
language processing or time series prediction, as these tasks often
require understanding and remembering long-term contextual
information. The role of the fully connected layer is reflected in
its ability to effectively model the dependencies between multiple
variables. In an input sequence, each timestep may contain multiple
variables, and the fully connected layer is able to model the complex
relationships between these variables.

In specific implementation, the model first converts the input
sequence into a vector form through tensor shaping, where each
element of the vector corresponds to one timestep of the input time
series and all its variables. In this way, the model cannot only handle
the relationship between variables, but also the dependencies
between various timesteps. Next, the model uses a fully
connected layer for feature dimension reduction, which converts
the input vector into a new feature vector through linear
transformation. Each element is a linear combination of all
variables at all timesteps of the original input sequence. The
purpose of this step is to increase the expressive power of the
model, enabling it to capture more complex dependencies.

In addition, the application of rectified linear unit (ReLU)
further enhances the nonlinear ability of the model, which is

crucial for capturing complex data patterns. Finally, the model
will up-scale the features processed by the second fully connected
layer again and shape them into a sequence form, such that it can
match the output feature size with that of the zLSTM.

Overall, the design combining zLSTM and the dense blocks
improves the model ability to understand time series data, as well as
enhancing its ability to model complex dependencies between
multiple variables. This approach exhibits higher efficiency and
accuracy when processing data with complex time dependencies
and multivariable characteristics.

2.3 Output prediction sequence

After modeling the LSTM networks and dense blocks in the time
dimension, as well as modeling the multivariable dependencies, the
two obtained sequences are spliced in the feature dimension. At this
time, for each timestep after splicing, the first half of the elements are
features modeled by zLSTM, each element covering the
dependencies between the multivariable in this time step and
those in previous time steps. The second half of the elements are
features modeled by the dense blocks, each element covering the
dependencies between all timesteps of the input sequence. The
obtained spliced features are coupled in the feature dimension
using a fully connected layer for multivariable dependencies, and
dimensionality reduction is performed in the feature dimension to
simultaneously predict multiple variables in subsequent time steps.

FIGURE 1
Multivariate Coupling Prediction Model based on zLSTM.

FIGURE 2
The dense block.
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In this paper, each prediction is made for three timesteps, and the
feature dimension for each timestep is six, which physically means
predicting variables other than time in the input variables. The
predicted sequence containing three timesteps is compared with its
corresponding true value using mean square error (MSE) for
backpropagation, and Adam (Adaptive Moment Estimation
Algorithm) optimizer is used for training to make the model
continuously fit the sequence in the prediction time window.

2.4 Model building process

The zLSTM neural network training process is similar to the
traditional LSTM network. First, the initialization of the parameters
and the model accuracy calculation are performed through the loss
function. If the required accuracy is not achieved, the parameters
need to be updated. The update criterion for weights and bias terms
is to make themminimize the loss of the specified objective function
in the training samples. This involves derivation of the parameters
through a loss function to obtain gradient information, and
updating the parameters in conjunction with the model learning
rate. Usually, an appropriate optimization algorithm to update the
gradient is demanded. By repeating this process until the gradient
reaches the required accuracy, the model parameters can be
determined, the zLSTM model is completed, and then applied to
prediction or classification tasks.

The process of building the model is mainly divided into two
parts: building the zLSTM model and the fully connected block.
Among them, zLSTM is the main sequence modeling tool, and the
fully connected block is responsible for extracting effective features.
The parameter settings are listed in Table 1. In the forward
propagation function, the input is reshaped, the encoder and
ReLU activation functions are applied, and the input data is
passed through the zLSTM layer for sequence modeling, and
finally the output of the zLSTM is combined with the result of
the fully connected block in the last dimension splicing, and then
passing through the linear layer to obtain the final prediction result.

3 Experiments and analysis

The verification experiments are designed and conducted after
obtaining a trained prediction model. Results analysis is then
performed to demonstrate the functionality and advantage of the
proposed multivariate-coupling prediction method.

3.1 Datasets

The data used in this work is from an industrial-grade nuclear
power simulation platform (Sun et al., 2017). The LOCA simulations
in this paper are conducted at 98% reactor power. The chosen break
sizes are 0.9 cm2, 1.0 cm2, and 2.0 cm2. Each sample data uses
six features.

1. Pressurizer water level;
2. Coolant average temperature;
3. No.1 steam generator water level;
4. No.2 steam generator water level;
5. Loop 1 coolant flowrate;
6. Loop 2 coolant flowrate;

The dataset preprocessing involves handling time-series data,
including loading, splitting, and normalizing the data, which
provides preparatory work for subsequent model training. The
dataset preprocessing first requires defining various parameters,
including data file paths, feature columns, sliding window size,
and prediction steps, which will affect the construction, filtering,
and processing of the dataset. Next is the normalization of the
training and testing dataset, ensuring that the data are all within
the same scale range, which helps improve the effectiveness and
stability of model training. Normalization involves calculating
the maximum and minimum values of each feature and linearly
scaling the data, mapping the data to the range [0,1]. Here, a
sliding window size of 5 and a prediction step of three are
considered to ensure that each sample has enough historical
data for prediction.

3.2 Performance metrics

Mean square error (MSE) and Mean Absolute Error (MAE), as
indicated by Eqs 8, 9, are chosen as the performance metrics to
evaluate the multivariate-coupling prediction method.

MSE � 1
n
∑n
i�1

yi − ŷi( )2 (8)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (9)

where yi and ŷi are the original value and predicted value,
respectively. Both MSE and MAE are calculated for LOCA
predictions using LSTM and zLSTM.

3.3 Parameter configurations

To verify the effectiveness of the zLSTMmodel, this paper trains
both the zLSTM model and the LSTM model using the same
experimental parameter settings, maintaining a basically
consistent network structure. The dataset is divided into training
and testing sets with a ratio of 4:1, the learning rate is set to 0.00008,
the number of hidden layer units is 256, and the β value in the
zigmoid function is set to 1.0.

TABLE 1 Parameter settings of zLSTM.

Item Value

Unit of Hidden Layers 256

Learning Rate 0.00008

Optimizer Adam

Batch Size 128

Epochs 50
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3.4 Experiment results

Six target variables are tested under three different break sizes as
mentioned in Section 3.1, including the pressurizer water level,
average coolant temperature, water level of steam generator 1, water
level of steam generator 2, coolant flow rate of loop 1, and coolant
flow rate of loop 2. The predicted LOCA progresses are plotted in
Figures 3–5. The predicted values are compared with the true values
to calculate their MAE and MSE. The results are shown in Table 2.

3.5 Results analysis

As seen in Table 2, the zLSTM model performs better than the
LSTMmodel in terms ofMAE andMSE across different break sizes. For
instance, the average MAE of zLSTM is 0.016 lower than that of LSTM,
representing a 35.84% improvement in accuracy. Similarly, the average
MSE of zLSTM is 0.0052 lower than LSTM, indicating a 71.10%
increase in accuracy. This is due to the larger distal gradient of the

zigmoid function compared to sigmoid, allowing the model to learn
from longer input sequences over the entire time series, enhancing long-
termmemory performance, and enabling it to capturemore distant and
effective information. Moreover, the multivariate-coupling method
generates the prediction with a consideration of the dependencies
among the six critical system parameters, which requires stronger
processing capability for larger and longer time series. LSTM, as a
variation of RNN, cannot precisely handle such a calculation task,
giving zLSTM an opportunity to demonstrate its advantage in dealing
with multivariate-coupling calculations.

Figures 3–5 demonstrate the prediction results for the chosen six
target variables under different break sizes. The LOCA occurs at the 10-
s mark in the figures. As shown, the LSTMmodel deviates significantly
from the true values during the initial prediction phase, whereas the
zLSTMmodelmore closely aligns with them. This further confirms that
the larger distal gradient of the zigmoid function allows for better
capturing of the initial system state during a LOCA. Secondly, the
zLSTM model consistently approximates the true values of the target
variables throughout the prediction process, while LSTM exhibits larger

FIGURE 3
LOCA prediction for 0.9 cm2 break size.
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deviations. For instance, in the case of the pressurizer water level, the
zLSTM model accurately captures the decreasing water level after the
LOCA incident, whereas the LSTM model underestimates the
magnitude of the change. These results suggest that the zLSTM
model is more stable and flexible compared to LSTM, adapting well
to different prediction requirements. In terms of Loop 1 Coolant
flowrate, both LSTM and zLSTM experienced a continuous decrease
in flow when accidents occurred. Subsequently, zLSTM effectively

responded to these sudden changes, while LSTM maintained a
stable and smooth trend in flow. Compared to LSTM, the zLSTM
model demonstrated greater stability and flexibility, being capable of
adapting well to various forecasting needs and system conditions.
Additionally, in the case of small-break LOCA, the rate of coolant
loss is slower compared to large breaches, resulting in a delayed
detection time for the system. Once the system detects the fault, it
initiates the emergency water replenishment system to lower the
temperature and pressure, leading to more significant flow variations
in small breaks and increasing prediction errors.

4 Conclusion

In this paper, an attempt ismade to apply the zLSTM, which exhibits
stronger long-term memory capabilities, to multivariate prediction in
LOCA accident scenarios. Based on the computational characteristics of
zLSTM, a multivariate-coupling prediction model is constructed to

FIGURE 4
LOCA prediction for 1.0 cm2 break size.

TABLE 2 The prediction results under different break size.

Model 0.9 cm2 1.0 cm2 2.0 cm2

MAE LSTM 5.964 × 10−2 3.295 × 10−2 3.746 × 10−2

zLSTM 4.954 × 10−2 1.572 × 10−2 1.818 × 10−2

MSE LSTM 1.025 × 10−2 5.582 × 10−3 6.260 × 10−3

zLSTM 5.282 × 10−3 5.092 × 10−3 5.937 × 10−4

Frontiers in Nuclear Engineering frontiersin.org06

Li et al. 10.3389/fnuen.2024.1386540

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2024.1386540


capture the dependencies among multiple critical LOCA parameters. In
simulation experiments targeting typical LOCA cases, the zLSTMmodel,
equipped with multivariate coupling computational abilities, significantly
outperforms the traditional univariate LSTMmodel in terms of accuracy
metrics (such asMAE/MSE) across different break sizes. Additionally, by
fully considering the dependencies among multiple relevant system
parameters, the zLSTM model can more realistically capture
parameter variations in LOCA accident scenarios. This not only
enhances prediction accuracy but also better represents the trend of
operational condition changes. This has positive implications for
improving the accuracy of LOCA accident safety analysis. Future
research will focus on addressing the issue of reduced prediction
accuracy during drastic operational condition changes by exploring
more refined model architectures and approximation methods to
enhance the precision of the entire prediction process.
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FIGURE 5
LOCA prediction for 2.0 cm2 break size.
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