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Nuclear power plants produce amassive amount of clean energy and necessitate
safe operation through intelligence technologies. Recently, the rapid
advancements in communication infrastructures including artificial
intelligence, big data computing, and Internet of Things devices moving the
nuclear industries towards digitalization and intelligence to improve safety. The
integration of these technologies into the nuclear sector offers effective tactics in
addressing several challenges in the control and safe operation of nuclear power
plants. This can be achieved through the insights generated from massive
amounts of data. This paper comprehensively reviews the literature on
artificial intelligence technologies and big data, seeking to provide a holistic
perspective on their relations and how they can be integrated with nuclear power
plants. The utilization of computing platforms boosts the deployment of artificial
intelligence and big data analytics effectively in nuclear power plants. Further, this
review also points out the future opportunities as well as challenges for applying
artificial intelligence and big data computing in the nuclear industry.
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1 Introduction

The world economy is rapidly growing, and low-carbon policies are being promoted
globally. The goal of these policies is to reduce the consumption of high-carbon assets as
well as the emissions of greenhouse gases as much as possible to ensure environmental
safety through the use of clean energy (Nian et al., 2022). In recent years, the need for non-
fossil energy is increasing worldwide to fulfill various services in diverse sectors including
heat production (Cleveland and McDonald, 2008; Upadhyaya and Kerlin, 2019;
International Energy Agency, 2022; OECD and Nuclear Energy Agency, 2022),
hydrogen production (Kalyakin et al., 2016; Balanin and Fomichenko, 2023; Okunlola
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et al., 2023; Tanbay and Durmayaz, 2023), water desalination (Khan
et al., 2018; Rosen and Farsi, 2022), and space applications (Li et al.,
2020; Chen et al., 2022; Peakman and Lindley, 2023; Zhang, 2023).
Unlike fossil fuels, clean energy sources minimize the emission of
greenhouse gases. Consequently, increasing the use of non-fossil
sources of energy decreases the overall greenhouse gas emissions.
The energy obtained from geothermal, wind, hydro, and solar are
examples of non-fossil energy. Nevertheless, these sources of energy
are unstable due to several reasons such as intermittency, volatility,
and environmental effects (Li et al., 2015; Yao et al., 2016). In such
situations, nuclear energy can be deployed as a decisive contributor
and powerful alternative to offer a steady source of electricity for
multiplying human labor to maximize productivity (Huang
et al., 2023).

Nuclear energy is a kind of clean energy source that has received
immense popularity and advancement for global electrification. It is
a stable base-load and zero-carbon energy source, that can be
leveraged as a powerful and stable supply of electricity (Basu and
Miroshnik, 2019). It produces around 10% of the world’s electricity
according to the IAEA estimation in 2019 (Birol, 2019). The
distribution of this energy production varies significantly by
country. It produces clean energy that plays a significant role in
minimizing carbon emissions in order to reduce globalization
(Hong et al., 2014). Fossil fuel energy massively pollutes the
environment and contributes to the emission of greenhouse gases
(Song et al., 2022). Besides, nuclear energy is cost-effective when
compared with fossil fuel energy, and therefore, it has a pivotal role
in the transition away from fossil fuel energy sources. More, civilian
nuclear technologies are essential to maintain national security and
energy diplomacy. It fosters harmonious relations among countries
and opens up new opportunities in the nuclear business (Greg
Hands, 2022). However, it is important to acknowledge that
nuclear energy also concerns several issues including severe
accidents and management of radioactive waste.

NPPs are large power industries that consist of numerous
subsystems. These components involve time-dependent variables
and face malfunctions. Thus, the operation and management of
NPPs are complex issues. Instrumentation plays a significant part in
the safe and efficient operation of nuclear reactors. It encompasses
the use of various instruments to measure and monitor various
parameters within the reactor. The common and essential
instrumentation systems in a nuclear reactor include the
measurements of power, temperature, pressure, flow rate, and
radiation (Singh and Singh, 2021). Further, the instrumentation
of a control system is deployed to handle the reactor power for
maintaining stable and safe reactor conditions (Xi et al., 2020).
Overall, instrumentation in nuclear reactors undergoes demanding
design, calibration, and testing processes to ensure accuracy,
reliability, and compliance with safety regulations. Nuclear
regulatory organizations set specific requirements for
instrumentation systems to maintain safe and secure reactor
operations.

Different types of NPPs designs are in operation throughout the
world for several applications such as heat generation, space
application, and water desalination (Murakami, 2021). The PWR
NPP is the most common reactor design which has several benefits
over other types of reactors. It is simple to operate and uses water for
cooling and neutron moderation. Further, the PWR core consists of

fewer fissile materials, making the reactor safer and easier tomanage.
The NPPs are an integration of different components such as core,
steam generator, pipings, plenums, and allied subsystems (Kerlin
and Upadhyaya, 2019a). These systems should perform their
functions to generate electricity. Overall, NPPs are nonlinear
systems that integrate multiple fields including material science,
nuclear physics, fluid dynamics, heat transfer, and radiation. The
NPPs indeed generate a vast amount of data during operation. The
data are important for optimization to increase the safety and
efficiency of the reactors. The remaining sections of this paper
are organized as follows: Section 2 offers an overview of the big
data sources, while Section 3 investigates the application of AI
techniques in NPPs. Section 4 explores the collaborative
application of big data and AI technologies in NPPs. Section 5
addresses the challenges and opportunities presented by big data and
AI technologies in the nuclear research sector. Finally, Section 6
recaps the conclusion of the study.

2 NPPs big data

This section identifies the sources of big data for NPPs. Big data
are extensive volumes of datasets that can not be managed,
processed, and analyzed using traditional processing mechanisms
easily (Dagan andWilkins, 2023). The NPPs produce huge amounts
of heterogeneous operational data. It involves diverse datasets that
describe the characteristics of the NPPs and arisen the opportunity
for understanding the system better and producing innovative
applications according to the dataset. Big data technologies
enable the collection, storage, and integration of this data from
diverse sources to analyze easily for improved decision-making. The
NPPs data is collected from various sources such as mathematical
modeling, software, experiments, and plant sensors. A brief
description of each of these data sources is provided in the
following subsections.

2.1 Mathematical modeling

The NPPs big data could be gathered from mathematical model.
The NPPs model is developed using the first principle approach
based on fundamental physical laws and assumptions (Vajpayee
et al., 2020). It is a valuable and easily accessible data source during
the lack of real observations of the NPPs. Big data incorporates
diverse data formats and types, including structured, semi-
structured, and unstructured data. The dataset is then stored in
the database and enough amount of data should be extracted for the
intended applications. The PWR model is utilized to generate the
necessary amount of data for the prediction of transients under
reactivity and inlet coolant temperature perturbations (Ejigu and
Liu, 2023). The NPPs system dynamics model is established for
studying the transients and designing a risk assessment platform (El-
Sefy et al., 2019). Further, the data produced during simulation is
employed for ANN training to estimate the NPP behavior and
demonstrate the potential of AI in risk mitigation strategies (El-Sefy
et al., 2021).

The mathematical model development for the NPPs also
assists the plant operator in understanding transients and
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achieving the necessary safe operation. The solution of the model
is obtained by system simulation through MATLAB and Python.
The simulation offers several advantages including gaining
fundamental concepts of the NPPs dynamics during
transients, analyzing the transient of the NPP under normal
maneuvering and accident situations, and plant operator
training (Kerlin and Upadhyaya, 2019b). However, due to its
nonlinearity characteristic, an accurate mathematical model
development of the NPPs is a challenging task. The
mathematical model of the reactors should be reasonably
accurate and simple to accomplish the objectives.

2.2 Software data source

The big data for NPPs is also collected from different software
platforms. These sources can offer information for estimation,
prediction, safety analysis, and maintenance in the NPPs.
However, the availability and accessibility of NPPs data from
software sources may vary depending on several factors
including security restrictions, regulations, and user
permissions. The NPPs data could be collected from
RELAP5 thermal-hydraulics codes. It is applied to model the
coupled behavior of the primary and secondary systems under
various operational conditions. This modeling tool is also used to
study the transients of the NPPs (Li R. et al., 2022). It is also
employed to model natural circulation flow in the PWR fuel (Ni
et al., 2021), estimation of the countercurrent flow in the
downcomer (Li et al., 2023a), analysis of loss of flow accidents
(Corzo et al., 2023), and study rod ejection accidents (El-Sahlamy
et al., 2022). Further, the NPPs data is generated from the STAR-
CCM+ CFD simulation tool for several applications (Marfaing
et al., 2018; Benavides et al., 2020; Zhang et al., 2021; Yang et al.,
2023). Besides, the big data of the NPPs could be collected from
education and training simulators. These simulators offer an easy
and effective means of examining the physics and engineering
designs of multiple kinds of NPPs. Furthermore, the simulators are
useful for both technical and non-technical individuals as
introductory instructional tools. The IAEA provides several
kinds of NPP simulators (Cabellos et al., 2018; Developing a
Systematic Education and Training Approach, 2018).

2.3 Experimental data sources

The big data of the NPPs could be collected by conducting
experiments. It is carried out in the laboratory to collect
comprehensive and robust datasets with the help of apparatus.
Experimental data sources can vary widely depending on
research goals, and available resources. Experiments in nuclear
engineering are performed for different applications (Geslot et al.,
2023; Guillen et al., 2023; Zhang et al., 2023).

2.4 Sensor data

Sensor data is produced when an instrument recognizes and
reacts to some form of physical input. These are the real sources of

data (Schokker et al., 2022). The NPPs consist of numerous sensors
and a tremendous volume of data could be collected by sensors from
the plant site which is recorded over time and continuously. This
data provides valuable insights for several applications in the
estimation and control of reactor variables. The sensor is
employed to regulate core outlet temperature in NPPs (Hyer
et al., 2023) and measure the position of the control rod in a
nuclear reactor (Hu et al., 2020).

2.5 Data mining

Data mining includes data collection, preparation, and analysis.
The purpose of data mining is to extract new information and
relationships from the existing raw data. The data collected from the
NPPs need preprocessing to ensure accurate, and efficient
application. Data preprocessing techniques prepare the raw
dataset for suitable model building and AI algorithm training to
provide the desired output. Numerous kinds of statistical
approaches are employed for preprocessing the NPPs big data.
The common data preprocessing techniques include smoothing,
cleaning, normalization, and removing (Morrisset et al., 2022).
Figure 1 illustrates the procedures undertaken from NPPs big
data collection until the required services are obtained in a
flowchart. Further, Table 1 presents some big data mining methods.

The key roles of big data are big data engineering and analytics.
Figure 2 presents a summary of these functions. Big data engineering
incorporates essential steps for data collection, management, and
regularization. The key components of big data engineering are
acquisition, processing, storage, databases, and pipeline. Big data
analytics are used to categorize, characterize, consolidate, predict,
infer, and classify data to provide meaningful information.
Prediction, classification, clustering, inference, and optimization
can be summarized as the core operations, while statistics, data
mining, expert knowledge, machine learning, and deep learning are
frequently applied techniques (Li F. et al., 2023).

Big data can impact NPPs (Lorenz and Schmidt, 1986). The
relationship between NPPs and big data lies in the potential
application of big data computing techniques to enhance the

FIGURE 1
NPPs big data services in a flowchart (Barja-Martinez et al., 2021;
Boring et al., 2022).
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performance, safety, and efficiency of NPPs. In order to address the
intended application, traditional big data analysis tools face
limitations. These drawbacks could be overcome through AI
algorithms, that can process and handle the NPPs big data with
fast computations. Scholars are creating and employing AI
algorithms by considering the potential of big data
collected from NPPs.

3 AI algorithms and their applications
in NPPs

Recently, the concept of AI has gained popularity in a variety of
disciplines for several applications such as prediction, maintenance,
control design, fault detection, and safety analysis. AI is a wide and
interdisciplinary research field that programs machines to think and
learn to solve several real-world engineering problems and improve
decision-making abilities. It simulates human intelligence by using
computer systems capable of performing a variety of activities.
However, the application of AI in the NPPs is in the early stages.
Hence, it needs extensive research for ensuring the safety and
reliability of the NPPs. With the progress in the development of
advanced sensors and digitalization together with communication
technologies, NPPs are accelerating the transition towards
intelligence through the use of AI algorithms to enhance safety,
efficiency, and performance (Huang et al., 2023).

The relationship between AI and NPPs is multifaceted. AI can
enhance efficiency in power generation and consumption, and raise
ethical and governance considerations. It is important to attach the
potential of AI while carefully navigating its impact on power
dynamics in society. AI algorithms process the PWR NPPs data
to detect anomalies in order to take early preventive actions. It also
analyzes a large amount of PWR NPPs data to predict the transients
and forecast the future response to improve overall reliability (Ejigu
and Liu, 2023). The integration of NPPs and AI necessitates careful
considerations in safety regulations and cybersecurity. AI algorithms
are also employed to detect operator errors and schedule
maintenance in the NPPs (Gursel et al., 2023). It requires
Internet of Things (IoT) devices to share information. Figure 3
depicts the integration of NPPs big data, AI, and IoT platforms. As
illustrated in the figure, the IoT devices are incorporated to share
data and information between the NPPs data and AI techniques to
perform different services such as control and estimation.

AI has the potential to make the PWR NPPs autonomous by
minimizing energy waste and reducing coat. It improves the
operation of the power system and promotes clean and
renewable sources of energy (Song et al., 2022). Besides, AI is
applied in the promotion of clean energy sources through
forecasting, stability, reliability, management, optimization
distribution, and consumption (Barja-Martinez et al., 2021).
Numerous AI algorithms such as GA, PSO, BAS, ML, ANN, and
DL are employed in different reactor designs for optimization and
prediction.

3.1 Genetic algorithm

GA is an evolutionary mechanism that works based on natural
selection. The basic idea of the GA starts with the population for the
potential solution of a complex problem that evolves iteratively over
generations. The GA is applied for the optimization of load and
reloading of fuel assemblies in the nuclear reactor core (Sobolev
et al., 2017). It is also employed for designing and simulating safe
and effective fuel-loading patterns in nuclear reactors (Zhao et al.,
1998). Further, the GA is utilized for designing efficient radiation
shielding in SMR (Bagheri and Khalafi, 2023), development of an
optimized thermodynamic model in a VVER-1200 reactor (Khan
et al., 2022), optimal energy management in the HTGR (Sun J. et al.,
2022), optimization of fuel loading pattern in the experimental fast
reactor (Lima-Reinaldo and François, 2023), in-core fuel

TABLE 1 Data mining methods and their applications in several research fields.

No. Data mining
methods

Advantage Reference

1. Data cleaning For developing a novel model, facilitating the usage of data through data-driven
studies

Gueta and Carmel (2016), Li S. et al. (2022)

2. Classification For organizing data, decision-making, information filtering, security, feature
selection, and enhancing visualization

Miraclin Joyce Pamila et al. (2022), Jaiswal et al.
(2023), Lang et al. (2023)

3. Clustering To identify patterns, knowledge discovery, anomaly detection, and decision-
making

Chander et al. (2023), Ma et al. (2023), Paulraj et al.
(2024)

4. Regression To model a system, prediction, decision support, risk assessment, and
optimization

Wang K. et al. (2023), Li et al. (2023b), Toft et al.
(2023)

FIGURE 2
Paradigm of big data components.
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management in the PWR (Rodrigues et al., 2022) and optimal design
of a core in VVER-1000 nuclear reactor (Kianpour et al., 2020). Yet,
the GA shows limitations in both too small and large-scale
population sizes to converge into optimal solutions (Cavallaro
et al., 2024). Figure 4 demonstrates the overall steps of the GA in
a flowchart.

3.2 Particle swarm optimization

PSO is a metaheuristic algorithm inspired by a group of animals.
The concept of swarm intelligence is based on the social
collaboration of individuals to learn with their own experience in
a group. It is applied to optimize fuel reloading problems in PWR
(Meneses et al., 2009), optimization of fuel core loading pattern in a
VVER nuclear reactor (Babazadeh et al., 2009), optimization of
secondary circuit system inmarine NPP (Zhao et al., 2023), optimize
the design parameters of radiation shielding system material (Lei

et al., 2023), optimization of control drum operation for a
microreactor under normal and transient conditions (Price et al.,
2022), and designing of space nuclear reactor fuel (Rafiei and
Ansarifar, 2022). Besides, the PSO mechanism is employed in
NPPs for fault diagnosis (Wang H. et al., 2021), designing
maintenance and safety systems (Wang J. et al., 2021), and
control system development (Coban, 2011; Safarzadeh and
Noori-kalkhoran, 2021; Ejigu and Liu, 2022a; Ayele Ejigu and
Liu, 2022; Muthuraj et al., 2023). However, in a high-
dimensional search space, the PSO tactic converges slowly toward
the optimal solution and produces poor results (Bucz et al., 2018). In
order to overcome this limitation, the PSO is combined with the GA
(Rahnama and Ansarifar, 2021) and GD (Ejigu and Liu, 2022a)
algorithms. Figure 5 displays the overall procedures of the PSO
algorithm in a flowchart.

FIGURE 3
NPPs data and information sharing through IoT.

FIGURE 4
The workflow of the GA (Mousakazemi, 2020).

FIGURE 5
The flowchart of the PSO algorithm (Pant and Chatterjee, 2020).
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3.3 Beetle antennae search

The BAS is a metaheuristic algorithm that works with the
foraging principle of the beetles using two antennae. The two
antennae of the beetle explore the food odor randomly in the
nearby area. The beetle takes a step towards the strong odor
concentration using the two antennae. The searching
performance of the beetles using two antennae could be used to
formulate an optimization algorithm (Jiang and Li, 2017). It is
employed for estimation (Xie et al., 2019; Zivkovic et al., 2021),
fault detection (Huang et al., 2020), control system optimization
(Fan et al., 2019), and cooperative and constrained control design
(Ejigu and Liu, 2022b). Recently, the GA, PSO, and BAS algorithms

have given more attention to training ANN algorithms for different
applications (Li, 2020; Vasumathi and Moorthi, 2012; da Silva
Veloso et al., 2020; Yadav and Anubhav, 2020; Jamali et al.,
2019). However, the BAS algorithm faces several shortcomings as
reported in Ref. (He et al., 2022). Figure 6 summarizes the working
principle of the BAS optimization algorithm in a flowchart.

3.4 Machine learning

ML is a subfield of AI algorithm that builds a mathematical
model based on the data for prediction and making decisions. ML is
a powerful data-based modeling mechanism by processing a massive
volume of data (Manley et al., 2022). In nuclear engineering, the ML
algorithm is employed in NPP to model the surveillance test data
(Lee et al., 2021), crack fault diagnosis (Zhong and Ban, 2022),
probabilistic safety assessment for fire hazard model (Worrell et al.,
2019), seismic fragile analysis (Wang Y. et al., 2023), and equivalence
assessment between the simulation and operation data (Li X. et al.,
2021). Yet, the ML shows limitations as reported in a review article
in Ref (Xu et al., 2024). Figure 7 presents the workflow of ML that
comprises different steps from loading the data to integration of the
best-trained model into a production system.

3.5 Artificial neural networks

ANNs are the most efficient nonlinear modeling and data
processing units based on the functioning of a human brain. The
ANN designing process involves defining the structure. The building
blocks of the ANN are the layers (input, hidden, and output),
neurons, and connection weights as shown in Figure 8. The
input and output layers are connected by the hidden layer.
Successive layers of the ANN are linked by weights. Each layer of
the network consists of various amount of processing elements,
called neurons. The dataset enters into the network through the
input layer. The hidden neurons receive the weighted dataset and
process it using the activation function. The output neurons then
receive the processed dataset and send it to the users. More,

FIGURE 6
Flowchart of the BAS optimization algorithm (Zhu et al., 2022).

FIGURE 7
Workflow of ML.
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connection weights are used to measure the data and transfer it into
the next layer.

Designing the structure of ANNs and selecting an efficient
training algorithm are challenging tasks. These issues are open
problems for designers. More, the accuracy of training algorithms
varies and is affected by the training data points (Zhou et al., 2022).
Once the ANNs are trained with a necessary amount of
representative quality data, they could be applied to estimate the
response under new inputs.

ANNs give attention in nuclear engineering research fields to
help plant operators in decision-making to take corrective actions
during failure. These intelligence tools are recommended to detect
faults in the resistance temperature detector sensors based on the
fuel rod temperature profile through modeling (Messai et al., 2015).
The ANNs are also suggested to estimate the PWR core state
variables online in order to detect faults caused by measurement
noise and sensor faults (Kumar and Devakumar, 2022). Further,
these modeling mechanisms are used to design the core fuel
assembly of the research reactor automatically (Kim et al., 2020).
More, they are employed for optimization and burnup calculations
of the reactor core (Afzali et al., 2022) as well as for the NPPs fault
supervision (Khentout and Magrotti, 2023). The ANNs are suitable
and effective mechanisms to diagnose transients of a nuclear reactor

during operation and to improve safety (Santosh et al., 2007).
Moreover, These potential technologies are employed to predict
the state of the nuclear reactor, improve reactor assets as well as
empower fast emergency response of nuclear power plants (El-Sefy
et al., 2021).

Several types of ANN models are considered and applied for
different purposes. The backpropagation neural network is one
category of ANN. It is utilized to estimate the PWR core
parameters for optimal fuel reloading patterns in order to
overcome the restrictions of traditional fuel reloading problems
in high-temperature gas-cooled reactors in a short time (Kim et al.,
1993). The recurrent multilayer perception ANN model based on
the backpropagation algorithm is implemented to model the core
neutronics of the NPPs (Adali et al., 1997). Further, the RBFNN is a
kind of ANN that has numerous advantages such as simple to
design, strong tolerance to disturbance, good generalization, and
efficient learning capabilities. Due to these characteristics, the
RBFNN model is employed for different applications such as
fault assessment, optimization (Sun M. et al., 2022), and adaptive
control development (Feng et al., 2022). In nuclear engineering, the
RBFNN is deployed to control the core power distribution and
rebuild measurements of the core information of the reactor
detector (Li W. et al., 2022). Overall, the ANNs seek effective
training algorithms. Population-based tactics received more
attention for ANN training recently. Figure 9 highlights the
possible input and target variables of a reactor to train the ANN
through population-based optimization algorithms in a
block diagram.

3.6 Deep learning

DL is a kind of ML and powerful modeling approach designed
by using the DNN model. The DNN model is an intelligent
algorithm that works based on the ANN to transform the data
into amenable outputs for various applications. The structure of the
DNN model comprises numerous hidden layers between input and
output layers (Wang J-C. et al., 2023; Yassir et al., 2023), as depicted
in Figure 10. As indicated in the block diagram, the workflow in the
DNN model starts in the input layer and ends in the output layer.

FIGURE 8
Structure of the ANN model.

FIGURE 9
Population-based optimization algorithm for ANN training (Kerlin and Upadhyaya, 2019b).

Frontiers in Nuclear Engineering frontiersin.org07

Ejigu et al. 10.3389/fnuen.2024.1355630

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2024.1355630


The size of neurons in the input and output layers relies on the input
and target variables. However, the design of hidden layers and the
corresponding neurons are challenging tasks and an open issue for
engineers. These DNN components should be nominated carefully
to remove computational challenges such as overfitting and
underfitting. The hidden layers and hidden neurons of the DNN
model should be simple enough to avoid complexity and reduce
computational time. In general, the minimum size of the DNN
model is necessary to incorporate good design.

The DNN algorithm is used to model complex systems by
creating nonlinear relationships. The accuracy of the developed
DNN model output relies on its structure and amount of
training data. The advancements in computer systems initiate the
use of the DNN model in different architectures in several research
areas for various applications. In nuclear engineering, the DNN
model is utilized for solving numerous problems such as fault
diagnosis (Qian and Liu, 2022a), safety assessments (Bae et al.,
2022), internal state prediction (Koo et al., 2021), and control system
development (Ejigu and Liu, 2022a). Several DNNmodels including
convolutional neural network (CNN), long short-term memory
(LSTM), and multi-layer neural network (MLANN) are reported
by (Arji et al., 2023; Sun et al., 2023). However, as presented in Ref.

(He et al., 2023), the DNN model shows shortcomings such as
overfitting and underfitting. Overall, Figure 11 demonstrates the
framework of AI algorithms. The framework also presents the main
applications of these AI techniques.

4 Big data and AI applications in NPPs

Recently, research on AI, big data, and IoT has been growing
rapidly (Chen, 2020). Scholars should merge these interdisciplinary
research fields instead of applying them independently from a
variety of perspectives (Ahaidous et al., 2023). The
implementation of AI in NPPs lies in the potential application of
AI techniques to enhance safety, efficiency, and reliability. AI
technologies are efficient data processing mechanisms that ensure
intrinsically safe operation and successful accident investigation.
Collaboration between nuclear experts, AI specialists, and regulatory
bodies is crucial to connect the potential benefits while maintaining
the highest standards of operational safety within the nuclear
industry. Overall, AI algorithms are data-driven modeling
techniques. Hence, it requires valuable and quality input-output
data (Li V. O. K. et al., 2021; Anthopoulos and Kazantzi, 2022). The

FIGURE 10
Structure of the DNN model.

FIGURE 11
Framework of AI algorithms and their applications (Barja-Martinez et al., 2021; Bhat et al., 2023; Huang et al., 2023).
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big data of NPPs need efficient analysis through statistical modeling
and AI algorithms for several applications. Leveraging AI algorithms
on the NPPs big data accelerates the existing system towards an
environmental-friendly and cost-effective by improving
performance. Further, it helps to create a novel business model
in the nuclear sector to take advantage of huge data.

The interaction between NPPs, AI technologies, and big data lies
in the potential integration of AI and big data analytics to enhance
the safety, performance, and efficiency of the NPPs. The
implementation of AI and big data analytics in NPPs requires
validation, licensing, and commitment to safety standards and
guidelines. The collaboration between domain experts, data
scientists, and regulatory bodies is crucial to ensure the
effectiveness, reliability, and safety of these integrated
technologies within the nuclear industry. Besides, AI technologies
and big data facilitate the integration of power systems with grids to
enable efficient load management and improve stability (Barja-
Martinez et al., 2021).

Besides, the incorporation of AI technologies and big data yields
a DT. The DT is the virtual representation of a real physical asset. It
is an emerging and global trend for various applications in the
energy, construction, and manufacturing sectors (Rasheed et al.,
2020; Ghenai et al., 2022; Sleiti et al., 2022; Mauro and Kana, 2023).
This technology also receives increasing attention in the nuclear
engineering field. The DT is constructed and calibrated
autonomously for the NPPs core (Li et al., 2023d). It is also
employed in nuclear reactors for parameter identification and
state estimation (Gong et al., 2023), and anomaly detection
(Cancemi et al., 2023).

The integration of big data with AI algorithms needs an IoT
platform. Hence, AI, big data, and IoT overlap and should be
considered when controlling NPPs. The conceptual overlap of AI,
big data, and digital technology is described in Figure 12. As
shown in the figure, the combination of AI with data mining
provides processed data that enhance its training and
performance. The AI is also combined with advanced digital
technologies, such as IoT computing, to control and

communicate with information systems and stakeholders.
Furthermore, advanced digital technologies provide data
storage and pipelines for the processed data to flow to the AI
and the stakeholders; this fact makes it overlap with big data.
Overall, the combination of AI, big data, and IoT technologies
has the potential to transform the NPPs control for enhancing
safe operations, efficiency, and security.

Big data computing through AI using digital technologies is
applied in different research fields such as in the health sector
(Galetsi et al., 2022; Charalambous and Dodlek, 2023), smart energy
management (Li et al., 2023e), addressing ecosystem services
(Manley et al., 2022), and building smart education platforms
(Zheng et al., 2023). Figure 13 depicts the application of big data
computing through AI technologies in different research sectors.
Further, Table 2 summarizes the application of big data computing
through different AI methods NPPs.

5 Challenges and opportunities in NPPs

Overall, NPPs are complex power industries that face several
challenges. The NPPs are exposed to model uncertainties, input
disturbances, external aggression, and malfunctions. These factors
contribute to instability and potential accidents that spread into the
entire system. The Three Mile Island (USA), Chornobyl (Ukraine),
and Fukushima (Japan) tragic accidents provide opportunities to
conduct extensive research concerning into safety of the NPPs
(Wheatley et al., 2017), and pre-accident assessment by
estimating the current and future response of the nuclear
reactor behavior.

The NPPs generate an enormous amount of diverse data
(International Atomic Energy Agency, 2015). Thus, storing,
managing, processing, and interpreting such immense datasets is
a challenging and time-consuming task. Due to the size, complexity,
and time-sensitive characteristics of the data, traditional processing
tools are incapable of handling big data of the NPPs. As a result, this
shortcoming aids the prospects to carry out research concerning
intelligence data management mechanisms to extract meaningful
insights and make data-driven decisions from big data.

In the nuclear sector, the interest in the use of data science and
AI capabilities is increasing to solve several challenges. However, the
big data and AI techniques in this domain are in the early stage and
data-driven applications are not yet mature. This opens up new
possibilities and opportunities for this attractive and emerging
research direction. The primary triggering condition of this
interest is the availability of real operational data from the NPPs
and digitization (Rodionov, 2007). More, the real observations
collected from the NPPs need security. Big data analytics in
NPPs requires careful consideration of data security, privacy, and
regulatory agreement. Robust data management techniques and
commitment are essential to protect sensitive information and
maintain the privacy and security of operational data within the
nuclear industry (Lorenz and Schmidt, 1986; OECD and Nuclear
Energy Agency, 2000).

Overall, the incorporation of AI and big data analytics in NPPs
boost efficiency, safety, and performance. However, it also brings
numerous challenges that need to be addressed carefully. The main
challenges associated with AI and big data are presented below.

FIGURE 12
The connection between AI, big data, and digital technology in a
Venn diagram (Li et al., 2023e).
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5.1 Data reliability

It is a difficult task and AI needs trusted data to capture real
information efficiently (Momota and Morshed, 2022). Reliability of
the data is an important aspect of science and engineering for
making informed decisions, reaching valid findings, and
producing credible outcomes. Establishing data reliability in AI is
an ongoing and challenging process that necessitates regular
monitoring, improvement, and adaptation.

5.2 Data security and privacy

AI and big data applications in NPPs necessitate access to massive
amounts of sensitive and vital data. It is critical to protect this data
against unwanted access, cyber-attacks, and hacking (Ayodeji et al.,
2023). Nuclear data needs a strong cybersecurity framework to
safeguard the privacy and security of information.

5.3 Data quality

AI algorithms and big data analysis primarily rely on quality
data for precise decision-making. The quality of data also directly
impacts the performance generalization and decision-making
capability of the AI models (Qi et al., 2022). Ensuring honest
data sources and maintaining data quality over time is a
significant challenge, especially considering the long operational
lifetimes of NPPs.

5.4 Regulatory agreement

NPPs are governed by strict rules and safety standards. The
integration of AI technologies and big data analytics necessitates
modifications to existing regulations and the development of new
guidelines to assure compliance while maintaining safety and
reliability.

FIGURE 13
Application of AI algorithms and big data computing (Shukla et al., 2019; Yüksel et al., 2023).

TABLE 2 Application of AI methods in NPPs.

No. AI Method Application Reference

1. GAN Detect human error in NPPs Gursel et al. (2023)

2. ANN Transient estimation of the PWR NPPs El-Sefy et al. (2021), Ejigu and Liu (2023)

3. SVM, LR Predictive maintenance in nuclear infrastructure Gohel et al. (2020)

4. CNN Remaining useful life estimation of NPPs valve Wang et al. (2020)

5. BN, DNN Asset management in nuclear facilities Sandhu et al. (2023)

6. Expert system NPPs planning Bernard (1989)

7. ANN and DRL Fault supervision and diagnosis of NPPs Qian and Liu (2022b), Khentout and Magrotti (2023)
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5.5 Transparency and interpretability

AI models are complex and difficult to comprehend
(Balasubramaniam et al., 2023). Transparency in AI decision-making
processes is vital in safety-sensitive applications such as NPPs. Operators
should understand the judgments of AI to trust and verify its behavior.

5.6 Teamwork

Introducing AI and big data into NPPs necessitates a transition
in human responsibilities, from direct manual operation to
supervisory and decision-support roles (Hiroshi et al., 2021).
Effective collaboration between human operators and AI systems
is important to ensure safe and optimal plant operation.

5.7 Cost issues

The adoption of AI technologies and big data analysis includes
substantial costs such as infrastructure investment, personnel
training, and ongoing maintenance (OECD and Nuclear Energy
Agency, 2020). It might be difficult for NPPs operators to ensure the
balance of the benefits with the expenses.

5.8 Professionals and skills

The nuclear industry needs trained and educated personnel who
can use AI technologies and big data analytics (International Atomic
Energy Agency, 1996). This can be accomplished by enrolling
experts from other more mature industries and training
specialists in big data approaches relevant to nuclear energy and
AI. Combining these experts with other energy domain knowledge
experts is recommended. The nuclear industry should also make
investments in personnel training and reskilling to manage and
operate the systems and assets of NPPs.

5.9 Overfitting and underfitting

These are common issues encountered in the development of
models using AI techniques, particularly in ML. Hence,
understanding these concepts is vital for developing effective and
reliable AI-based models (Rattan et al., 2022). Overfitting and
underfitting issues could be overcome by data augmentation,
regularization, adjustment of the model, and k-fold cross-
validation methods (Mutasa et al., 2020).

Overall, these challenges could be overcome through cooperation
among nuclear experts, data scientists, and AI developers. By efficiently
managing these difficulties, AI and big data computing can significantly
improve the safety, efficiency, and security of NPPs.

6 Conclusion

This study provides a comprehensive review of the application
of AI and big data in the field of nuclear engineering specifically for

NPPs. Its purpose is to equip researchers with knowledge and
guidance on the advantages of applying AI and big data
technologies to accelerate scientific and technological
advancements through learning-based approaches. A key
emphasis of this review is the importance of AI algorithms and
big data computing providing fast estimations to support informed
decision-making by users, while also ensuring the interpretability
and reproducibility of the models. The goal is to develop and
implement algorithms that can assist and augment human
decision-makers in the loop, rather than replace them entirely.
The study suggests leveraging modern research accelerators that
facilitate virtual discussions and collaborations among researchers in
various areas to foster innovation. These platforms enable active
participation and exchange of ideas, leading to accelerated progress
in nuclear research. Ultimately, the overarching objective is to
achieve a safe and effective application of AI and big data
computing methods in the dominion of nuclear science. By
utilizing AI and big data computing approaches appropriately,
researchers can enhance their ability to make reliable predictions
and optimization for improving safety measures within the
nuclear field.
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