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Introduction: The accurate prognosis of reactor accidents is essential for
deploying effective strategies that prevent radioactive releases. However,
research in the nuclear sector is limited. This paper introduces a novel
Temporal Fusion Transformer (TFT) model-based method for accident
prognosis that incorporates multi-headed self-attention and gatingmechanisms.

Methods: Our proposed method combines multi-headed self-attention and
gating mechanisms of TFT with multiple covariates to enhance prediction
accuracy. Additionally, we employ quantile regression for uncertainty
assessment. We apply this method to the HPR1000 reactor to predict
outcomes following loss of coolant accidents (LOCAs).

Results: The experimental results reveal that our proposed method outperforms
existing deep learning-based prediction models in both prediction accuracy and
confidence intervals. We also demonstrate increased robustness through
interference experiments with varying signal-to-noise ratios and ablation
studies on static covariates.

Discussion: Our method contributes to the development of intelligent and
reduced-staff maintenance methods for reactor systems, showcasing its ability
to effectively extract and utilize features of static and historical covariates for
improved predictive performance.
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1 Introduction

Promoting Gen III nuclear power plants is essential to combat climate change and
reduce emissions. Nuclear energy, with its low-carbon profile, is a significant contributor to
global low-carbon electricity supply and overall electricity generation. This focus is critical
for achieving the goal of limiting global temperature rise to 2°C by 2050 (Agency, 2021).

Currently, Gen III nuclear power technology, specifically advanced pressurized water
reactors, is the dominant technology used in new nuclear power units. These reactors have
the capability to minimize the frequency of core damage to less than 1.0 × 10−5 per reactor
year. However, there is still a possibility of a severe accident called an “Extreme Accident
(EA)” occurring, which could result in a significant release of radioactive material (Li et al.,
2017). Among the various initiating events that can trigger an EA, the likelihood of a loss of
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coolant accident (LOCA) is low but the potential consequences are
serious. Therefore, the guidelines for operating conditions during an
EA, as outlined in the Safety Analysis Report (SAR), are based on
analysis of LOCA incidents (Xing et al., 2016).

To mitigate the risks associated with a LOCA in nuclear reactor
cores, the implementation of preemptive measures is imperative.Within
the framework of HPR1000 Generation III nuclear power technology,
the management of accidents is governed by a regimen of indicator-
based protocols, predominantly the Optimal Recovery Protocols (ORPs)
and Functional Recovery Protocols (FRPs). ORPs are reserved for clearly
identifiable accidents, exemplified by substantial ruptures exceeding
34.5 cm in diameter. Conversely, FRPs are designated for scenarios
that elude precise diagnosis or fall outside the definitive parameters of
ORPs, such as intermediate breaches with diameters ranging from 2.5 to
34.5 cm. The precision of accident diagnosis and subsequent prognosis is
paramount, enabling reactor operators to execute informed decisions to
curtail the escalation of the event. The decision-making process entails a
bifurcated approach: initially diagnosing the incident to yield interface
data for the prognostication of reactor status, followed by forecasting the
evolution of reactor conditions to facilitate strategic decisions by
operators. This manuscript delineates the prognosticative process
subsequent to LOCA, predicated on the diagnostic findings from the
antecedent phase. Figure 1 illustrates the position of the prognostic phase
within the maintenance sequence.

A considerable number of previous explorations have been
carried out in order to rapidly diagnose reactor anomalies and to
foresee the process of anomalies. Most of these methods are model-
based or data-based, or rule-basedmethods built onmodels and data
combined with expert knowledge (Lei, 2020; Zhang et al., 2022; Zio,
2022). Currently, data-based approaches based on statistical
learning and deep learning are the focus of research, due to their
greater generalization ability and inference speed compared to
model-based approaches, and their easier maintenance than rule-
based approaches that utilize large knowledge bases.

The diagnosis of abnormal reactor operation has been explored
extensively by previous works. Lin et al. (2021) developed a Nearly
Autonomous Management and Control (NAMAC) framework for
advanced reactors and used feedforward neural networks for the
digital twin (DT) layer in the framework to quickly identify
information about anomalous transients. Ayodeji et al. (2018)
constructed a nuclear power plant operator operation support system
based on the use of principal component analysis (PCA) and two
different neural networks: an Elman-type recurrent neural network
(Elman-RNN) and a radial basis neural network (RBN) for fault
diagnosis. Lee et al. (2021) organized the large amount of real-time
data generated by a single system and the dynamics of the individual
system monitoring data by constructing two-channel 2D images and

used convolutional neural networks (CNN) for feature extraction and
diagnostic tasks of system anomalous transients. Wang et al. (2019)
proposed a support vector machine (SVM)-based diagnosis method in
order to improve the diagnostic capability of the model on a smaller
number of accident instances and used an improved particle swarm
optimization (PSO) method for the selection of hyperparameters of the
model to achieve an improved accident classification capability in the
case of small samples. Li and Lin (2021) constructed an integrated
learning model using various statistical learning models and neural
network models, such as SVM, random forest model (RF), k-nearest
neighbor model (KNN), and fully connected neural network (FCNN),
and based on multivariate voting method and weighted voting method,
the model was able to achieve a rapid response and robust to noise for
accident diagnosis. Formore detailed information on diagnosticmethods
for abnormal reactor operation, please refer to the review articles (Ma and
Jiang, 2011; Jiang et al., 2020; Maitloa et al., 2020; Hu et al., 2021).

Prior research has disproportionately emphasized accident
diagnosis over post-accident prognosis, with a marked paucity in
the prognostication of system-level parameters. Although the use of
best estimation (BE) based system analysis programs, such as RELAP
(Allison and Hohorst, 2010) or ARSAC (Deng et al., 2021), allows for
a more accurate calculation of accidents with known parameters, their
use in real-time operator manipulation is still impractical due to their
slow computational speed. Consequently, the deployment of data-
driven, pretrained models for accelerated inferential computations
emerges as a critical alternative to enable ultra-real-time assessment of
reactor status subsequent to an incident. In for the task of system state
prediction after the occurrence of anomalous reactor transients, Zeng
et al. (2018) used SVM to construct agent models for the thermal and
physical steps of nuclear thermal coupling calculations, respectively,
along with a particle filtering framework for noise filtering and
prediction of system parameter measurements to achieve the
system state prediction task for the Transportable Fluoride-salt-
cooled High-temperature Reactor (TFHR) under reactive
introduction accidents. Koo et al. (2019) used FCNN to construct
a model for predicting the trend of pressure vessel (PV) water level for
steam generator pipe rupture and cold/hot leg LOCA and
demonstrated the superiority of this prediction method by
comparing the performance of this model with a cascaded fuzzy
logic neural network model (CFNN) for the same task. Zhang et al.
(2020) adopted a long short-term memory network (LSTM) that is
more sensitive to less data in order to improve the quantitative
imbalance between the training data on the fluctuating operation
category and the stable operation category, and used the model
trained using this strategy for the task of predicting the reactor’s
pressurizer (PRZ) water level under abnormal operation. Gurgen
(2021) developed a physically constrained LSTM reactor parameter

FIGURE 1
Prognosis in the sequence of reactor accident health maintenance.
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prediction method based on physical constraints in order to serve the
decision layer in the NAMAC framework, and applied the method to
the prediction of fuel centerline temperature in the loss-of-flow
accident (LOFA) of Experimental Breeder Reactor II. However,
with the exception of the few studies on reactor state prediction at
the system level mentioned above, most prediction efforts have
focused more on the state and remaining usable time (RUL) of
subsystems or components. For example, Ramuhalli et al. (2020)
used LSTM model, SVM model and nonlinear autoregressive model
(NAR) to predict the operating status of feedwater and condensate
system (FWCS) of boiling water reactor (BWR) for the next day and
the next week, respectively. Liu et al. (2015) proposed a dynamic
weight integration learning prediction method based on multiple
SVM regression models, and applied the method to the leakage
prediction task of the reactor first-loop coolant main pump, as
well as estimated for the uncertainty of the prediction results.
More RUL prognostic tasks on reactor subsystems and
components are available in the review articles by Ayo-Imoru et al.
(Ayo-Imoru and Cilliers, 2018) and Si et al. (Si et al., 2011).

In contrast to the nuclear sector, prognostic endeavors are
becoming increasingly critical across a diverse array of industries.
Predominantly, these methodologies are underpinned by extensive
data analytics. Within the burgeoning domain of renewable energy,
the predictive assessment of battery pack conditions post-anomalies
is imperative for ensuring the operational safety of electric vehicles.
Hong et al. (2019) established an accurate multi-forward-step
voltage prediction method for battery systems using LSTM and
validated the superiority, stability and robustness of the method
using real-world data. Liu et al. (2022) proposed a joint prognostic
method of AutoRegressive Integrated Moving Average model
(ARIMA) and LSTM using approximate optimization method in
order to improve the prediction accuracy of electric vehicle battery
pack voltage. In the field of wind power generation, prediction of the
degradation process of turbines and estimation of RUL is an
essential means to improve the operating economics (Gao and
Liu, 2021) (Saidi et al., 2017) constructed a prediction method
based on spectral kurtosis and SVM regression model in order to
predict the operating condition of the high-speed shaft bearing in
wind turbines. Encalada-Dávila et al. (2021) constructed a method
for predicting Low-speed shaft temperature under normal operation
and abnormal transients using fully connected neural networks and
validated the method on real-world operational data from several
wind turbines. Therefore, the prognostic approach in the non-
nuclear field can provide insights and inspiration for the task of
prognosis of system level parameters after a reactor accident.

Deep learning has revolutionized problem-solving in various sectors
through neural networks’ function approximation capabilities, using
gradient descent for optimization. These networks automatically
extract critical features from data. In accident process prediction,
which requires temporal data modeling, recurrent neural networks
(RNNs), including Elman-type, LSTM, and GRU, have been
prevalent to enhance prediction accuracy. However, RNNs face
challenges with long-range dependencies and uncertainty estimation
in long sequences. Moreover, current prediction models do not fully
leverage diagnostic results or ancillary parameter variations, leading to
suboptimal data utilization.

In the present work, we introduce an innovative approach for
prognostication of critical parameters subsequent to reactor incidents,

addressing the persistent issues of protracted dependency, absence of
uncertainty quantification, and suboptimal data exploitation that have
characterized preceding methodologies in the domain of reactor
accident parameter forecasting. Accordingly, this manuscript
endeavors to augment the extant paradigm through three
substantive enhancements delineated henceforth:

1) A Temporal Fusion Transformer (TFT) model that improves the
RNN long-range dependency problem is developed. This model
not only models the temporal data using classical RNN, but also
utilizes the state-of-the-art Transformer architecture in computer
natural language processing (NLP) in order to automatically
capture the remote associations of elements in long-
range sequences.

2) A prediction uncertainty estimation method based on stochastic
processes is developed. Reactor accidentmanagement belongs to
a scenario with high safety requirements, and the estimation of
prediction intervals can produce best and worst-case indications
of target parameters, which can help optimize subsequent
accident management decisions. The parameters fitted by the
TFTmodel used in this paper during the learning process are the
distribution information of the parameters at each time stamp,
so the sampling information of the joint distribution of all
prediction steps is obtained by Monte Carlo (MC) sampling
during the prediction process.

3) A prediction method with perception of accident diagnostic labels
and multiple monitored parameters is developed. Multiple other
monitorable thermal parameters can be used as historical
covariates in the prediction of the target parameters, and
diagnostic labels for the type and severity of the upstream
accident are supported as static covariates. This prediction
method using multiple covariates has been validated to improve
prediction accuracy and increase the efficiency of data usage.

The structure of this paper is as follows: section two describes the
methods used to predict crucial parameters after a reactor accident;
section three details the dataset and model parameters selected for
the study; section four explains the experimental approach, reports
findings, and analyzes them; section five concludes the study.

2 Methodology

2.1 Task description

The task of this study is the prediction of key parameters of the
reactor after LOCA, which is a multi-horizon prediction problem in
which the variables of interest are predicted over multiple future time
steps. For any parameter y to be predicted, the variables that can assist
in the prediction are the static covariates s ∈ Rms of the upstream
incident diagnosis, the known scalars yt ∈ R of the parameter y at
each time step on the historical timeline t ∈ [0, T], and the sampled
values χt ∈ Rmχ of the other covariates at the time step that assist in
the prediction. The other covariates contain two components, the
historical covariates and the future covariates χt � [zTt , xTt ]T, where
zt ∈ Rmz are time-series parameters that are not known after the
forecast moment, and xt ∈ Rmx are predictable after the start of the
forecast, such as information on the duration of the accident.
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In order to know the confidence interval for each prediction step
in the prediction, TFT uses quantile regression methods to make
inference for each of the 10%, 50% and 90% quantile points at any
moment. Thus, for any parameter to be predicted the prediction
problem can be expressed as Eq. (1).

ŷ q, t, τ( ) � fq τ, yt−k:t, zt−k:t, xt−k:t+τ , s( ) (1)

where q is the percentile of the point to be predicted; t is the starting
moment of the prediction task; τ ∈ Z+ is the distance between the
point to be predicted and the starting point of the prediction; k is the
size of the time window utilized for the forecasts; the corner label
t − k: t contains k + 1 elements. The description of the multi-
horizon prediction problem after LOCA is shown in Figure 2.

2.2 Temporal fusion transformer for
LOCA prognosis

2.2.1 Overview of temporal fusion transformer
Temporal Fusion Transformers (TFT) present an advanced

framework for time series forecasting that utilizes self-attention
mechanisms to enhance prediction accuracy and offer
interpretability in certain scenarios. This framework outperforms
standard benchmarks, such as ARIMA, LSTM, and GRU, as well as
more intricate models like DeepAR, MQRNN, and ConvTrans, in tests
on open-source datasets (Lim et al., 2021). Overall, in the task of
parameter prediction after LOCA of the reactor, TFT possesses five
main technical features that ensure its excellent performance on the
multi-horizon prediction problem, namely: 1) Use of gating
mechanism: In the process of traversing the visible temporal
dynamics, the gating mechanism can filter out irrelevant data points
to reduce their interference with the prediction. 2) Input variable
embedding module: In each time step, this module is able to embed
a tiled vector of multiple covariates and known target variables into a

fixed dimensional vector to facilitate the transfer of data in themodel. 3)
Static covariate encoder: this session will make full use of the accident
diagnosis information, converting accident category labels and scalar
labels into conditional information that constrains the calculation of
each prediction step. 4) Dual temporal dynamic processing: On the one
hand, LSTM is used to process the temporal data using sequence-to-
sequence (Seq2Seq) approach to capture the data features of the data
under short period; on the other hand, the distant relationships and
features of the temporal data are captured using the Transformer layer
based on the multi-headed self-attention mechanism, which
thoroughly improves the long-term dependency problem in the
traditional Seq2Seq. 5) Forecast range estimation: The quantile
regression forecasting method is used to determine the possible
range of target parameter values for each forecast time step. The
flow of the prediction using the TFT model is shown in Figure 3.

2.2.2 Gating mechanisms
A gated residual network (GRN) is employed to enhance the

flexibility of the prediction model when the connection between
input time series data and forecasted outputs is initially unclear. This
approach selectively emphasizes data with notable correlations for
input into the network. GRN reads an embedding vector a ∈ Rdmodel

of several reactor monitoring data in one timestamp at a time, and
optionally a vector c ∈ Rdmodel associated with the input conditions,
and the output is a vector that passes through the same dimensions
as the embedded vector. The GRN is calculated as Eq. (2).

GRN a, c( ) � LayerNorm a + GLU η1( )( ),
GLU η1( ) � σ W4η1 + b4( ) ⊙ W5η1 + b5( )
η1 � W1η2 + b1,
η2 � ELU W2a +W3c + b2( )

(2)

whereW(·) ∈ Rdmodel × dmodel is the weight of the connection to be learned;
b(·) ∈ Rdmodel is the bias to be learned; ⊙ is the element-wise Hadamard
product; σ(·) is the sigmoid activation function; ELU(·) is the activation
function with soft saturation on the left side and no saturation on the

FIGURE 2
The visual description of the multi-horizon prediction problem for post-LOCA.
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right side; LayerNorm(·) is the standard layer normalization method
(Ba et al., 2016); GLU(·) is the gate component of the Figure 4. The
computational flow of GRN is shown in Figure 4.

2.2.3 Variable embedding module
Discrepancies in the quantity of historical and future covariates,

along with static covariates, result in varying input vector dimensions at
each temporal stage. To maintain dimensional consistency for
downstream modeling, embedding is required to standardize the
dimensions of these three covariate types at each time step. For any
moment on the time axis, the covariates can be expressed as θt ∈ Rdin ,
and satisfy din ∈ ms,mx +mz,mx{ }. The individual elements are first
expanded into a vector Θt � θtWmlp ∈ Rdin×dmodel of dimension dmodel,
whereWmlp ∈ Rdmodel is a learnable variable, and the weights are used in
all time steps. Subsequently, each column vector ofΘt is passed through
aGRNwith networkweightω1, respectively, and the individual column
vectors of the output are combined according to the original
arrangement to obtain Θt,gated ∈ Rdin×dmodel . Meanwhile, the
individual column vectors of Θt, together with the optional
conditional vector c, are simultaneously passed through a GRN with

networkweightω2 and then passed through the Softmax layer to obtain
the parameter weight vector wt � Softmax(GRNω2(Θt, c)) ∈ Rdin .
Finally, the individual column vectors of Θt,gated are weighted and
summed with the elements corresponding to the parameter weight
vectors to obtain the final covariate information of the input TFTmodel
at that time step, i.e., ~θt � ΘT

t,gatedvt ∈ Rdmodel .

2.2.4 Static covariate encoders
This encoder receives the static covariate vector ~θstatic via the variable

embedding module as input and encodes it as conditional input
information for different parts of the TFT, such as cv used by the
variable embedding module for historical/future covariates, the starting
cell state cc andhidden state ch of the LSTM in the Seq2Seq layer, and ce in
the static enrichment layer. These state variables are calculated as Eq. (3).

cTv , c
T
c , c

T
h , c

T
e[ ]T � Wmlp

~θstatic ∈ R 4×dmodel( ) (3)
where Wmlp ∈ R(4×dmodel)×dmodel is the learnable weight. Compared
with the original TFT model which needs to pass through four
separate GRN modules with different weights and optimize them
separately in parameter learning, this paper only requires

FIGURE 3
A framework for multi-covariate prediction using TFT models.
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backward gradient propagation for a single fully connected neural
network in this module, which improves the training speed.

2.2.5 Local and long-term temporal dynamics
The TFT employs a sequence-to-sequence (Seq2Seq) model with

Long Short-TermMemory (LSTM) to identify key patterns in time series
data, including trend shifts and notable fluctuations. It initializes with
embeddings from static covariates and feeds historical and future
covariate embeddings at each time step. This method outputs
encoded information simultaneously for each time step, offering
insights into the time series elements’ relative ordering. This approach
moves beyond traditional fixed position encoding, providing a tailored
inductive bias that enhances the prediction process for each step. For any
moment t + n, where n ∈ −k: τmax{ }, the embedding vector of the input
LSTM layer is ~θt+n and the corresponding encoding vector for that
moment is ϕt+n. Subsequently, this vector is passed through the gating
module, LayerNorm module, residual connectivity module, and static
enrichment layer to finally obtain the sequence of local feature vectors
obtained by TFT encoding on the temporal data
Ψ � [ψt−k,ψt−k+1,/,ψt+τ max

]. This process is calculated as Eqs (4)–(5).
~ϕt+n � LayerNorm ~θt+n + GLU~ϕ ϕt+n( )( ) ∈ Rdmodel (4)

ψt+n � GRNψ
~ϕt+n, ce( ) ∈ Rdmodel (5)

where GLU~ϕ(·) and GRNψ(·) have different subscripts, implying
the use of different weights; ce provides the static covariate encoder
with the static covariate condition information for the static
enrichment layer. To obtain information on the correlation
between different time steps of a time series over a wide field of
view, TFT draws on the Transformer prototype based on a multi-
headed attention mechanism to improve interpretability and long-
term dependence in the prediction process. To enable a well-
measured feature importance at each time step, TFT uses an
attention calculation method with shared weights. Considering
that N � k + τmax + 1 is the total number of historical and future
time steps, the number of heads of attention is mH, and the tensor
Ψ ∈ RN×dmodel has been obtained in the extraction of local temporal
dynamic features, the corresponding query, key and value tensors
for the head numbered h are calculated as Eqs (6)–(8).

Q h( ) � ΨW h( )
Q ∈ RN×dmodel (6)

K h( ) � ΨW h( )
K ∈ RN×dmodel (7)

V � ΨWV ∈ RN×dmodel (8)
whereW(h)

Q ,W(h)
K ∈ Rdmodel×dmodel is a learnable weight and is different

for each head; WV ∈ Rdmodel×dmodel is also a learnable weight, but its
weight is shared by all heads. For a single head, its self-attention
matrix H(h) is computed as Eq. (9).

H h( ) � Attention Q h( ),K h( ),V( )
� Softmax

dim�−1
Q h( )K h( )T/ 					

dmodel

√( )V
∈ RN×dmodel

(9)

If all heads are considered, the average attention matrix ~H is
calculated as Eq. (10).

~H � 1
mH

∑
mH

h�1
H h( ) ∈ RN×dmodel (10)

In the attention matrix ~H, each row represents the encoding
result at the corresponding moment, i.e., a vector of dimension size
as dmodel. The vectors numbered [t + 1: t + τmax] are the initial
encoding results for each future time step in the prediction
step. These preliminary coding results are then fed into the
final layers of the feedforward network module and ultimately
predict the confidence range of the target variable corresponding to
each future time step.

2.2.6 Interval estimation
For the prediction range, the vector at each moment after multi-

headed self-attention encoding can be denoted as βt+n, where
n ∈ 1, 2,/, τmax{ }. After the last few layers of residual
connectivity and GRU layers, the encoding of each prediction
time step t+n s obtained, which is calculated as Eqs (11)–(13).

~t+n � LayerNorm ~ϕt+n + GLU~ t+n( )( ) ∈ Rdmodel (11)
t+n � GRN δt+n( ) ∈ Rdmodel (12)

δt+n � LayerNorm ψt+n + GLUδ βt+n( )( ) ∈ Rdmodel (13)

In this case, the different corner labels of GRN and GLU
represent different network weights. Ultimately, the TFT’s point
prediction is based on the calculation of the prediction
interval, which is achieved by simultaneously predicting
various percentiles, such as the 10th, 50th and 90th at each time
step using a linear decoder. The calculation is shown in Eq. (14).

ŷt+n q( ) � Wqt+n + bq (14)

where ŷt+n(q) is the estimate of the target parameter y at moment
t + n with time quantile q; Wq, bq are the weights and biases to be
learned, respectively.

2.3 TFT oriented prognosis of LOCA

Based on the previous introduction of TFT, the structural features
of the TFT prediction model mainly include gating mechanisms,
variable embedding module, static covariate encoders, local and

FIGURE 4
Calculation flow of GRN module.
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long-term temporal dynamics, and interval estimation. Compared
with traditional prediction methods based on various deep
learning models, such as classical LSTM or GRU, TFT has the
following advantages for the prediction task of key parameters
after LOCA:

1) To address the issue of memory retention in time series analysis,
traditional approaches often relied on recurrent neural networks
(RNNs), which incrementally process new inputs and
consequently update the model’s short-term memory. This
method, unfortunately, leads to a gradual diminishment of the
effect of earlier data, which can cause increasing predictive errors
over time. While advanced mechanisms like Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRUs) introduce
improvements for short-termmemory extension, they fall short in
fully addressing long-range dependencies. The Temporal Fusion
Transformer (TFT) overcomes this limitation by utilizing an
enhanced version of LSTM combined with a sophisticated
multi-headed self-attention mechanism. This design allows the
model to maintain a comprehensive perspective and retain earlier
input data effectively.

2) The TFT enhances the effective use of information for forecasting
by embedding features of data at each time step, which strengthens
the extraction of relevant features. It employs a GRN to filter out
less important data, like noise, and emphasizes key moments that
are critical for accurate predictions, such as significant shifts or
trends. Additionally, the TFT can process various types of data,
including static covariates like incident categories and severity
levels. This capability facilitates the integration of diagnostic and
prognostic phases post-LOCA (Loss of Coolant Accident),
overcoming the disconnect between these stages.

3) The prediction accuracy in critical safety situations is improved by
using quantile regression to estimate uncertainty. This approach
gives reactor operators a clearer understanding of the potential best
and worst outcomes for the system’s response, rather than a single
prediction at one time point. Accurately calculating uncertainty is
vital in high-stakes safety environments.

This paper builds the TFT model as described and then uses it to
forecast crucial parameters following a LOCA incident, assessing
and enhancing the model’s performance. The workflow used in this
paper is shown in Figure 5.

FIGURE 5
Flow chart of accident process prognosis after LOCA using TFT model.
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3 Data preprocessing and
determination of hyperparameters

3.1 Data description and preprocessing

When a LOCA occurs in a reactor, the operator needs to go
through five steps to complete the treatment of the incident: data
collection, anomaly sensing, incident diagnosis, status prognosis,
and finally mitigation decision (Zhao et al., 2021). Condition
prognosis directly serves the subsequent mitigation decisions and
is therefore a link directly related to the success or failure of incident
management. Currently, operators use emergency operating
procedures (EOPs) constructed during the reactor design phase
in the event of a LOCA. However, the accident transients on which
the EOP is based are only a few sparse design conditions with severe
consequences, and cannot cover real-world scenarios that may
occur. This can lead to a tendency for the operator to use the
most conservative approach even in less severe transient situations,
resulting in an unnecessary waste of resources, even if the
conservative process does not effectively envelop the transient.
Therefore, in order to construct an accident process prognosis
method that can be used at different breach locations and breach
sizes, a dataset for training the TFT model needs to be constructed.
Considering that no real-world data on LOCA transients are
available, it is necessary to simulate the LOCA process for
different initiation conditions using suitable tools.

This paper uses a pressurized water reactor system analysis
program, Advanced Reactor System Analysis Code (ARSAC),
developed by the Nuclear Power Institute of China (NPIC).
ARSAC is a modern pressurized water reactor transient analysis
program that solves a non-equilibrium non-homogeneous
Eulerian-Eulerian six-equation two-phase fluid model using a gas-
liquid two-phase model framework. The development of ARSAC
follows the standard six steps of program development, namely
requirements analysis, physical model study, software design,
coding, testing, verification and validation (Deng et al., 2021). At
present, ARSAC has been applied to several international benchmark
problems, such as re-inundation experiments FLECHT-SEASET and
other separation effect experiments, and large, middle and small
breach loss of coolant accidents and other accident transient
overall effect experiments, and the validation results show that the
deviation of key parameters calculated by the ARSAC program from
the experimental data is within a reasonable range. Therefore, the
LOCA transients calculated using ARSAC are credible and reflect the
reactor system response under realistic scenarios.

HPR1000 is a Gen III advanced nuclear power technology
developed by China National Nuclear Corporation (CNNC) with
a combined active and passive safety design concept. On the one
hand, it is an evolutionary design based on the proven technology
of existing pressurized water reactor nuclear power plants; on the
other hand, it incorporates advanced design features, including
177 fuel assembly cores loaded with CF3 fuel assemblies, active
and passive safety systems, comprehensive severe accident
prevention and mitigation measures, enhanced protection
against external events, and improved emergency response
capabilities (Xing et al., 2016). Some of the key technical
parameters used in the simulation of different LOCA initiation
conditions for HPR1000 are shown in Table 1. As well, at the

moment when the transient occurs, the system analysis program
runs at the steady state of the rated power.

In order to construct input cards that can be read by ARSAC, it is
necessary to model the first loop and part of the second loop of the
HPR1000, i.e. to illustrate the parameters of each reactor component
and the connection relationships between the components, which is a
process that can be represented in the form of a node diagram. The final
node diagram of the HPR1000 reactor used to simulate the LOCA
transient is shown in Figure 6, which contains the core of the reactor,
the pressurizer, and key equipment on the three loops, such as the main
pump and steam generator, as well as themain feedwater and steam co-
tank of the second loop and the steam turbine for power generation.

In order to simulate different LOCA initiation conditions, twomain
settings were made: 1) firstly, it was determined that the cold leg breach
occurred at the connection between the two nearest pipe nodes before
the coolant inlet from the core in the first loop, and the hot leg breach
occurred at the connection between the two nearest pipe nodes after the
coolant exit from the core in the same loop; 2) secondly, the breach size
started with an equivalent diameter equal to 0.1 cm, and the step length
is 0.2 cm, and ends at an equivalent diameter of 35.5 cm. The reason for
setting different breach locations in the first place is mainly due to two
considerations: 1) on the one hand, since there is always coolant flowing
through the core compared to a hot leg breach, while a larger cold leg
breach will result in a completely exposed core, the cold leg breach is the
object of analysis in the reactor SAR, so the blind spot of the hot leg
breach needs to be filled in the prognostic task for LOCA; 2) on the
other hand, since the cold or hot leg is a category-based variable, it will
help to extend the prognostic task to more accident category labels in
the future. And the reason for setting more break sizes as an initiation
condition is that compared to the large breaks where a dramatic system
response occurs, small and middle breaks, although resulting in a less
significant pressure relief process, still have the potential for complete
core exposure, thus threatening the core integrity.

In the simulation of the LOCAcases, the simulation duration of each
initiation event in this paper is 2000 s, and the state of the reactor at the
current moment is recorded with a sampling frequency of twice per
second. In the process of collecting covariates that contribute to the
prediction of target parameters, this paper extracts 8 monitorable
synthetic signals, and 22 direct signals, based on the physical signals
that can be monitored by the actual instrumentation and control system

TABLE 1 Some of the key technical parameters of HPR1000 at the onset of
LOCA transients.

Parameter Value

Power rating of the core 3050 MWt

Operating pressure 15.5 MPa

Height of cold active section of core 3658 mm

Average line power density 173.8 W/cm

Thermal design flow rate 22840 × 3 m³/h

Temperature of reactor PV inlet 291.5°C

Temperature of reactor PV outlet 328.5°C

Total volume of pressurizer 51 m³

Design temperature of pressurizer 360°C
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of the HPR1000. The parameter identification and their corresponding
physical significances are presented in Table 2. Synthetic signals, derived
from direct signals indicative of the reactor’s systemic state, serve as
suitable predictors for modeling tasks.

Take the example of a middle break in the HPR1000 with a cold
leg break size of 7.5 cm. Throughout the accident sequence, significant
gas-liquid stratification of the reactor coolant system (RCS) occurs
and there are two fuel temperature rises by gravity, which may lead to
localized fuel damage. The first temperature rise is due to a loop water
seal caused by the low point of the first loop system including the
U-shaped elbow in front of the main pump and the lower part of the
PV. This water seal causes the steam space to grow and the core to
become exposed. When the break in the cold leg is exposed, the loop
water seal at the low position of the reactor is removed, so the coolant
is quickly re-entered into the core by the driving pressure head. The
second temperature rise is caused by simple evaporation from the
core. When the core is suddenly cooled due to the entry of new
coolant, an early imbalance between the break flow and the safety
injection flow can lead to a further drop in the PV water level,
resulting in another bare core. The changes of the main synthetic
monitoring signals after the occurrence of the middle break are shown
in Figure 7. In the spray release phase, the PV water level signal
decreases rapidly until the input of the position an injection box
around 400 s; then, due to the formation of the loop water seal and the
exposure of the core, the maximum temperature of the core envelope
rises rapidly around 900 s; after 1600 s the loop water seal is lifted and
the core water level rises again, at which time the maximum
temperature of the envelope also starts to decrease.

To reduce the computational complexity of the training process,
the input to the TFT model can be simplified by reducing the number
of covariates with high similarity. In this paper, the correlation between

each pair of reactor signals is analyzed using Pearson’s algorithm to
obtain the signal correlation matrix including time and unmeasurable
parameters, as shown in Figure 8. It can be seen that there are a large
number of coefficients with correlations close to 1. Therefore, the
coefficients are filtered by manual means. The trimmed coefficients are
framed in red solid lines on the left side of the Figure 8.

3.2 Training conditions

In order to train the TFT model, an explicit differentiable
optimization objective, i.e., a loss function, is needed first. In order to
meet the requirements of the TFT prediction model for interval
estimation, it is necessary to use an aggregated quantile residual as a
loss function and the aggregation is additive, so that it is calculated as
Eqs (15)–(16).

L Ω,W( ) � ∑
yt∈Ω

∑
q∈Q

∑
τmax

τ�1

QL yt, ŷt+τ q( ), q( )
Mτmax

(15)

QL y, ŷ, q( ) � qmax y − ŷ, 0( ) + 1 − q( )max ŷ − y, 0( ) (16)
where Ω is the number of all time series samples in the training set;
Q refers to the set of quartiles in the target, and the set used in this
paper is Q � 0.1, 0.5, 0.9{ }.

In the training process, the optimization method used is the
Adam gradient descent optimizer. Adam has the advantages of
the gradient descent algorithm with adaptive learning rate and the
momentum gradient descent algorithm, which can improve the
problem of prone to fall into the local minima of the loss function
space while having a faster training speed. For the selection of

FIGURE 6
HPR1000 node diagram for simulating LOCA transients.
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the optimizer parameters, the initial learning rate is set to
lr � 1.0 × 10−3, the coefficients used to calculate the running
average of the gradient and its square are β1 � 0.9 and
β2 � 0.999, the smoothing coefficient is ϵ � 1.0 × 10−8, and the
momentum decay coefficient is 4.0 × 10−3.

In terms of data organization for the training process, all LOCA
simulation databases are first partitioned into an 80% proportion of
the training set and a 20% proportion of the test set. Then, the

historical and prognostic data of each LOCA case are divided. The
starting point of the prognosis is 100 s, which is due to the time
consumed in order to undertake the diagnosis task of the accident
(Li et al., 2022), i.e., the initiating parameters of the transient are
identified using the diagnostic model within 100 s of the transient
occurrence, and at this point all known information is used to
further predict the trend of the parameter of interest between
100 and 2000 s. Finally, in the actual training process, the small

TABLE 2 Correspondence of Signal numbers and parameters monitored by instrumentation and control system.

Signal type No. Corresponding parameter

Synthetic signals 1 Water level of PV

2 Water level of steam generator

3 Water level of pressurizer

4 Maximum average temperature of loops

5 Mass flow rate of reactor coolant

6 Avg. temperature of the broken loop (#1)

7 Avg. temperature of loop 2#

8 Maximum core cladding temperature

Direct Signals 9 Avg. power

10 Temperature of main feed water

11 Temperature of reactor core outlet

12 Temperature of the upper head

13 Temperature of the broken loop (1#) hot leg

14 Temperature of hot leg of loop 2#

15 Temperature of hot leg of loop 3#

16 Temperature of the broken loop (1#) cold leg

17 Temperature of cold leg of loop 2#

18 Temperature of cold leg of loop 3#

19 (1–5) Temperature of pressurizer surge tube (divided into 5 nodes)

20 Gas temperature of pressurizer

21 Mass flow rate of main feed water

22 Mass flow rate of auxiliary feed water

23 Mass flow rate of main steam

24 Mass flow rate of LHSI pump

25 Mass flow rate of boron injection pump

26 Pressure of steam line

27 Pressure of steam busbar

28 Pressure of SI

29 Pressure of reactor coolant

30 Pressure of pressurizer

31 Water level of SI

32 Water level in the hot leg of the breakout loop
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batch gradient descent method is used because if all the training data
are input into the GPU memory at one time, it will lead to memory
overflow; if only one sample is used to update the gradient at a time,
i.e., random gradient descent, it will lead to a decrease in the
convergence speed of the model. The data organization of all
LOCA cases for the TFT model training and testing process is
shown in Figure 9.

3.3 Determination of hyperparameters

The TFT model, being a complex deep neural network, has
many hyperparameters linked to its structure. However, since
optimizing all of them is not feasible, we focus on tuning those
most crucial to prediction performance, based on the network’s
key architectural features. The hyperparameters to be optimized
and their alternative parameter search ranges are shown
in Table 3.

We selected hyperparameters to ensure fast training and strong
fitting for our model without needing to optimize on the entire
dataset. We assessed the model on a small, random set of 10 LOCA
cases with break diameters from 6.5 to 10.5 cm to pick the best
hyperparameters. Given the high accuracy and confidence needed
for post-LOCA predictions, we focused on two key metrics: the
mean and variance of the residual distribution between the predicted
and actual parameters at the 50% quantile should be as close to zero
as possible, and the actual parameter values should mostly fall within
the 10% and 90% prediction quantiles. Therefore, the optimization
problem with hyperparameters can be defined as Eq. (17).

min fμ,case x( ) + fstd,case x( ) + fpct,case x( )
s.t. x1 � dmodel ∈ 8, 9, 10,/, 128{ }

x2 � mH ∈ 1, 2, 3,/, 16{ }
x3 � LSTM layers ∈ 1, 2, 3,/, 16{ }
x4 � Full attention ∈ True, False{ }

(17)

where f(·),case(x) represents the calculated function of the metric
for a certain performance of the prediction process under the
hyperparameter condition x; μ and std imply the mean and
variance of the normal distribution when the residuals are fitted
with a normal distribution, respectively; and pct refers to the
proportion of the prediction interval in which the true monitored
value exceeds the predicted value by more than 10% and 90% of the
quantile. In order to improve the speed of hyperparameter
optimization, the performance metrics of the model are
calculated after 100 training epochs. Although the optimization
problem has three objective functions to be optimized, the single
objective optimization problem constructed by summing them
additively is sufficient to meet the performance requirements
of this work.

In this paper, we use a Bayesian optimization (BO) approach
called Expected Improvement (EI) (Mockus, 1975) for the
selection of hyperparameters. BO consists of two main
elements: 1) the first component is a probabilistic agent
model, which consists of a prior distribution and an
observation model describing the data generation mechanism,
such as a Gaussian process or a probabilistic tree model, and the
observation model used in this paper is the Probabilistic Random
Forest model; 2) the second component is an optimization

FIGURE 7
Variation of some key parameters in a typical cold leg middle break accident in 2000 s time.
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objective, which describes a sequence of sampling and query
processes to the best extent. The implementation algorithm for
the single-objective optimization object of this paper is shown in
Algorithm 1. The optimization iteration of hyperparameters is
chosen to be 100 times, and the convergence curve of the
optimization process is shown in Figure 10. Finally, the
hyperparameters of the TFT network used for training are
obtained as dmod el � 123, mH � 11, LSTM layers � 15 and
full attention � False.

Input: θ0 as the starting point of hyper-parameter; Θ as

hyper-parameterspace;D0 asacontainertocollectobserved

trajectories; nmax as the maximum number of iterations;

α0: θ0 → R as a probabilistic surrogate function based on

observation sequence

1: for n in 0,1,2,/,nmax − 1{ }:
2: select new θn+1 � argmin

θ
αn(θn;Dn) ∈ Θ

3: obtain new observation yn+1 based on θn+1
4: update trajectory container Dn+1 � Dn , (θn+1 ,yn+1){ }
5: update surrogate model αn→ Dn+1αn+1 based on

posterior inspection

6: end

Output: θopt corresponding to yopt � min(y1 ,y2,/,yn max)

Algorithm 1. Bayesian optimization (single target).

FIGURE 8
Heatmap of Pearson correlation coefficients between pairs of reactormonitoring signals, and directmonitoring signals removed due to information
redundancy.
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FIGURE 9
LOCA transient data organization for TFT model training and testing process.

TABLE 3 The hyperparameters of the TFT model to be optimized and its search space.

Name of hyperparameters Search space for parameter values

Hidden state size of the TFT (dmod el) 8, 9, 10,/, 128{ }

Number of attention heads (mH) 1, 2, 3,/, 16{ }

Number of layers for the LSTM 1, 2, 3,/, 16{ }

Query to apply multi-head attention ″future and past″, ″only future″{ }

FIGURE 10
Convergence curves in hyperparameter optimization process.
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4 Results and discussion

4.1 Verification of superiority

To assess the proposed reactor post-LOCA critical parameter
prediction model using thin-film transistor technology (TFT), this
study compares it with standard benchmarks and sophisticated deep
learning algorithms. Model selection prioritizes high predictive
precision and quantifiable confidence intervals in post-LOCA
scenarios, adhering to these criteria:

(1) The prediction model is global rather than local. This means
that the model can be tested on the training set and then can
be directly inferred on the test set without further
optimization of the model prior to inference (Lim and
Zohren, 2021).

(2) The model is able to perform estimation of confidence intervals.
That is, it is able to perform uncertainty estimation for the
computational prediction step as the TFT model used in
this paper.

(3) The model is capable of receiving historical covariates as input.
Although the TFT model used in this paper is capable of

receiving static, historical, and future covariates as inputs, the
restriction on the types of covariates supported by the
comparison model is relaxed, considering that historical
covariates may contribute the majority of information in the
forecasting process.

Considering the above requirements, the comparison
models used in this paper contain NiHiTS (Challu et al.,
2022), Nbeats (Oreshkin et al., 2020), Transformer (Shazeer,
2020), LSTM and Block-LSTM, GRU and Block-GRU, RNN
and Block-RNN. The three neural network prediction models
with “Block” prefixes are unique compared to the prefix-less
models in that they use a fully connected network to produce a
fixed-length output after encoding a fixed-length input block
using a recurrent encoder, and therefore have a faster
prediction speed.

In this paper, two synthetic monitoring parameters highly
relevant to system safety are selected for prognosis: the PV water
level and the average temperature of the coolant in the breakout
loop. After training the TFT model using randomly selected time-
series data as shown in Figure 9 and testing on some of the
remaining data, the results of the predicted PV water level

FIGURE 11
Samples of PV water level prognosis under hot leg LOCA.
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parameters under hot and cold leg LOCA are obtained as shown in
Figures 11, 12, respectively; the prediction results of the average
temperature of the break loop under hot and cold leg LOCA are
shown in Figures 13, 14, respectively. Overall, although the
prediction results using TFT have different degrees of lags at key
turning points and locations of drastic changes, the confidence
intervals are basically able to envelop the true parameter changes,
indicating a high degree of confidence in the prediction results. In
addition, the distributions of the residuals between the 50% quantile
of the predicted and true simulated values of the two parameters are
shown in Figures 15, 16, respectively. It can be seen that the residual
variables roughly follow a Gaussian distribution and have a mean
and variance close to zero, thus reflecting the high accuracy of
the prognosis.

After obtaining the prediction results of the TFT model, the
other prediction models used for comparison were trained with the
same training method and the PV water level and the average
temperature of the breach loop were predicted separately to
obtain a comparative performance index of different prediction
methods, and the performance pairs are shown in Table 4. Among
the six specific evaluation metrics selected, the TFT model used in

this paper obtained the highest performance in four of them.
Therefore, it can be shown that the TFT model used in this
paper is significantly superior for the task of prognosis of reactor
accident parameters.

4.2 Verification of robustness

In LOCA, the pronounced pressure drop and two-phase flow
spray induce rheological oscillations within the primary loop,
compromising measurement precision at various points. Therefore,
it is essential to assess the predictive accuracy of models under varying
levels of noise interference. The object used for the evaluation process
is the TFT model trained in Table 4, which relies on the training data
as a result of the simulation of LOCA by the system analysis program
without additional added noise. Since monitoring data from real
LOCA scenarios are not available, the deviation distribution of model
predictions after adding noise with different signal-to-noise ratios
(SNR) to the sequence of historical target parameters and the
sequence of historical covariates on which the model predictions
depend will be analyzed. In this paper, we consider the case where the

FIGURE 12
Samples of PV water level prognosis under cold leg LOCA.
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SNR levels are [40.0, 30.0, 25.0, 20.0, 15.0] and ignore the uncertainty
of the noise on the upstream diagnostic task, i.e., the static covariates
(break size and break location) included in the target parameters do
not change. The reason for not considering the uncertainty of static
covariate labels is that a transient representation-based diagnosis
method tolerant to noise has been proposed by the authors of this
paper in (Li et al., 2022), which is able to extract valid accident
representations and perform high accuracy diagnosis from
monitoring data containing a mixture of crippled data and strong
noise The two parameters that are the object of analysis are the PV
liquid level signal of the reactor and the average temperature of the
breaking loop.

The parameters of the bias distribution, i.e., the mean and
variance, of the output of the prediction model using different
SNRs are obtained with no changes to the static covariates and time
variables, as shown in Figure 17. It can be seen that with the
increase of noise, the variance of the prediction error of the water
level signal and temperature signal does not show much change,
and the absolute value of the prediction error of the temperature
signal does not show large fluctuations. The only change that is
more obvious is that the absolute value of the prediction error of
the water level signal has a large increase with the increase of the

SNR. After analysis, this is due to the existence of a wide range of
low-frequency oscillation data characteristics of the water level in
the middle LOCA range (e.g., Figures 11C, D), resulting in the TFT
model in predicting the signal changes in this interval will pay
more attention to the relative position information of the data
points, making the predicted initial value more sensitive to the
mean value of the error. Specifically seen is the predicted
performance of the TFT for PV water level for size 10.5 cm hot
leg LOCA at SNRs of 40.0 and 15.0, respectively, as shown
in Figure 18.

4.3 Verification of static variate support

To account for the robust performance of the TFT in the
presence of noisy data, we propose two hypotheses: Firstly, the
TFT discerns pertinent accident characteristics within the noisy
inputs. Secondly, the inherent static features in the data inputs
encapsulate ample accident-related information. To validate these
propositions, we proceed with an ablation study on the static
covariates, examining the TFT’s predictive accuracy across
various SNRs while omitting details about the break’s location

FIGURE 13
Samples of average temperature prognosis of the breaking loop under hot leg LOCA.
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FIGURE 14
Samples of average temperature prognosis of the breaking loop under cold leg LOCA.

FIGURE 15
Distribution of PV water level prediction 50% quantile deviation
from measured value.

FIGURE 16
Distribution of deviations of the 50% quantile of the predicted value
from the average temperature measurement of the breaking loop.
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and magnitude. The experimental scheme consistent with the above
section is used here to obtain the model prediction performance at
each SNR value, as shown in Figure 19.

The figure demonstrates that as noise increases, there is a
marked rise in both the mean and variance of the error in
predicted values. This occurs because, without the static
covariates, the model relies solely on historical covariates for
predictions, reducing the TFT’s capacity to accurately discern

accident features under high noise conditions, confirming our
initial hypothesis. Data with precise historical covariate details,
which ensure correct accident diagnosis, maintain prediction
accuracy even in noisy settings, as evidenced by comparing
Figure 19; Figure 18. This observation aligns with our second
hypothesis. In summary, the TFT model accommodates static
covariates, thereby enhancing the robustness of prognosing the
dynamics of accident processes.

TABLE 4 Performance comparison of TFT models and different prognostic methods.

Mean value of error distribution Variance of the error distribution Proportion of measured values
within the confidence range

PV water
level

Average temperature
of the breaking loop

PV water
level

Average temperature
of the breaking loop

PV water
level

Average temperature
of the breaking loop

TFT −0.0028 (1st) 0.0235 (6th) 0.0922 (1st) 0.0887 (1st) 91.21% (1st) 87.63% (3rd)

Transformer 0.0053 0.0039 (1st) 0.1154 0.1259 89.60% 85.27%

NHiTS 0.0045 0.0077 0.1392 0.1266 89.42% 86.08%

Nbeats −0.0973 −0.1172 0.1856 0.2124 84.67% 81.56%

LSTM 0.1456 0.1787 0.2502 0.3091 74.04% 79.24%

GRU 0.1968 0.2085 0.2579 0.2965 73.39% 73.46%

RNN 0.3071 0.2942 0.2950 0.2367 70.53% 68.32%

Block-
LSTM

0.0032 0.0046 0.1421 0.1368 90.21% 89.74% (1st)

Block-GRU −0.0043 0.0060 0.1583 0.1344 88.70% 89.69%

Block-RNN 0.0089 −0.0186 0.1927 0.1496 85.32% 87.54%

The bold values refer to the performance of the proposed method in the paper (i.e. the TFT based prognosis).

FIGURE 17
Prognostic performance of TFT models on test sets with different SNRs for input parameters.
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5 Conclusion

This study proposed a Temporal Fusion Transformer (TFT) based
method for multi-step prediction of critical parameters following
reactor loss of coolant accidents (LOCAs). The TFT model utilizes
multi-headed self-attention and gating mechanisms to achieve accurate
and high-confidence forecasts of the accident evolution.

The key conclusions are three-fold. Firstly, TFT demonstrated
superior accuracy and confidence interval estimation compared to
current deep learning predictors. Secondly, robust extraction of valid
accident features was evidenced under high noise scenarios through

static covariate support. Thirdly, the integrated utilization of static
and historical covariates improved data efficiency.

Limitations remain in prediction lag at key points and model
robustness in real scenarios. Future coupling with diagnosis and
online deployment could enable end-to-end diagnosis-prognosis
optimization.

In summary, this research proposes a novel data-drivenmethodology
for post-accident prognosis of reactor parameters. The TFT model offers
nuclear operators robust support for accident management through
enhanced prediction accuracy and confidence. Further verification on
physical facilities would fully validate the practical utility.

FIGURE 18
The performance of TFT model for PV water level prediction at SNR of 40.0 and 15.0.

FIGURE 19
Prognostic performance of TFT models on the test set with different SNRs for input parameters under the condition of no static covariates.
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