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Over the past decade, a variety of innovativemethodologies have been developed to
better characterize the relationships between processing conditions and the
physical, morphological, and chemical features of special nuclear material (SNM).
Different processing conditions generate SNM products with different features,
which are known as “signatures” because they are indicative of the processing
conditions used to produce the material. These signatures can potentially allow a
forensic analyst to determine which processes were used to produce the SNM and
make inferences about where the material originated. This article investigates a
statistical technique for relating processing conditions to themorphological features
of PuO2 particles. We develop a Bayesian implementation of seemingly unrelated
regression (SUR) to inverse-predict unknown PuO2 processing conditions from
known PuO2 features. Model results from simulated data demonstrate the
usefulness of the technique. Applied to empirical data from a bench-scale
experiment specifically designed with inverse prediction in mind, our model
successfully predicts nitric acid concentration, while results for Pu concentration
and precipitation temperature were equivalent to a simple mean model. Our
technique compliments other recent methodologies developed for forensic
analysis of nuclear material and can be generalized across the field of
chemometrics for application to other materials.
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1 Introduction

The U.S. government is interested in the research and development of nuclear forensic
techniques to identify the relationships between processing conditions and the physical,
morphological, and chemical features of special nuclear material (SNM). Different
processing conditions produce final SNM products with different features, which are
known as “signatures” because they are indicative of the processes used to produce the
material. These signatures can potentially allow a forensic analyst to determine which
processes were used to produce the SNM and, as a result, make inferences about where the
material originated.
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Scientists at Pacific Northwest National Laboratory (PNNL)
conducted an experiment designed to replicate historical and
modern Pu processing methodologies and conditions. The
experiment consisted of 76 runs of precipitation of Pu(III)
oxalate followed by calcination to PuO2 using the same set of
seven processing parameters (e.g., temperature, nitric acid
concentration, Pu concentration, etc.) whose values varied from
run to run. For each run, the resulting product was imaged with a
scanning electron microscope (SEM), and images were processed
using theMorphological Analysis for Material Attribution (MAMA)
software developed at Los Alamos National Laboratory (LANL)
(Gaschen et al., 2016). The MAMA software generated
measurements based on the morphological features of the
particles, including particle areas, aspect ratios, convexities,
circularities, gradients, and shadings (Gaschen et al., 2016). The
76-run experiment was statistically designed with inverse prediction
in mind (Anderson-Cook et al., 2015), and MAMA measurements
from source SEM images were captured with a consistent protocol.

In the context of nuclear forensics, inverse prediction involves
predicting unknown process conditions from known PuO2 particle
features. The term “inverse” applies to the prediction of unknown values
of independent variables that produced an observed, dependent
response. This is contrary to standard regression techniques that
predict unknown response values from known values of predictor
variables (Ries et al., 2023). Lewis et al. (2018) compared multiple
models for inverse prediction applied to nuclear forensics. Thesemodels
all considered scaler data and sometimes targeted summary statistics for
modeling, thereby losing important information contained in the whole
dataset. Ries et al. (2019) converted the many particle measurements
from SEM images to cumulative distribution functions and used these
to discriminate among processing conditions, effectively exploiting the
information in distributional measurements to improve results. Ries
et al. (2023) formalized this process into a functional inverse prediction
(FIP) framework that was then applied to a full bench-scale PuO2

experiment, while Ausdemore et al. (2022) inverse-predicted PuO2

processing conditions using Bayesian MARS techniques (Francom
et al., 2018).

This article investigates a statistical technique that can be used to
relate processing conditions to the morphological features of PuO2

particles using the FIP framework from Ries et al. (2023).
Specifically, we develop a Bayesian implementation of seemingly
unrelated regression (SUR) to solve the inverse prediction problem
in which unknown processing conditions are inverse-predicted from
known PuO2 features. The SUR methodology was developed to
capture correlations among dependent variables that cannot be
accommodated when each variable is modeled independently
(Srivastava and Giles, 1987). This model allows different particle
features from a specific experimental run to be related even after
accounting for the effects of processing conditions. Embedding SUR
in a Bayesian framework allows us to quantify the uncertainty in the
inverse predictions because Bayesian analysis returns an entire
distribution rather than simply a point estimate. In Section 2, we
outline the inverse prediction problem and provide details on the
modeling framework employed in this study. In Section 3, we apply
the statistical methodology to both a simulated dataset and the
empirical PuO2 dataset obtained from PNNL, and in Section 4 we
summarize our conclusions.

2 Modeling framework

2.1 Inverse prediction

To study the relationship between independent variables
(i.e., predictor variables such as PuO2 processing conditions) and
dependent variables (i.e., response variables such as PuO2 particle
features), we apply an inverse prediction framework (Ries et al.,
2023). Consider an observation y of a dependent variable and a p-
dimensional input vector x � (x1, x2, . . . , xp)′ of independent
variables. We express the relationship between x and y as y =
g(x|θ) + ϵ, where g(·) is the true underlying physical process that
is responsible for producing the observation, θ is a vector of model
parameters, and ϵ is a random variable that captures noise present in
the observed data.

The goal of the inverse prediction framework is to predict the
values of the independent variables x′ that produced a new
observation y′. There are two approaches by which we can learn
about x′: (1) construct an inverse model that directly predicts x′ as a
function of y′ or (2) invert a traditional forward model that predicts
y′ as a function of x′. Under approach (1), we reframe the model
representation as x′ = h(y′|ϕ) + δ, where ϕ is a vector of parameters
associated with h(·), and δ is a random error term. This approach
violates traditional regression assumptions, however, as regression
models assume that the independent variable is measured with
negligible error, and it is the dependent variable that is associated
with some error (Poole and O’Farrell, 1971).

The assumption that the independent variables are measured
without error is unrealistic (e.g., processing conditions can only be
measured to the accuracy of the measuring device), and complex
processes require a more sensible model. Approach (2) involves
reconstructing the model as x′ = g−1(y′|θ) + τ, where τ is a mean-zero
random error term capturing the measurement error associated with
the independent variables. Inverse problems analyzed in this way are
sometimes ill-posed in the sense that a classical least squares,
minimum distance, or maximum likelihood solution may not be
uniquely defined. For example, if g(·) is of the form β0 + β1x′, x′ is
given by y′−β0

β1
. The case where β1 = 0 is clearly ill-posed, but even if β1

does not exactly equal zero, values close to zero can produce
estimates for x′ that are highly unstable: large perturbations of y′
can lead to very small changes in the estimate for x′, and vice versa
(O’Sullivan, 1986; Osborne, 1991).

More generally, an inverse problem is ill-posed if more than one
set of independent variables produces statistically indistinguishable
observed values of the dependent variable (i.e., any difference in
observed values from x and x′, x ≠ x′ is smaller than the noise). As
discussed in the introduction, the goal of the PuO2 bench-scale
experiment is to detect production signatures in which different
process characteristics produce identifiably different particle
features, and the underlying assumption is that these signatures
exist. The goal of this study is to solve the inverse problem in which
we predict the unknown values of the independent variables (PuO2

processing conditions) from observed values of the dependent
variables (PuO2 particle features). A successful application of our
technique to the bench-scale experiment suggests that the inverse
problem is not ill-posed and that such signatures do exist and are
detectable.
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2.2 Functional data analysis

Functional data analysis (FDA) is the branch of statistics
concerned with continuous data, such as curves and surfaces,
that naturally present themselves as functions of time, frequency,
location, or some other index (Ramsay, 2005; Srivastava and
Klassen, 2016). Analyses of functional data based on summary
statistics do not make use of important information such as
correlations contained in the smoothness of the curve. FDA
techniques consider the curve as one functional measurement,
where information is contained in the curve as a whole rather
than at individual sample points.

Here we employ the FIP framework described in Ries et al.
(2023), and assume the observed values of the dependent variables
are generated by an underlying continuous process that can be
expressed in functional form. The general strategy is to represent the
discrete dependent-variable data in functional form using basis
functions and then use the discrete values of the basis functions
in the model computations. We use the data from the bench-scale
experiment described in Section 3.2 below to illustrate
the procedure.

MAMA processing of the bench-scale experiment data
produced observations on a variety of PuO2 particle features such
as circularity and greyscale mean. Wemodel a subset of four features
produced in 24 experimental runs (see Section 3.2 below for a full
description of the bench-scale data). FDA models the particle
features as smooth functions of the processing conditions. We
begin with yija, a single observation from particle a, a = 1, . . . ,
ni of particle feature j, j = 1, . . . , 4 from experimental run i, i = 1, . . . ,
24. The vector yij is an ni-vector of observations of feature j from run
i, which can be ordered as yij′ � (yij[1], yij[2], . . . , yij[ni]), where [a]
indicates the ath order statistic (i.e., yij[1] is the lowest value, yij[2] is
the second-lowest, and yij[ni] is the highest value in the vector of
observations). We compute the empirical cumulative probabilities
associated with each yija as

[a]
ni
. The set of all possible values for the

particle feature is its (infinite) functional domain T, and the
empirical cumulative distribution function (eCDF) is:

F̂ij t( ) � 1
ni

∑ni
a�1

I Yija < t( )
The eCDF is a monotonically increasing function that assigns a

probability to every value in the domain T, specifically the
probability that an observation will be less than or equal to
the value t.

Conceptually, the next step in FDA is to consider F̂ij(t) as an
observed estimate of the true function Fij(t) that represents the true,
smooth CDF of particle feature j. Fij(t) can be represented as a sum
of basis functions:

Fij t( ) � ∑∞
l�1

ζ lϕl t( ) ≈ ∑m
l�1

ζ lϕl t( )

where Φ is an infinite matrix of basis vectors with m rows that
contain the values of them basis functions ϕl(t) evaluated across the
infinite domain T. The m-vector ζ contains the coefficients on the
basis functions. This vector is what we model because if we apply ζ̂
back to the matrix of basis vectors Φ, we produce an estimate of our
original function Fij(t).

The description above outlines the conceptual steps involved in
FDA, however computationally the basis representation of Fij(t)must be
calculated over a discrete number of values for t. To accomplish this, we
calculate a finite (large) number of quantile values from the eCDF
F̂ij(t), concatenate the runs i into a matrix Zj, and apply a basis
decomposition to this matrix of quantiles. For our study, we calculated
100 quantiles (nt = 100) from each of the 24 eCDFs (one eCDF per run)
associated with particle feature j, resulting in a 24 × 100 matrix Zj. The
matrix Zj is an approximation of the functional space that characterizes
the relationship between processing conditions and particle
characteristic j; our 24 experimental runs are statistical samples from
this functional space.

Functional data analysis applications commonly use functional
principal component analysis (fPCA) for the basis representation of
Fij(t). To compute the fPCA, we define a sample covariance operator
for the functions F(t) as

K � 1
n − 1

∑n
i�1

Fij − μFj( ) Fij − μFj( )T

∈ RT×T ,

where μFj
is the functional mean. Taking the eigen decomposition in

functional space,K � VΨVT, we calculate the directions of principle
variability using the first p ≤ n columns of V. For computational
purposes, we perform fPCA using an eigen decomposition of a
discretized version of the functions (that is, we perform PCA on Zj).

Zj →fPCA Zj′ ≈ μF +∑m
l�1

sjlvjl � μF + SjV
T
j

Here, m = 24 and the 24 × 100 matrix VT
j is the matrix of

eigenvectors of Zj that contain the discrete approximations of the
eigenfunctions of Fij(t). The 24 × 24 matrix Sj contains the principal
component scores s � 〈(Fi − μF),Vj〉 associated with VT

j . The
matrix Zj′ is an approximation of Fij(t), which represents the
functional space characterizing the relationship between the
processing conditions and particle feature j. We model the
principal component scores in Sj, and when we apply the model
estimates Ŝj back to Vj we recover our original functional space
represented by Fij(t). With these estimates in hand, we are able to
inverse-predict the values of the processing conditions.

Rather than modeling our original ni-element vector yij of
observations, we instead model 24-element vectors of principal
component scores sjl. The matrix Sj captures information about the
entire functional space because it is calculated from thematrixZj, which
contains information from all 24 samples from the functional space.
Furthermore, the FDA approach accounts for correlations along the
functional domain. By using fPCA for the basis decomposition, we are
able to model a small subset of the vectors in Sj, because fPCA is
designed to capture a large portion of the variability in the data in the
first few principal components. Ries et al. (2023) demonstrate the
improvements to prediction results that can be achieved using FDA
techniques on data that is functional versus treating that data as an
independent collection of scalar values.

2.3 Seemingly unrelated regression

Seemingly unrelated regression is a generalization of linear
regression involving several univariate regression equations, each
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having its own dependent variable, potentially different sets of
independent variables, and potentially different relationships
between dependent and independent variables (Srivastava and
Giles, 1987). Each model equation is a valid linear regression on
its own and could be estimated separately, but in SUR the error
terms are allowed to be correlated across equations. SUR was
developed for scalar rather than functional data, and we follow
that development here; at the end of this section, we extend the SUR
model to functional data. If there are n observations in each of k
vectors of dependent variables, yiq, i = 1, . . . , n; q = i, . . . , k is a single
observation i of dependent variable q. We apply the SURmodel to an
n × k matrix of dependent variable values, and each regression
equation q takes the form:

yq � Xqβq + q, ϵiq ⊥ ϵjq for i ≠ j

where yq is an n × 1 vector of dependent variable values, q is an n × 1
vector of independent error terms, Xq is an n × pqmatrix, where pq is
the number of independent variables for regression equation q, and
βq is a pq × 1 vector of regression coefficients specific to regression
equation q. Stacking the k vectors yields:

y1
y2
..
.

yk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
X1 0 . . . 0
0 X2 . . . 0
..
. ..

.
1 ..

.

0 0 . . . Xk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
β1
β2
..
.

βk

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
1
2
..
.

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

For a given dependent variable vector yq the observations yiq and
yjq are assumed to be independent (cov(yiq, yjq) = 0, i ≠ j) but we
allow for cross-response correlations between yq and yr (cov(yiq, yir)
= σqr ≠ 0). The nk × 1 vector  is assumed to be distributed
multivariate normal (MVN) with mean 0 and covariance matrix
Ω, whereΩ has the form Σ ⊗In, and Σ is the k × k skedasticity matrix
containing the correlations between yiq and yir: σqr at row q and
column r of Σ.

The preceding development describes the SUR modeling
framework for the case when the response variables are scalars
rather than functions. When the dependent variables are scalars,
allowing for correlated errors across regression functions allows us
to appropriately model situations in which the dependent variables
are correlated beyond what the independent variables can capture.
That is, after removing the effects of the processing conditions, there
is still residual information relating to the measurements of the
particle features. The computational steps are the same for scalar
and functional data analysis, but the interpretation is different for
FDA. In the functional case, the dependent variables are the basis
coefficients (which can be converted back to functional space using
their respective basis functions, as described in Section 2.2). The
correlated error terms represent the difference between the
functional response (i.e., the CDF of the particle feature values)
and what can be explained by the smooth variation in the processing
conditions. This model allows the residual functions for an
experimental run i, ϵi1(t) and ϵi2(t), to be related even after
removing the effects of the independent variables. It is important
to allow for these correlations in our study because all the particles in
a run are measurements from the same experimental setup, or batch,
which involves not only the run-specific effects of the processing
conditions but also run-specific effects of the environment, operator,
etc. The residual correlation is related to the effect of the run.

The vector β = (β1, β2, . . . , βk)
T, the unknown values of the

processing conditions, and the skedasticity matrix Σ were estimated
using Bayesian Markov chain Monte Carlo (MCMC) methods,
which produce an approximation to a posterior distribution of
interest through repeated sampling. Because Bayesian analysis
returns an entire distribution for each inverse prediction, we are
able to quantify the uncertainty in the prediction by examining the
variance of the posterior predictive distribution. We placed
uninformative Normal priors on the βs (β ~ N(0, 100)) and on
the unknown processing condition values (x ~ N(0, 100)). The prior
on the Σ matrix was an uninformative Wishart distribution, the
conjugate prior of the MVN, with degrees of freedom equal to k and
a scale matrix equal to the k × k identity matrix. Models were run
using 4 independent MCMC chains in the R package rjags, which
calls the C++ program JAGS to implement a Gibbs MCMC
sampling algorithm (R Core Team, 2021; Plummer, 2022;
Plummer et al., 2003). Chains were initialized with 1 million
iterations (sampler adaptation) and updated with 1 million
iterations (burn-in), then sampled 100,000 times and thinned
every 100 steps. We monitored the convergence of the MCMC
chains to a stationary distribution using trace plots and the Gelman-
Rubin diagnostic statistic (Gelman and Rubin, 1992).

3 Applications

In this section, we synthesize the FDA and SUR techniques
under a Bayesian framework to inverse-predict synthetic and
empirical data sets. We consider first a synthetic dataset in which
dependent variable values are generated deterministically, without
added stochastic error, then the same dataset with the addition of
stochastic error to the dependent variable values. Finally, we apply
the functional SUR methodology to empirical data generated by the
PNNL bench-scale experiment.

3.1 Simulated data

3.1.1 Methods
To test the feasibility of the model, we simulated data using two

independent variables, x1 and x2, and two functional dependent
variables, y1(t) and y2(t), over the functional domain T. We chose
20 evenly-spaced values each for x1 and x2 on the ranges specified
below, then created 20 pairs (x1i, x2i), i = 1, . . . , 20 and evaluated
each function y1(t) and y2(t) for each (x1, x2) at 150 evenly-spaced
values on the domain T.

t ∈ −4, 4[ ]
x1 ∈ 0.5, 2.4[ ]
x2 ∈ 0.1, 2[ ]

y1 t( ) � 1
x1


2π

√ ∫t

−∞
exp −1

2
t

x1
( )2{ } dt

y2 t( ) � x1 sin x2t( )
Figures 1A, B display the dependent variables y1(t) and y2(t) as

functions of (x1, x2) over the domain t. After applying fPCA to the
raw functional response values, we used principal component scores
from the first three principal components (PCs) of y1(t) and y2(t) to
create a total of six dependent variables. Recall that in FDA an
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“observation” is a single functional measurement; here n = 20 since
each curve generated by the 20 (x1, x2) pairs is one “observation,”
and each dependent variable is a vector of 20 elements (principal
component scores). As described in Section 2.3 above, each of the six
regression equations in the SUR model (one regression equation for
each dependent variable) takes the form yq = Xqβq + q, q = 1, . . . , 6.
We estimate the coefficient vector βq and the 6 × 6 skedasticity
matrix Σ containing the σqr correlations across regression equations.

We first tested the technique in a simplified situation in which
the dependent variables are “observed” without error: six vectors of
principal component scores calculated from the deterministic values
of y1(t) and y2(t). To these dependent variables, we applied four
models that an analyst might reasonably be expected to try on
these data.

• Base Model: yq � β0q + β1qx1 + β2qx2 + q
• Interaction Model: yq � β0q + β1qx1 + β2qx2 + β3qx1x2 + q
• Quadratic Model: yq � β0q + β1qx1 + β2qx2 + β3qx

2
1 + β4qx

2
2 + q

• Sine model: yq � β0q + β1qx1 + β2qx2 + β3qx
2
1 + β4q sin(x2) + q

Once we demonstrated the SUR technique on functional data
without error, we simulated errors and added the simulated error
values across the domain T. That is, we assumed that the error was
constant across the functional domain. Raw response values for y1(t)
and y2(t) ranged between 0 and 1 with a mean and median of 0.5.
Error vectors δy1 and δy2 were simulated using a MVN distribution
with a mean of 0, a variance of 1 for each y variable, and a covariance
of 0.9 between δy1 and δy2. After generating the δ values and

multiplying by 0.1 to scale them appropriately to the data, the
measured covariance between the two error vectors was 0.886. The δ
values for y1 ranged between [−0.16, 0.26] with median −0.002, and
the δ values for y2 ranged between [−0.23, 0.32] with median −0.020.
These error vectors were added to the deterministic y values prior to
performing fPCA, and subsequent modeling steps were identical to
those performed on the simulated data without added error. Figures
1C, D display the dependent variables y1(t) and y2(t) as functions of
(x1, x2) over the domain t with added error.

We assessed the performance of each model on data both with
and without added error by calculating the root mean squared error
(RMSE) of the predicted values x̂ using leave-one-out cross-
validation (LOOCV).

RMSE x̂( ) �
∑n

I�1 x̂i − xi( )2
n − 1

√
(2)

The LOOCV technique removes the first observation from the
dataset, trains the model on the n − 1 observations, and then predicts
the left-out observation using the trained model. The first observation
is then replaced and the second observation removed, the model is
again fit using n − 1 observations, and a prediction for the second
observation is made. The process is repeated for all observations in the
dataset, and the vector of predictions x̂ is then compared to the vector
of true values x using Eq. 2. Because the independent variables in our
datasets have been centered and scaled, an RMSE value of 1 describes
the expected error associated with using the sample mean as the
inverse prediction.

FIGURE 1
Simulated data. (A,B) Data simulated without added error; y values are deterministic. (C,D) Data simulated with stochastic error added to y values.
(A,C) Variable y1(t) as a function of x1 over the domain t. (B,D) Variable y2(t) as a function of (x1, x2) over the domain t. Value for x1 not shown.
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3.1.2 Results and discussion
Overall, the technique and specific models performed well and

the prediction error was small. All models were better able to
inverse-predict x1 than x2, and performance was better on the
datasets without added error. The quadratic model performed
best on both datasets, followed by the sine model (Table 1; Figure 2).

We originally ran the models using only the first two PCs of the y
vectors.While this was adequate for the dataset without added error, the
interaction, quadratic, and sine models did not converge on a
distribution for x2 using the dataset with added error when only two
PCs were considered. Model convergence was adequate when using
three PCs rather than two as determined by an examination of
traceplots and the Gelman-Rubin statistic (Gelman and Rubin, 1992;
Brooks and Gelman, 1998). The δ values added about 1%–30% noise to
the observations. The cumulative percent of variance explained using
2 and 3 PCs for y1 was 98.4.% and 99.9% respectively, and for y2 was
78.6% and 94.6% respectively. These results are consistent with the
general principle that more information is needed to fit noisier data
and/ormore complexmodels. Quantitatively, the basis functions for the
system of equations used to generate our simulated data with the
magnitude of error described above need to capture at least 95% of the
observed variability in order for the more complex models to have
enough information to provide reliable predictions.

Finally, we draw attention to the assumption that the error is
constant across the functional domain. Computationally, this means
we added the same δy1i

value to y1i(t) ∀ t and the same δy2i
value to

y2i(t) ∀ t. Empirically, this assumption corresponds to the situation
in which the mean and variance of the observation error do not
change over the functional domain. When the functional domain is
concrete, such as time or space, it may be possible to test the validity
of this stationarity assumption. For example, we can ask if a
measuring instrument loses precision and/or accuracy over time.
In many situations, however, including both our simulated data and
the observed values of the PuO2 particle features, the functional
domain is abstract, and in these cases it will be difficult if not
impossible to check the validity of the stationarity assumption. Here
we simply apply the errors as described above and leave
development of this topic for future work.

3.2 Benchscale experiment

3.2.1 Methods
The PNNL bench-scale experiment was a 76-run experiment

that replicated historical and modern PuO2 processing methods for
processing precipitation of Pu(III) oxalate followed by calcination to
PuO2. It was statistically designed with inverse prediction in mind
(Anderson-Cook et al., 2015). For this study, we analyzed a subset of
the data consisting of the 24 runs that used solid oxalic acid:
specifically, Pu(III) oxalate was precipitated from a plutonium
nitrate solution by the addition of solid oxalic acid, while
ascorbic acid and hydrazine were used to adjust the oxidation
state and for stabilization. The plutonium oxalate precipitate was
filtered from the mother solution and washed, followed by
calcination at 650°C for 2 h. The processing conditions whose
values varied over these 24 runs were plutonium nitrate
concentration (“Pu concentration”), nitric acid concentration,
and plutonium nitrate temperature during precipitation
(“precipitation temperature”). All other processing conditions
were held constant and actual values measured and recorded. Pu
concentration and nitric acid concentration were each set to one of
three different factor levels (i.e., three values for the processing
condition), while precipitation temperature was set to one of two
factor levels, for a total of 18 possible combinations of processing
condition values. Six runs duplicated processing condition values
already included in the 18 possible combinations, for a total of
24 experimental runs, of which 12 are duplicated runs.

The reaction equation is:

2Pu NO3( )3 + 3H2C2O4 + 6H2O%Pu2 C2O4( )3 + 6H2O + 6HNO3

Plutonium nitrate concentration, nitric acid concentration, and
precipitation temperature all have the potential to influence the reaction
equilibrium or precipitation rate, in turn affecting the morphology of
the precipitate. This impact on the plutonium oxalate morphology can
carry through to influence the morphology of the PuO2 product.

For each run, the resulting PuO2 material was imaged with a
SEM (Figure 3). The minimum number of particles imaged per run
was 115 and the maximum was 831. SEM images were processed
using MAMA, a publicly available software package developed by
LANL to help automate the processing of SEM images of special
nuclear material (Gaschen et al., 2016). After images are uploaded,
the software separates the image from the background, identifies and
separates different crystals if multiple crystals are included in a single
image, and calculates 22 morphological characteristics per crystal
from the processed data. Measuring particle characteristics begins
with defining the boundary of the particle: MAMA uses several
methods including a convex hull and a best-fit ellipse. Based on the
particle boundary, MAMA calculates particle characteristics
including area, major and minor ellipse axis lengths and their
ratio, degree of circularity, and several measures of grayscale
pixel intensity.

In this study, we investigate four PuO2 particle features: pixel area,
ellipse aspect ratio, gradient mean, and area convexity. Pixel area is the
area of the particle calculated by counting the total number of pixels
within the object boundary and then multiplying by the micrometer/
pixel scale. The ellipse aspect ratio is the ratio of the minor to the major
axis of the best-fit ellipse. Gradient mean uses the Sobel operator, a

TABLE 1 Model assessment, simulated data. RMSE for simulated data both
before and after error terms were added to the response values. RMSE = 1
indicates parity with mean-only model.

Model No error With error

Predictions for x1

Base 0.044 0.234

Interaction 0.021 0.242

Quadratic 0.011 0.176

Sine 0.011 0.169

Predictions for x2

Base 0.428 1.123

Interaction 0.567 0.861

Quadratic 0.365 0.862

Sine 0.374 0.885
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differentiation operator, to calculate the gradient of the image pixel
intensity values in the x and y directions, then combines them to give a
single gradient magnitude value for each pixel location. The mean of
these values is the gradient mean, which can serve as a measure of
particle topology or texture. Although the gradient mean can be
sensitive to the focus or contrast of the SEM image, we assume that
the noise associated with this variability is small relative to the signal in
the measurement. Finally, area convexity is a measure of the ratio of the
area of the object to the convex hull area.

All measures of area are strongly correlated, as are all
measurements that involve pixel intensity, etc. Each of the four
particle characteristics we analyze here represents one of four groups
of correlated features identified in preliminary data analysis.
Correlations between pairs of variables were generally low for all
runs (median absolute correlation = 0.15, Figure 4).

To represent the values of the PuO2 particle features in functional
form, we first calculated eCDFs for the 24 runs for each of the four
particle features (Figure 5). We then applied fPCA to the four matrices
of observed values and conducted “forward-direction” variable selection
on the principal component scores to determine which particle feature
PCsweremost relevant to a given processing condition.Here, “forward-

direction” indicates that we use the particle feature PCs to predict each
processing condition directly, and apply variable selection techniques to
determine which PCs are important to predicting each
processing condition.

The three processing conditions were modeled separately using
two variable-selection techniques: stepwise regression and lasso
(James et al., 2021). In stepwise regression, independent variables
are incrementally added and/or subtracted to a starting intercept-
only model, and model fit is assessed at each step using information
criteria such as AIC or BIC. The procedure stops when the optimal
model has been identified, and the predictor variables from the
optimal model are selected as important for predicting the
dependent variable. For stepwise regression, particle feature PCs
that scored below a threshold p-value, 0.001, were considered
important predictors for the modeled processing condition.

Lasso is a variable-selection technique that constrains, or
regularizes, the coefficient estimates in a linear regression model,
thus shrinking some coefficient estimates to zero or near zero. The
independent variables with larger coefficient values are then selected
as important to predicting the dependent variable. The lasso
algorithm was run 20 times for each processing condition in

FIGURE 2
Simulated data results. Inverse predictions versus true values for x variables, with 95% credible interval. The plotted blue line is y = x and is used for
assessment of results. (A,B) Results from data simulated without error. (C,D) Results from data simulated with error. (A,C) Inverse predictions for x1. (B,D)
Inverse predictions for x2.
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order to ensure the stability of results, and the results were visually
inspected to produce two sets of dependent variables: a larger set
with more particle feature PCs and a smaller set with fewer.

For each variable selection technique, the particle feature PCs
that were identified as important were combined across processing
conditions into a matrix of dependent variables and an associated

index matrix that identified which PCs were important for which
processing conditions. The final analysis incorporated four sets of
dependent variables, each modeled independently: those selected by
stepwise regression, a larger set of lasso variables, a smaller set of
lasso variables, and only variables that were stepwise identified as
important for predicting nitric acid concentration:

FIGURE 3
SEM images of PuO2 particles.

FIGURE 4
Selected particle feature correlations. (A) Correlations over all 24 experimental runs. (B) Correlations for experimental run 9. (C) Correlations for
experimental run 15. (D) Correlations for experimental run 16.
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• Stepwise variable selection: 16 PCs
• Lasso large: 11 PCs
• Lasso small: 5 PCs
• nitric acid concentration variables: 13 PCs

We fit four models separately to each set of variables: a simple
linear model, a quadratic model, and two interaction models. As
described in Section 2.3 above, each regression equation in the SUR
model takes the form yq = Xqβq + q, q = 1, . . . , k for k regression
equations associated with k dependent variables. Specifically:

• Simple linear model: yq = β0 + β1x1 + β2x2 + β3x3 + q
• Quadratic
model:
yq � β0 + β1x1 + β2x2 + β3x3 + β4x

2
1 + β5x

2
2 + β6x

2
3 + q

• Interaction model: yq = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 +
β5x1x3 + β6x2x3 + β7x1x2x3 + q

We estimate the coefficient vector β and the k × k skedasticity
matrix Σ containing the σqr correlations across regression equations.
For the bench-scale data n = 24 for the full dataset, and n = 12 for the

duplicated dataset—one observed curve for each run of the
experiment.

The matrix of independent variables Xq—the values of the
processing conditions to be inverse-predicted—contains only
those processing conditions for which the qth principal
component was determined to be important in the variable
selection step. For example, suppose yq is a vector of principal
component scores that was identified as being related to Pu
concentration and nitric acid concentration in the “forward-
direction” variable selection process. The models for the qth

regression equations are:

• Simple linear model: yq = β0 + β1x1 + β2x2 + q
• Quadratic model: yq � β0 + β1x1 + β2x2 + β4x

2
1 + β5x

2
2 + q

• Interaction model: yq = β0 + β1x1 + β2x2 + β4x1x2 + q

The terms associated with precipitation temperature are not
included in these models because yq was not identified as important
to predicting precipitation temperature. If yr is a different vector of
principal component scores that was (for example) identified as
being related to Pu concentration and precipitation temperature in

FIGURE 5
Empirical cumulative distribution functions. eCDFs of particle features from 24 experimental runs. (A) Area convexity. (B) Ellipse aspect ratio. (C)
Gradient mean. (D) Pixel area.
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the “forward-direction” variable selection process, the models for
the rth regression equations are:

• Simple linear model: yq = β0 + β1x1 + β3x3 + q
• Quadratic model: yq � β0 + β1x1 + β3x3 + β4x

2
1 + β6x

2
3 + q

• Interaction model: yq = β0 + β1x1 + β3x3 + β5x1x3 + q

Note the subscripts on the β coefficients do not change from
the full models that include all independent variables to the
individual regression models. (The different model forms are
computed separately, so β0 in the linear model is different from
β0 in the quadratic model, but β0 in linear regression equation q
is the same as β0 in linear regression equation r). In the example
above, the qth linear regression equation provides no
information for estimating β3, but the rth linear regression
equation does. In the Bayesian framework, the β vector from
Eq. 1 is estimated simultaneously and the complete set of k
regression equations together contains information for
estimating all β coefficients.

We applied the interaction model to two different sets of
dependent variables. In the “sparse” interaction model,
processing conditions were only included in the design matrix Xq

if both (or all three) were associated with the given dependent
variable yq (an “and” requirement). In the “full” interaction model,
processing conditions were included if any of them were associated
with the given dependent variable (an “or” requirement).

As with the simulated data, we assessed the performance of each
model by calculating RMSE using LOOCV. We also compared
results from the SUR framework to those from standard
regression techniques by modeling each dependent variable
separately, outside of the SUR framework. That is,

yq � Xqβq + q, ϵqi ~ N 0, σ2( ), qi ⊥ qj and qi ⊥ ri for i ≠ j and q ≠ r.

We also independently modeled the complete dataset of
24 runs as well as the smaller dataset of 12 duplicated runs,
expecting predictive performance to be better for the duplicated
dataset. In the duplicated dataset, each set of processing
condition values appears twice. Therefore, when we leave out
one observed value of the dependent variable in LOOCV, the
independent variables that produced that observation are
included in the modeled dataset. This is not the case for
12 observations in the full n = 24 dataset, and we expected
predictions on those 12 observations to be less accurate.

3.2.2 Results and discussion
In general, the Bayesian SUR technique successfully inverse-

predicted nitric acid concentration values, but other predictions
performed no better than a simple mean model. The best model
performance came from predicting nitric acid concentration values
from a quadratic model using variables stepwise selected as
important for predicting nitric acid concentration (RMSE = 0.40
for the duplicated dataset, 0.59 for the full dataset. Table 2; Figures 6,
7. See Supplementary Table S1 for full results).

Results from the duplicated runs were not generally better than
results from models run on the full dataset, although they were
consistently better for predicting nitric acid concentration in the
best-performing models. Compared to results from the SUR

framework to those from a standard regression context, results
from models run in the SUR framework were better for nitric
acid concentration, while the independent regressions performed
better for Pu concentration and precipitation temperature. These
results suggest that for nitric acid concentration, the SUR framework
successfully captured correlations among dependent variables,
i.e., the correlated variation in processing conditions’ effects on
the PuO2 particle features.

The goal of the PuO2 bench-scale experiment was to detect
production signatures, in which different process characteristics
produce identifiably different particle features, and the
underlying assumption is that these signatures exist. A strong
indication that the inverse problem is ill-posed is that estimates
for x′ are highly unstable: small perturbations of y′ lead to large
changes in the estimate for x′. In the Bayesian context, one way to
measure the stability of the estimates is to examine convergence
diagnostics for the MCMC chains. Here we apply the commonly-
used Gelman-Rubin statistic, which compares within-chain
variation to between-chain variation (Gelman and Rubin,
1992; Brooks and Gelman, 1998). These authors suggest that
diagnostic values greater than 1.2 may indicate non-convergence,
although in practice a more conservative threshold of 1.1 is often
used and we adopt that standard here.

Convergence diagnostics for the models using the nitric acid
concentration variables indicate that the models converged (see
Supplementary Table S2; Supplementary Figure S1 for diagnostic
statistics and representative traceplots). The maximum 95% upper
confidence bound on the Gelman-Rubin convergence statistic for all
predictions of nitric acid concentration from the model using
variables identified as important for predicting nitric acid
concentration was 1.038. Values less than 1.1 indicate the model
has converged. Successful convergence demonstrates that the
models were able to uniquely identify the values of nitric acid
concentration associated with the values of the particle features.
Our results are not conclusive, but they do suggest that the inverse
problem is not ill-posed when considering nitric acid concentration
and that production signatures indicative of that process do exist
and are detectable.

TABLE 2 Model assessment, benchscale data. RMSE values for inverse
predictions of nitric acid concentration from the model using variables
identified as important for predicting nitric acid concentration. An RMSE of
1 indicates parity with a mean-only model. “SUR” indicates results from the
SUR models, while “Ind” indicates results from models run as independent
regressions (outside the SUR context). “Dup” indicates the model was
implemented on the dataset with 12 duplicated experimental runs,
otherwise model was implemented on full 24-run dataset.

Model SUR Ind

Linear 0.59 2.48

Linear Dup 0.44 1.89

Quadratic 0.52 1.71

Quadratic Dup 0.40 1.49

Interaction (sparse) 0.59 2.43

Interaction (sparse) Dup 0.44 1.93

Interaction (full) 0.47 1.30

Interaction (full) Dup 0.44 1.20
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4 Conclusion

The primary purpose of this study was to develop an inverse
prediction model to reverse-engineer processing conditions under
which special nuclear material was produced. Prior to the
development of the functional inverse prediction framework (Ries
et al., 2023), inverse prediction methods used only scalar
observations obtained from SEM images, discarding useful
information contained in the functional curve of response values.
The FIP framework implements a general-purpose methodology for
performing inverse prediction with a functional response and scalar
explanatory variables. The SUR model was specifically developed to
capture correlations among dependent variables that cannot be

accommodated when each variable is modeled independently. By
correctly accounting for correlations and embedding the SURmodel
in a Bayesian framework, we are able to improve model predictions
and more accurately quantify uncertainty.

Research on the relationship between PuO2 processing
conditions and materials properties began during the Manhattan
Project and has shown that the conditions under which PuO2 is
produced can have a significant impact on the material’s properties
(Facer and Harmon, 1954; Smith et al., 1976; Hagan and Miner,
1980; Burney and Smith, 1984). Production conditions like chemical
precursor, calcination temperatures, and acid concentrations and
temperatures in cases where oxide precursors are precipitated, are all
known to affect the properties of the PuO2 product. The material

FIGURE 6
Model results. Inverse prediction (blue point) for nitric acid concentration, with 95% credible interval for predicted mean. Black point is true value. All
models used independent variables selected as important for predicting nitric acid concentration. (A): Results from dataset using all 24 experimental runs.
(B): Results from dataset using 12 duplicated experimental runs.

FIGURE 7
Model assessment, benchscale data. RMSE values for inverse predictions of all processing conditions. An RMSE of 1 indicates parity with amean-only
model. “SUR” indicates results from the SUR models, while “Ind” indicates results from models run as independent regressions, outside the SUR
framework. “Dup” indicates the model was run on the dataset with 12 duplicated experimental runs, otherwise model was run on full 24-run dataset.
Variable selection techniques: “Step” is stepwise regression; “L. full” is the full set of lasso-selected variables; “L. small” is the reduced set of lasso-
selected variables; and “HNO3” is the set of variables stepwise-selected as important for predicting nitric acid concentration.
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properties of PuO2 are of interest in understanding waste site
cleanup strategies, the potential use of PuO2 in mixed oxide
fuels, and as potential signatures in nuclear forensics
applications. This study specifically focuses on PuO2 particle
morphology—an area of nuclear forensics science that has shown
promise in recent years. Mayer et al. (2012) and McDonald et al.
(2023) both provide reviews of research programs studying the use
of morphological features in nuclear forensics work. Using the same
PNNL bench-scale experiment data as the current study, Ausdemore
et al. (2022) were able to predict processing conditions from PuO2

using a combination of models that, first, direct-predicts processing
conditions from particle characteristics, then applies Bayesian
calibration techniques to estimate processing conditions for a
new set of observed particle characteristics. Our study adds to
the growing literature providing evidence for the existence of
production signatures that can be detected through sophisticated
statistical models.

The inverse prediction results from the PuO2 bench-scale data
demonstrate the difficulties inherent in nuclear forensics research and
development. The production and analysis processes generate many
sources of variation that mask the signals in the data and make the
detection of production signatures difficult. This study was successful
primarily in inverse-predicting one of three processing conditions
(i.e., nitric acid concentration), while the other two processing
conditions (i.e., Pu concentration and precipitation temperature) did
not show significant differentiation. These results suggest that different
levels of nitric acid concentrationmay produce detectable differences in
the morphological features of PuO2 particles. One possible extension of
this work could supplement morphological information with
information on chemical and/or physical characteristics. The
inclusion of this information would likely improve the analysis and
provide additional predictive power for the inverse problem. For a given
particle, its morphological, physical, and chemical characteristics will be
correlated, and correlations among variables are precisely what SUR
models are designed to address. Processing SEM images using MAMA
software, and then analyzing these data using functional SUR in a
Bayesian context, shows promise as a technique for determining the
provenance of special nuclear material in nuclear forensics applications.
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